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Abstract— One class of applications envisaged for the
IEEE 802.15.4 LR-WPAN (low data rate - wireless personal area
network) standard is wireless sensor networks for monitoring
and control applications. In this paper we provide an analytical
performance model for a network in which the sensors are at
the tips of a star topology, and the sensors need to transmit
their measurements to the hub node so that certain objectives
for packet delay and packet discard are met.

We first carry out a saturation throughput analysis of the
system; i.e., it is assumed that each sensor has an infinite backlog
of packets and the throughput of the system is sought. After a
careful analysis of the CSMA/CA MAC that is employed in the
standard, and after making a certain decoupling approximation,
we identify an embedded Markov renewal process, whose analysis
yields a fixed point equation, from whose solution the saturation
throughput can be calculated. We validate our model against
ns2 simulations (using an IEEE 802.15.4 module developed by
J. Zheng [14]). We find that with the default back-off parameters
the saturation throughput decreases sharply with increasing
number of nodes. We use our analytical model to study the
problem and we propose alternative back-off parameters that
prevent the drop in throughput.

We then show how the saturation analysis can be used to
obtain an analytical model for the finite arrival rate case. This
finite load model captures very well the qualitative behavior
of the system, and also provides a good approximation to the
packet discard probability, and the throughput. For the default
parameters, the finite load throughput is found to first increase
and then decrease with increasing load. We find that for typical
performance objectives (mean delay and packet discard) the
packet discard probability would constrain the system capacity.
Finally, we show how to derive a node lifetime analysis using
various rates and probabilities obtained from our performance
analysis model.

Keywords: wireless sensor networks, performance anal-
ysis, LR-WPANs

I. I NTRODUCTION

Low rate-wireless personal area networks (LR-WPANs)
are designed to serve a variety of applications with a focus
on enabling wireless sensor networks. The IEEE 802.15.4
standard [1] has evolved to realize the physical (PHY) and
multiple access control (MAC) layers of such LR-WPANS.
The ZigBee alliance has developed the network and upper
layers [2]. The overall objective of our work reported here
is to analyse the performance of such networks for industrial
sensing and measurement applications. The aim is to replace
existing wired sensor networks (based, e.g., on the Fieldbus
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standard) with wireless ad hoc sensor networks. The end to
end applications, however, will initially remain unchanged.
Hence the concern is whether the wireless network will be
able to carry the measurement traffic with the same level of
performance as the wired network.

A. Preview of Contributions

In this paper we provide the results of our analysis of a star
topology sensor network based on the IEEE 802.15.4 standard.
Here we limit our work to the situation in which packets flow
only from the sensors to the head of the hub of the star (i.e.,
the PAN coordinator). We first obtain the saturation throughput
of the network. Then we provide some results on performance
with finite rate arrivals of measurements. The following is a
preview of our main contributions and findings.

1) We provide a fixed point analysis, using a decoupling
approximation (see [4] and [10]) for the saturation
throughput analysis of IEEE 802.15.4 networks. The
CSMA/CA mechanism in IEEE 802.15.4 is significantly
different from that in IEEE 802.11, for which the anal-
yses in [4] and [10] were done. Hence a major novelty
in our present work is that we extract a Markov renewal
process model for the evolution of the CSMA/CA chan-
nel in IEEE 802.15.4, and then develop a decoupling
approximation for this model. We find that our analysis
captures the saturation throughput with a maximum error
of 5% (see Figure 16).

2) We find that the design of the CSMA/CA MAC in
IEEE 802.15.4 is such that the aggregate saturation
throughput decreases sharply with the number of nodes.
We use our analytical model to show that with the
default parameters, with increasing number of nodes the
backoff adaptation does not work well and the network
operates in a congested regime. We show that, staying
within the framework of the standard, it is possible to
modify the backoff parameters so that the saturation
throughput decreases only slightly when the number of
nodes increases. It is also found that packet discard
probability is much reduced after these modifications
(see Figures 18 and 19).

3) The saturation analysis thus obtained is used to perform
a heuristic finite load analysis. Simulations show that
the analysis captures very well the qualitative behaviour
of delay, throughput, and packet discard probabilities,
and for the latter two also provides a good analytical
approximation (see Figures 21 and 22).

4) Finally, we show how a node lifetime analysis can be



2

performed by using the various event rates and probabil-
ities derived from our performance analysis model (see
Figure 23).

B. Related Literature

Zheng and Lee [11] have given an overview of the standard.
Kinney [9] has provided a description of ZigBee technol-
ogy, along with a comparative study of ZigBee with Blue-
tooth. There have been several simulation studies of the
IEEE 802.15.4 CSMA/CA mechanism. In [15], Zheng and Lee
report on a module that they have developed for the ns2 simu-
lator ([14]), and provide results from several sets of simulation
experiments. Other simulations studies have been reportedin
[25], [12], [7]. Timmons and Scanlon have done the very first
analytical modeling of the IEEE 802.15.4 single cell network
in the context of medical sensor body area networks. Their
much simplified analysis [13] focuses on long-term power
consumption of devices. Park et al. [19], Pollin et al. [18],
and Tao et al. [21] propose Markov chain models to analyse
the performance of the 802.15.4 slotted CSMA/CA protocol in
the saturation condition. The analytical approach is similar to
that introduced by Bianchi [4] for analysing the IEEE 802.11
DCF with saturated nodes. In [21], the authors assume that
times at which channel activity starts are renewal instants, and
develop a 3-dimensional Markov chain for the joint evolution
of a node’s back-offs and the residual time within a channel
cycle. This yields a complex Markov chain, whose transition
probabilities are expressed in terms of an unknown vector
of probabilities. Finally, after some assumptions the analysis
involves the solution of a vector fixed point equation in this
unknown vector of probabilities. One assumption that is made
is that the number of nodes that can attempt at any time is
always n, the total number of nodes. Also, only saturation
analysis is performed. In [22], Ramachandran et al. model
the contention access period specified in the IEEE 802.15.4
standard using nonpersistent CSMA as the access mechanism.
The authors show that reducing the number of CCAs to
1 is advantageous in terms of achievable throughput and
delay in situations where a MAC layer acknowledgment is
not required. The analysis is also based on a Markov chain
model for the behaviour of each node, but is limiting since no
buffering at the nodes is considered. The authors replace the
uniform distribution of backoff window size with a geometric
distribution of the same mean. The possibility of collisions
is ignored while formulating the Markov chain model of a
tagged node. In [17] the authors consider a beacon enabled
star topology network with bidirectional traffic. Each nodeis
modeled as an M/G/1 queue and then a Markov model like
the one developed by Bianchi [4] is obtained.

Kohvakka et al. in [16] provide a simplified analysis of a
cluster tree topology of IEEE 802.15.4 sensor nodes. Leibnitz
et al. [20] report the analysis of IEEE 802.15.4 CSMA/CA
when all nodes initiate their transmission attempts simultane-
osly. Thus these authors do not consider any particular traffic
model. Koubaa et al. [24], discuss the inefficiencies of the
CFP and GTS mechanisms of IEEE 802.15.4 standard. The
authors then propose an implicit GTS allocation mechanism

(i-GAME) to address the problems observed. Ramachandran
[23] has reported a comprehensive list of bugs in the existing
ns2 implementation of 802.15.4.

In our work we have followed an approach along the lines
of Kumar et al. [10]. We first obtain a saturation analysis
in which each node is characterised by a single unknown
attempt probability, which is obtained by the solution of a
fixed point equation. Then a finite load analysis is obtained
by a novel application of the saturation analysis. Overall the
analysis is simpler than the one based on detailed per node
Markov chains and provides better insight. Also we compare
our results against the more standard ns2 simulator.

C. Outline of the paper

The rest of the paper is organized as follows. Section II
briefly reviews LR-WPAN architecture and its specifications.
In Section III we identify various scenarios that occur when
nodes interact using the IEEE 802.15.4 slotted CSMA/CA
MAC. In Section V, we identify a cyclic evolution of system
behaviour, provide a stochastic model of the evolution of
certain processes, and also formulate a fixed point equation.
Various performance measures are derived in Section VI.
Numerical results along with a discussion are also providedin
the same chapter. In Section VII-B, we discuss how back-off
parameters can be changed to modify network performance. In
Section VIII we use the saturation analysis to develop a finite
load analysis. In Section IX we show how our model can be
used to derive an estimate of node lifetime. Finally SectionX
we summarise the insights gained from our work in this paper.
The appendix contains the details of the derivations of various
transition probabilities and conditional distributions.

II. IEEE 802.15.4: A SHORT OVERVIEW AND SCOPE OF

OUR MODELING

��

Device 

   

Coordinator
PAN

Fig. 1. A star topology LR-WPAN sensor network

We begin by providing a quick overview of the parts of the
IEEE 802.15.4 MAC standard that are relevant to our study.
Figure 1 shows a star topology sensor network comprising a
PAN coordinator and several sensors as leaf nodes. Since we
consider only a simple star topology, with flow of traffic only
from the leaf nodes to the hub, we need to consider only the
PHY and MAC standards.
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Fig. 2. The IEEE 802.15.4 superframe structure.

A. PHY and MAC Overview

Throughout we assume that we are working in the 2.45GHz
band and hence the PHY data rate is 250 Kbps, the symbol
rate is 62.5 symbols/second; hence the symbol time is16µs.
In practice wireless transceivers are always half duplex. Hence
the IEEE 802.15.4 devices require a finite amount of time
to switch between transmission and reception. This time is
denoted byaTurnaroundTimein the standard and is equal to
12 symbol times.

We now turn to the MAC specifications. The IEEE 802.15.4
can operate either in a beacon enabled or a non-beacon enabled
mode. In the beacon enabled mode, the PAN coordinator works
with time slots defined through a superframe structure (see
Figure 2). This permits a synchronous operation of the network
so that nodes can go to sleep and wake up at designated times.
We assume this mode in our work. Each superframe has active
and inactive portions. The PAN Coordinator interacts with the
network only during the active portion. The active portion
is composed of three parts: a beacon, a contention access
period (CAP), and a contention free period (CFP). The active
portion starts with the transmission of a beacon and a CAP
commences immediately after the beacon. All frames, except
acknowledgment frames and any data frame that immediately
follows the acknowledgment of a data request command (as
would happen following a data request from a node to the
PAN coordinator), transmitted in the CAP, must use a slotted
CSMA/CA mechanism to access the channel. We note that we
do not model data requests from nodes to the PAN coordinator
in our work reported here.

The CFP, if present, follows immediately after the CAP and
extends up to the end of the active portion of the superframe
(see Figure 2). To use a CFP, a node issues an explicit
GTS (guaranteed time slot) allocation request to the PAN
coordinator. The PAN coordinator, can allocate available GTSs
to nodes. In the CFP, a device can transmit during its GTS,
without any contention with other devices. We note that, as
per the standard, the PAN coordinator may allocate only up
to seven GTSs in a CFP. Hence, no more than seven nodes
can be involved in the CFP during a superframe. It follows
that in a network with a large number of nodes this feature
will be useful only for sporadic alarm traffic that requires very
low latency. See also [24] for an additional discussion of the
limitations of the GTS mechanism.

Transmitted frames are always followed by an IFS period.
Frames(MPDUs) of length up toaMaxSIFSFrameSizeare
followed by a SIFS period of duration of at leastaMinSIF-

Acknowledged  transmission

      Long frame                       ACK                           Short frame                 ACK

   Long frame                                    Short frame 

t ack LIFS                                   
tack                                                             SIFS

LIFS                                   
                                                             SIFS

Unacknowledged  transmission

Fig. 3. Illustration of LIFS and SIFS

SPeriod symbols, otherwise a LIFS of a duration at least
aMinLIFSPeriodsymbols follows (see Figure 3).

B. Scope of Our Analytical Model

We consider a beacon enabled star topology network, in
which all the communication is from the sensors to the PAN
coordinator. Thus we do not consider peer-to-peer communi-
cation, nor do we consider mesh topologies. We only model
the slotted CSMA/CA MAC, and not unslotted CSMA/CA.

Since we are interested in an application in which mea-
surements continuously flow from the sensors to the PAN
coordinator, it is assumed that the active part of the superframe
is equal to the beacon interval. For such traffic the time
reserved in the CFP part of a superframe will often be wasted.
Thus, no CFPs are assumed1. Since we focus on analyzing
the performance of slotted CSMA/CA, we assume a large
superframe duration. This allows us to ignore the beacon
transmission time and all the time wasted at the end of each
beacon interval due to nodes not being able to complete their
transmissions in the fragment of time left at the end of a
beacon interval. Thus all of channel time is assumed to be
used for CSMA/CA based access.

Since we are analyzing the star topology, which has only
one hop transmissions, the ZigBee routing algorithm does not
come into the picture. It is also assumed that none of the
devices disassociates during the whole traffic flow, and also
that communication failures never cause a device to conclude
that it has been orphaned.

We assume also that all nodes are perfectly synchronized at
backoff period boundaries.

C. The Slotted CSMA/CA Algorithm

The CSMA/CA algorithm is implemented using units of
time, called backoff periods, each of lengthaUnitBackoffPe-
riod (= 20 symbol times = 0.32 ms). Note that 10 bytes can
be transmitted in one backoff period. In slotted CSMA/CA,
the backoff period boundaries of every device in the PAN
are aligned with the superframe slot boundaries of the PAN
coordinator, and transmissions begin on the boundary of a
backoff period.

1We note that the CSMA/CA mechanism can be analysed in the presence
of the GTS mechanism by using an approach based on queues withservice
interruptions (see [3]).
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Each device maintains three variables for each transmission
attempt: NB, CW and BE. NB is initialised to 0, and counts the
number of additional backoffs the algorithm has to do while
attempting the current transmission. CW is the number of
backoff periods, that need to be clear of channel activity before
the transmission can commence. MAC ensures this by per-
forming clear channel assessment(CCA) at the boundary of
CW consecutive backoff periods2. CW is set to 2 before each
transmission attempt, i.e., two consecutive CCAs must find the
channel clear in order for the node to attempt a transmission.
BE is the backoff exponent and is initialized tomacMinBE. If
a node finds a packet at the head-of-line (HOL) of its buffer, it
starts a backoff uniformly distributed over(0, 2BE−1) backoff
periods. The backoff counter is decremented by 1 at the start
boundaries of successive backoff periods irrespective of any
channel activity. The counter is frozen during the CFP and the
inactive portion of a superframe, and resumes when the CAP
in the following superframe begins. Once the backoff counter
reaches 0, the node starts performing CCAs. If both the CCAs
succeed, the node transmits the packet. If either of the CCAs
fails, CW is reset to two and both NB and BE are increased by
one, ensuring that BE does not exceedaMaxBE. If the value
of NB is greater thanmacMaxCSMABackoff, the CSMA/CA
algorithm terminates with a Channel Access Failure status.The
packet being attempted is discarded after a Channel Access
Failure. If both the CCAs from a node succeed, it proceeds to
transmit the HOL packet, provided that the frame transmission
and the subsequent acknowledgment can be completed one IFS
period before the end of the CAP. If this is not possible, the
node shall defer its transmission until the start of the CAP of
the following superframe.

If the node can proceed, it transmits the packet. This may
result either in a successful transmission or a collision. Asuc-
cessful transmission is always accompanied by the reception
of a MAC acknowledgment. A MAC acknowledgment is of
fixed length, 11 bytes. The transmitting node always waits
for acknowledgment formacAckWaitDurationbefore declaring
a collision. If the packet collides with some other packet
while being transmitted, it is retransmitted with all backoff
parameters set to their initial values. A packet is retransmitted
at mostaMaxFrameRetriestimes after transmission failures
due to collisions, before being discarded.

CSMA/CA employs one more parametermacBattLifeExtto
exploit the possibility of energy savings at the PAN coordina-
tor in case of very low duty-cycle traffic. In slotted systems
with macBattLifeExt set to TRUE, the backoff countdown only
occurs during the firstmacBattLifeExtPeriodsfull backoff peri-
ods following the beacon. An IFS period and subsequent frame
transmissions to the PAN Coordinator are required to start in
this duration. So if the PHY at the PAN Coordinator does not
indicate any reception during this period, the PAN Coordinator
can go into a doze mode, thus saving its battery energy. If

2Energy saving is an important consideration in sensor networks. In the
802.11 standard nodes keep their receivers on even during backoff periods
so that they can sense any transmission and freeze their counters during
activity periods. However, carrier sensing also requires energy. In the 802.15.4
standard, during backoff, a node’s receiver can shut down and CCA is
performed only after backoff is finished, thus saving energy.

macBattLifeExt is set to TRUE, the backoff exponent BE is
initialized to the smaller of 2 and macMinBE; otherwise BE
is initialised to macMinBE.

The CSMA/CA algorithm analysed in this paper assumes
macBattLifeExt set to FALSE, so that backoff countdown can
occur throughout the active portion of the superframe and the
frame transmission also can start at any of the backoff period
boundaries throughout the active portion of the superframe.

The default values of the various CSMA/CA parameters, as
in the standard, are given in the following table.

Parameter Value
aMaxBE 5
aMaxframeRetries 3
macMaxCSMABackoffs 4
macMinBE 3
macBattLifeExt FALSE

III. U NDERSTANDING NODE INTERACTIONS IN THE

IEEE 802.15.4 SLOTTED CSMA/CA ALGORITHM

Our first aim is to develop an analytical model for cal-
culating the saturation throughput of an IEEE 802.15.4 star
network. By saturation throughput it is meant that all the
nodes always have packets to send, and hence always contend
for access. Saturation throughput is one measure of system
capacity, and we will see how it can be used to develop an
approximate analysis for finite arrival rates.

Like all such standards, the IEEE 802.15.4 MAC stan-
dard [1] is written with an implementer in mind.It describes
the behaviour of an individual node. In order to model the
system, however,we need to understand how nodes interact.
In this section we will identify the various scenarios that arise
when the nodes interact. This will reveal a certain cyclical
evolution of the aggregate behaviour of the nodes, which
will lead to the mathematical model that we will develop in
Section V.

Whenever a node has a packet to transmit, it starts a random
backoff. Once the backoff is completed, the node seeks a
reservation of the channel. For that purpose, following the
backoff, it performs a CCA, at the start of the next backoff
period, to see whether the channel is free. A CCA lasts
for 8 symbol times and the CCA status, either success or
failure, is revealed at the end of the 8th symbol time. This
is because if the channel is declared to be free even at the end
of the 8th symbol time, the node can turn its transmitter on
within the remaining 12 symbol times and can begin a new
transmission at the start boundary of the next backoff period.
The actual CCA algorithm involves integrating the observed
signal energy over some window, and the result of a CCA
is highly dependent on the window, the number of nodes
transmitting and their proximity to the node performing the
CCA. Hence, in order to facilitate our analysis, we make the
simplifying assumption that if any channel activity (successful
transmission or collision) finishes before the end of the 8th
symbol time in a backoff period, the channel appears to be
virtually free from the point of view of all the nodes not
involved in the activity. This can be expected to provide a
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CCA 1  CCA 2              Data                   t                ACK
  ack

CCA 1

  t

  t
ack*

ack*

Node 2

IFS for Node 2
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Fig. 4. A successful transmission.If the amount of time occupied by data
in its last backoff period is less than 8 symbol times then 12 symbol times
remain in the backoff period, sufficient to turn around and send an ACK;
then Case 1 occurs. Otherwise the turn around time spills over into the next
backoff period and the ACK must start at the beginning of the next backoff
period boundary; hence, Case 2 occurs.

higher chance of CCA success, hence leading to optimistic
results.

In case the first CCA succeeds, the node waits until the start
of the next backoff slot and performs one more CCA. If the
channel is again found to be free, the node starts transmission
at the start of the next backoff period boundary. The reason for
using two CCAs becomes clear from the remaining discussion
in this subsection.

A successful transmission is always accompanied by re-
ception of a MAC acknowledgment of length 11 bytes (see
Figure 4, where the last byte of the ACK is shown spilling
over into the second backoff period). Once a node finishes
reception of data, it needs a timetack (see Figure 3) before
its transmitter is turned on, and then it starts transmission
of the MAC ACK. Since, transmission of an ACK can start
at a backoff period boundary only,tack can have values
in the range:aTurnaroundTime≤ tack ≤ aTurnaroundTime
+ aUnitBackoffPeriod. The whole transaction also includes
an interframe space time after transmission of the MAC
acknowledgment (see Figure 3).

In case data transmission finishes before the end of the
8th symbol time in its last backoff period, the receiver can
turn its transmitter on (during the remaining 12 symbol times)
before the start of the next backoff period and, hence, it can
start the transmission of the ACK at the next backoff period
boundary. But if data requires more than 8 symbol times in
its last backoff period, the receiver has less then 12 symbol
times in that backoff period and hence the turn around time
spills over into the next backoff period. So, the ACK has to
wait one more entire backoff period. In either case the channel
becomes virtually free for exactly one backoff period. Denote
that backoff period bytack∗ . Figure 4 shows these situations.

There will be a collision only if two or more nodes
start their first CCA (in the sequence of two CCAs) at the
same backoff boundary. A transmitting node always waits for
acknowledgment formacAckWaitDurationbefore declaring a
collision. This is the worst case delay which can occur in
reception of acknowledgment. Denote the ACK transmission
time byTack. ThenmacAckWaitDuration= max(tack)+Tack =
aTurnaroundTime+ aUnitBackoffPeriod+ Tack. This situation
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Fig. 6. Node 2 attempts while data or an acknowledgment are being
transmitted in Case 1 and Case 2 respectively. In both the cases the channel
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cycle for the same packet.

is depicted in Figure 5, where nodes 1 and 2 are shown to
collide.

While a node performs CCAs, if some activity is going on
and the channel is not virtually free, its first CCA itself will
fail. This possibility is shown through Figures 6 and 7.

On the other hand, when a node starts a CCA, if the channel
is either in second CCA (CCA 2) or intack∗ due to some
node, then the first CCA (CCA 1) from the node will succeed,
but this node’s CCA 2 will fail. Figures 8 and 9 show the
situations where the first CCA succeeds while the second fails
for Node 2. This explains why two CCAs are needed.
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IV. OBSERVATIONS ABOUT THEIEEE 802.15.4NS2
MODULE

A detailed look at IEEE 802.15.4 ns2 module [14] revealed
that there are a few inconsistencies between the module and
the IEEE 802.15.4 standard [1]. We made changes in the
module to address the following discrepancies, which are
relevant to our work.

1) A node performing CCA decides whether the CCA
has succeeded only at the end of the8th symbol time
in a backoff period. Once the second CCA succeeds,
the remaining 12symbol times(which is equal to
aTurnaroundTime) left in that backoff period are suf-
ficient for the node to turn its transmitter on. In the ns2
module, a node spends one extra backoff period before
starting actual transmission, whenever its second CCA
succeeds.

2) Whenever a node’s frame collides, the attempt counter
is increased by one until the counter exceeds
aMaxFrameRetries, after which the frame is discarded.
Unlike the standard, in the ns2 module a node resets this
counter when the attempt process of a packet spills over
into a new superframe.

3) In case a channel access failure occurs while attempting
for a packet, the packet should be discarded. But in the
ns2 module a packet is reattempted indefinitely often
after channel access failures, and is discarded only if it
faces more thanaMaxFrameRetriescollisions.

V. THE STOCHASTIC MODEL AND A FIXED POINT

EQUATION

A. A Cyclic Evolution

Time is divided into contiguous backoff periods whose
duration is denoted byδ. All node activities are initiated at
backoff period boundaries. We need to study each node’s
individual behavior and also the aggregate channel activity.
From the point of view of the channel activity, we can define
certain cycles (see the last time line in Figure 10). There
could be a succession of idle backoff periods. An idle channel
period ends when both of the successive CCAs of one or more
nodes are successful. Once this happens, the channel activity
in the following cycle can evolve in one of two ways: i.e.,
subsequently there may be a successful transmission (as in
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+ 3 2( δ) ( δ) ( δ)
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attempted here.

nodes attempted here

Fig. 10. A snapshot of evolution of the activity at three nodes. The fourth
time-line superposes these activities, thus depicting a cyclical evolution for
the aggregate system.

case of Node 1 in Figure 10), or a collision between two or
more nodes (like Nodes 2 and 3 in Figure 10).
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Fig. 11. A successful transmission. It lasts forTdata−ack +2δ duration, the
channel is virtually free at the time shown and onlyn−1 nodes are available
for attempt in the following backoff period.
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CCA 1   CCA 2                      T
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 1            2           3           4

attempted here.

CCA 1

Node 3
Node 3 

Channel does not become virtually 

Nodes 1 and 2 become available 
   Wait Duration

attempted at these points
None of the other (n−2) nodes 

to attempt after this moment

free at this boundary

Fig. 12. A cycle containing collisions. Its length isTcoll +4δ because Node
3 has attempted at the3rd backoff period boundary after collision is over.
Only n− 2 nodes were available there to attempt at that point for new cycle.

Suppose the network consist ofn contending nodes, exclud-
ing the PAN coordinator. The length of a cycle depends onthe
number of nodes available to attemptin the first backoff period
of the cycle. A cycle contains a single idle backoff period of
lengthδ, if none of the available nodes attempts to sense the
channel at the start boundary of this backoff period (see Cycle
2 in Figure 10). It leaves all those nodes free to attempt in the
next cycle.

In Figure 11 we show a successful transmission cycle. Let us
examine this carefully. The total busy period of the transaction
is shown asTdata−ack. Acknowledgments always start at the
boundary of a backoff period and being of fixed length 11
bytes (i.e., 22 symbols) consume only 2 symbol times in their
last backoff period. Thus, at the start boundary of this backoff
period, the channel becomesvirtually free for other nodes
because a CCA that starts at this backoff period boundary
(being of 8 symbol times duration) will find the channel clear,
and hence a new cycle might be started by other nodes in
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this backoff period. Thus,Tdata−ack does not include this
backoff period. DefineTdata−ack∗ as the portion ofTdata−ack,
excludingtack∗ (recalling tack∗ from Section III) i.e.,

Tdata−ack∗ = Tdata−ack − tack∗

It is seen that, a cycle of successful transmission lasts for
Tdata−ack+2δ duration and, onlyn−1 nodes are available for
attempt in the following backoff period. Note from Figure 10
that the channel is viewed as being in an idle cycle (Cycle 2)
even though the transmission of Node 1 is not complete.

In Figure 12 we depict a collision cycle. If there are 2 or
more nodes available to attempt at the beginning of a cycle,
there is a possibility of collision. If there is a collision of k
nodes, it continues forTcoll duration. During its last backoff
period, if a collision consumes less than or equal to 8 symbol
times, again the channel becomes virtually free from the point
of view of nodes not involved in collision; then, this backoff
period is not included inTcoll. After the collision, all thek
senders wait for acknowledgment formacAckWaitDuration
before realising that there is atransmission failure. Define a
positive integerJ such that

J + 1 =
⌈Tcoll + macAckWaitDuration

δ

⌉

+ 2 −
Tcoll

δ

where Tcoll is the actual time spent in collision by a node.
A careful look at various parameters reveals that the only
possible values ofJ are 4 and 5. Thus a cycle containing
a collision activity has one of the following three possibilities.

• Case 1:k < n, and one or more of then − k nodes
not involved in the collision perform successful CCAs,
while k nodes involved in collision are still waiting for
acknowledgments. In this case the length of the current
cycle will beTcoll + jδ, j ∈ {2, 3, ..J} with, n− k nodes
being available to contend for next cycle. Also the next
cycle cannot be an idle cycle.

• Case 2:k < n, and all thek nodes involved in the
collision finish with theirmacAckWaitDurations and none
of the othern − k nodes attempts for a CCA in this
duration. In this case the length of the current cycle will
beTcoll +(J +1)δ, and all then nodes will be available
to contend for next cycle.

• Case 3:k = n. There will not be any node available to
attempt after the collision is over. The current cycle will
last forTcoll +(J +1)δ duration, and all then nodes will
be available to contend for next cycle.

These situations are illustrated by Figure 12, which corre-
sponds toJ = 4. Here the current cycle may be of lengths
Tcoll + (i + 1)δ, i = 1, 2, 3, provided that some of the nodes
other than 1 or 2, attempt at theith backoff period boundary
after the collision is over. The cycle length will beTcoll+5δ if
none of other nodes attempt while nodes 1 and 2 are waiting
for acknowledgments. The figure shows the case where the
cycle length isTcoll + 4δ. In Figure 10 the channel enters
into Cycle 4, while Nodes 2 and 3 are still waiting for
acknowledgments.

B. The Stochastic Model

As shown in Section V-A, the cycles defined are always
multiples of the backoff period. Denote the backoff period
boundaries bytk = kδ, k ≥ 0. Then denote the start times
of the cycles by the random timesTi, i ≥ 0, with Ti ∈ {tj :
j ≥ 0}, andT0(= 0) < T1 < T2 < · · ·. Associated with each
Ti, i ≥ 0, is a random variableXi ∈ {1, 2, .........n}, which is
the number of nodes available to attempt at the instantTi. The
cycles are indexed byi ≥ 1, with cycle i being the interval
[Ti−1, Ti). Denote the cycle length by

Ui = Ti − Ti−1

1  T

X X

T
 i

    U T
 i+1

2

 2

δ

                U                           T                                  U
                     2

                           T
                                                                                      1                                      0

                            X
                                            0

                                        0                  1                  2                  3                  4                  5                                   j                  j+1              j+2                j+3              j+4               j+5

   i
 X

 i+1

                                                                         t            t            t            t            t            t                       t           t            t             t            t            t  

                              X
                                            1

 i+1

Fig. 13. Channel cycles and notation for the Markov renewal process

We draw the following conclusions from the discussion of
Section V-A.

• If Xi = n, then Cyclei + 1 may comprise a successful
transmission, a collision, or the cycle may be an idle one,
depending upon the number of nodes that attempt.

• If Xi = n − 1 (as would happen after a success cycle),
then Cyclei + 1 may have a successful transmission, a
collision, or the cycle may be an idle one, depending
upon the number of nodes that attempt.

• If Xi < n−1, it means we are in a case like that shown in
Figure 12, i.e., at least one of these nodes has attempted,
and the following cycle cannot be an idle one. It can have
a successful transmission or a collision depending upon
how many nodes have attempted.

It is seen that, if the number of nodes available to at-
tempt at the beginning of the cycle is known, the evolution
of the cycles in the future does not depend on the past,
i.e., the random vector(Ui+1, Xi+1) and the random vector
((X0, T0), (X1, T1), · · · · · · · · · (Xi−1, Ti−1), Ti) are indepen-
dent, givenXi. Hence, although the cycles are not indepen-
dent,(Xi, Ti), i = 0, 1, 2...... is a Markov renewal process. To
analyse this we need the transition probabilities

P (Ui+1 = u, Xi+1 = k|Xi = k′)

for all possible values ofu, k andk′. Also, {Xi, i ≥ 0} will
be a Markov chain. We can obtain the transition probability
matrix M for this Markov chain, and hence we can compute
the steady state probabilitiesπk, 1 ≤ k ≤ n.

Given the number of nodes available to attempt at the
beginning of a cycle, the conditional expectation of the cor-
responding cycle length can be developed, and we can define
the following quantities. For1 ≤ k ≤ n (and anyi) define,

EkU =
∑

u

u
∑

k′

P (Ui+1 = u, Xi+1 = k′|Xi = k)

Then, the expected duration of a cycle will be given as

EU =

n
∑

k=1

πkEkU
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e

r(e)(u, k) CCA2 Tdata−ack Tcoll Tdata−ack∗ tack∗ successfully
sent data

(δ, n) 0 0 0 0 0 0
(Tdata−ack + 2δ, n − 1) δ Tdata−ack 0 Tdata−ack − δ δ Ldata

(u, k) (Tcoll + jδ, k)
j ∈ {2, 3, . . . J} δ 0 Tcoll 0 0 0

k ∈ {1, 2, . . . (n − 2)}
(Tcoll + (J + 1)δ, n) δ 0 Tcoll 0 0 0

TABLE I

VALUES OFr(e)(u, k) FOR SEVERALeS AND ALL POSSIBLE(u, k)S. IT CAN BE SEEN THATR
(e)
i

CAN BE UNIQUELY DETERMINED, GIVEN (Ui, Xi).

We can also determine the conditional expected durations for
which channel is either in second CCA,Tdata−ack or Tcoll,
in a cycle. More generally, suppose, in theith cycle the
channel remains in evente for an amount of timeR(e)

i . Thus,
R

(e)
i can be considered as a “reward” (corresponding to the

occurrence of evente) in the ith cycle. It can also be shown
that, for each evente of interest,R(e)

i will be a function of
(Ui, Xi) (see Table I). By this we mean that for each event
of intereste, there is a functionr(e)(u, k′), such that, for all
possible values ofu, k′ and anyi, if (Ui, Xi) = (u, k′) then
R

(e)
i = r(e)(u, k′). Note that{R(e)

i , i ≥ 1} are such that, given
Xi, R

(e)
i+1 and ((X0, T0), (X1, T1), · · · , (Xi−1, Ti−1), Ti) are

independent. Then we define (for anyi)

EkR(e) =
∑

u

∑

k′

r(e)(u, k′)P (Ui+1 = u, Xi+1 = k′|Xi = k)

Now, the expected duration for which the channel remains in
evente in a cycle, can be obtained as

E(R(e)) =

n
∑

k=1

πkEkR(e)

Let R(e)(t) be the duration during[0, t] for which the channel
is in evente. Then by a regenerative argument (or the Markov
renewal reward theorem) we see that, with probability 1,

lim
t→∞

R(e)(t)

t
=

∑n
k=1 πkEkR(e)

∑n
k=1 πkEkU

Hence various event rates in the system can be determined
(e.g., the throughput of good packets can be obtained this
way).

C. A Decoupling Approximation

Motivated by the approach in [4] and [10], we propose a de-
coupling approximation in order to analyse the above process.
In this section we provide an outline of our approach. Each
node alternates between periods when it performs backoffs and
unsuccessful CCAs and periods when it transmits (successfully
or unsuccessfully). Letβ denote the rate at which a node’s
backoffs complete during the time when it is performing
backoffs; i.e.,β is a rate conditioned on times during which the
node is performing back-offs. Unlike the IEEE 802.11 DCF
mechanism, here nodes do not freeze their backoff timers when
there is activity on the channel. So, it is not possible to work
with “conditional time” as is done in [10] to facilitate the
fixed point analysis for 802.11 WLANs. Instead we proceed

as follows. As shown in Figure 10, the channel evolves over
cycles. At the end of each cycle we need to determine the
activity in the next cycle. The nodes that can attempt in the
next cycle are in their backoff periods. We assume that each
such node attempts independently in a slot with probability
β. Thus, if k nodes can potentially attempt at a backoff
period boundary, then we assume that the number of attempts
is binomially distributed with parametersk and β. With
this assumption, the transitions probabilities of the Markov
renewal process, and the conditional expectations defined in
Section V-B can be written down. The detailed derivation of
the transitions probabilities and conditional distributions are
provided in the Appendix. This approach permits us to obtain
channel event rates in terms of the unknown valueβ.

In order to obtainβ, we separate out a typical (“tagged”)
node and analyse it while viewing the other nodes as an
environment. We can expressβ in terms of certain channel
activity measures of other nodes. It is shown in Section V-D
that there is a functionG(·, ·, ·) such that

β = G(α, αdata−ack∗ , αcoll)

whereα is the probability that the tagged node’s CCA fails,
αdata−ack∗ is the probability that the tagged node finds one
of the other nodes in a successful transmission, andαcoll is
the probability that the tagged node finds some of the other
nodes in a collision. In the overall analysis procedure, we can
call the above equation a typical node’sresponse equation,
with the various probabilities capturing theinfluenceof the
environment on the tagged node. Each of these probabilities
are obtained as a certain fraction of time that the othern− 1
nodes (i.e., the environment in relation to the tagged node)
are in certain states. For example,αcoll is the fraction of time
that the othern−1 nodes are in a collision. In order to obtain
these probabilities we proceed as follows: (i) It is assumedthat
each node in the environment also behaves like the tagged
node, and hence attempts during its back-off periods at the
rate β, and (ii) then we obtain the desired fractions of times
by assuming that when several nodes are performing back-
offs they attemptindependently, each with probabilityβ. This
latter approximation is exactly the kind of approximation in
other fixed point based analyses such as in [4] and [10]. This
yields equations that can be called thecoupling equations.

In order to obtain the coupling equations, we obtain the
probabilities of various events occuring when each of then−1
nodes (that comprise the tagged node’s environment) uses the
(unknown) attempt rateβ. The channel evolves over cycles as
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shown in Figure 10. Using the Markov regenerative analysis
described in Section V-B we find the fraction of time occupied
by certain events (e.g., a collision). As per the decoupling
approximation, we assume that the tagged node see the events
with this probability. Thus channel activity measures seenby
the tagged node can be determined in terms ofβ, e.g.,α =
H(n− 1, β), αcoll = Hcoll(n− 1, β), etc., where theH...(·, ·)
functions are shown in Section V-D. This yieldsβ in terms of
the activity measures of the enviroment, and vice versa. This
gives the following fixed point equation.

β = G(H(n − 1, β), Hdata−ack∗(n − 1, β), Hcoll(n − 1, β))

The fixed point equation yieldsβ, which can then be used to
obtain the aggregate saturation throughput of the network.The
details are developed in Section V-D.

D. A Fixed Point Equation forβ

Let us tag a node and obtain itsβ. A CCA from the
tagged node will fail if it finds the channel either in second
CCA, Tdata−ack (see Figure 11) orTcoll (see Figure 12). Let
αCCA2, αdata−ack andαcoll be the probabilities of the channel
being in second CCA,Tdata−ack or Tcoll respectively. Then
considering each of these as an evente, we can use the analysis
in Section V-B to obtain their time rates. Noting that once we
have tagged a node we need to find the above probabilities for
the othern − 1 nodes, the desired probabilities are given as:

αCCA2 =

∑n−1
k=1 πkEkR(CCA2)

∑n−1
k=1 πkEkU

=: HCCA2(n − 1, β)

αdata−ack =

∑n−1
k=1 πkEkR(data−ack)

∑n−1
k=1 πkEkU

=: Hdata−ack(n − 1, β)

αcoll =

∑n−1
k=1 πkEkR(coll)

∑n−1
k=1 πkEkU

=: Hcoll(n − 1, β)

Note that the right hand sides of the above three equations
depend onβ. Henceα, the probability that a tagged node’s
CCA will fail, can be given in terms ofβ as

α = H(n − 1, β)

whereH(n− 1, β) := αCCA2 + αdata−ack + αcoll, with each
term being given as above. Also letαdata−ack∗ and αtack∗

be the fractions of time, the channel is inTdata−ack∗ and
tack∗ respectively. These quantities can also be calculated as
functions ofβ, in the way shown above. Let

αdata−ack∗ =

∑n−1
k=1 πkEkR(data−ack∗)

∑n−1
k=1 πkEkU

:= Hdata−ack∗(n − 1, β)

αtack∗
=

∑n−1
k=1 πkEkR(tack∗ )

∑n−1
k=1 πkEkU

:= Htack∗
(n − 1, β)

Evidently,αdata−ack = αdata−ack∗ + αtack∗
.

Having obtained these channel probabilities in terms ofβ,
we now turn to obtainingβ in terms of the channel probabili-
ties, thus leading to a fixed point equation. Recall that all the

nodes have saturated queues. A node goes through the backoff
procedure for its head-of-the-line (HOL) packet. Each such
backoff procedure can end in one of three ways: successful
transmission, collision, or a channel access failure (i.e., none of
the CCAs during the backoff procedure succeeds). If there isa
success, a fresh backoff procedure is begun for the next packet.
If there is a collision, a fresh backoff procedure is begun for
the same packet and the packet is discarded afterN collisions
(N = 4 in the standard, as 3 retries are allowed). Upon the
discard of a packet a fresh backoff procedure is begun for the
next packet. Finally, if there is a channel access failure for
a packet, the packet is discarded, and the next packet moves
to the HOL position. We seekβ, the rate at which backoffs
complete during times when the tagged node is performing
backoffs, given the various probabilities for the othern − 1
nodes, as obtained above. Let us denote

K = the number of times channel sensing is reattempted
in a backoff cycle

bk = the mean backoff duration (in backoff periods) before
the (k + 1)th channel sensing attempt for a packet,
0 ≤ k ≤ K

It must be noted that during a backoff procedure, each backoff
will be followed by one or possibly two CCA durations before
the next backoff starts following a CCA failure.

2 3= 2 = 5 = 1
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Fig. 14. Evolution of backoff, channel sensing and busy periods for a
tagged node. The first backoff procedure had two CCAs, the second of which
succeeded (see legend on top right). The procedure took an amount of time
X

(0)
1 . The second backoff procedure had 5 CCAs and ended in failure. The

third had one CCA which was successful. Note that a successful CCA could
result in a collision. Then the backoff rate during backoff times, over this
fragment of the node’s evolution is 2+5+1

X
(0)
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+X
(0)
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+X
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.

Suppose,A(k)
j denotes the number of attempts for thejth

backoff procedure after thekth backoff failure. Thus,A(0)
j will

give the total number of attempts for the backoff procedure and
the sequence of backoff times will beB(k)

j (0 ≤ k ≤ A
(0)
j −1),

with E(B
(k)
j ) = bk. Also let X

(k)
j be the time duration for

jth backoff procedure between thekth backoff failure and
the end of the backoff procedure. ThenX

(0)
j will denote the

total time occupied by thejth backoff procedure. Evolution
of the backoff, channel sensing and busy periods for a node
are shown in Figure 14.

Under the decoupling approximation we observe that the
sequenceX(0)

j , j ≥ 1, are renewal life times. Viewing the total

number of attempts in thejth backoff procedure,A(0)
j , as a
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“reward” associated with the renewal cycle of lengthX
(0)
j , we

see from the renewal reward theorem that the attempt rateβ

of a node during its backoff period is given by
E(A

(0)
j

)

E(X
(0)

j
)
. We

now derive expression for this ratio in terms of the channel
probabilities obtained earlier.

We assume that the CCAs of the tagged node “see” the
remaining n − 1 nodes in equilibrium and hence that the
probability that the tagged node’s CCA fails isα. Thus

E(A
(0)
j ) = 1 + αE(A

(1)
j )

and, further
E(A

(1)
j ) = 1 + αE(A

(2)
j )

Hence recursing (usingE(A
(K)
j ) = 1) we get

E(A
(0)
j ) =

K
∑

k=0

αk

We now turn toE(X
(0)
j ). A node’s first CCA will fail if

it finds the channel inTdata−ack∗ or Tcoll. Its first CCA will
succeed while the second will fail if the channel is in the
second CCA ortack∗ . Hence,

E(X
(0)
j ) = b0 + (αdata−ack∗ + αcoll)(δ + E(X

(1)
j ))

+ (αCCA2 + αtack∗
)(2δ + E(X

(1)
j )) + (1 − α)2δ

Using the fact that

α = αdata−ack∗ + αtack∗
+ αcoll + αCCA2

we get

E(X
(0)
j ) = b0 + αE(X

(1)
j ) + (2 − (αdata−ack∗ + αcoll))δ

Similarly

E(X
(1)
j ) = b1 + αE(X

(2)
j ) + (2 − (αdata−ack∗ + αcoll))δ

Again recursing, withE(X
(K)
j ) = bK +(αdata−ack∗ +αcoll)δ

+(αCCA2 + αtack∗
)2δ + (1 − α)2δ, we get

E(X
(0)
j ) =

K
∑

k=0

αk(bk + (2 − (αdata−ack∗ + αcoll))δ)

Thus, the attempt rateβ can be obtained as

β =

∑K
k=0 αk

∑K
k=0 αk(bk + (2 − (αdata−ack∗ + αcoll))δ)

:= G(α, αdata−ack∗ , αcoll)

Now, it can be expected that the equilibrium behavior of the
system will be characterized by the solutions of the following
fixed point equation:

β = G(H(n − 1, β), Hdata−ack∗(n − 1, β), Hcoll(n − 1, β))

=: Γ(β)

Since G(·), H(·), Hdata−ack∗(·) and Hcoll(·) are continuous
functions so isΓ(·). ThusΓ(·) is a continuous map from[0, 1]
to [0, 1] and hence by Brouwer’s fixed point theorem there is
a fixed point.
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Fig. 15. Γ(β) vs β for several values ofn. The intersections with the
“y = x” line yield the fixed points.

Numerical solution of the fixed point equation:We assume
operation in the 2.45GHz band and hence the PHY data
rate is 250 Kbps. The backoff multiplier isp = 2 as in
the IEEE 802.15.4 standard. In the plots we use the fol-
lowing values:K = 4, macMinBE = 3, aMaxBE = 5,
and b0 = 3.5 backoff periods. The packet size (MSDU) is
assumed to be30 bytes throughout. Figure 15 shows plots of
G(H(n− 1, β), Hdata−ack∗(n− 1, β), Hcoll(n− 1, β)) vs. β.
The intersections of the plots with the “y = x” line yield the
fixed points. We obtain the fixed points by using thefzero()
function in MATLAB. At this point in our work we are unable
to analytically show uniqueness. However, in all the cases we
examined the fixed point was unique. We see that for this set
of parameters the attempt rate of the individual nodes remains
almost constant (at about 0.086) once the number of nodes
exceeds 10.

VI. CALCULATION OF PERFORMANCEMEASURES

A. Throughput Calculation

To calculate the throughput, we again use the Markov re-
newal process formulated earlier in Section V-B. Successfully
sent data in a cycle can be considered as yet another “reward”
associated with that cycle.

A successful data transmission will take place in cyclei
only if (Ui, Xi) = (Tdata−ack +2δ, n− 1). ConsiderLdata as
the size of a packet. Then the expected amount of data sent in
a cycle, havingk nodes to attempt at its beginning, is given
by:

EkL = LdataP (Ui+1 = Tdata−ack+2δ, Xi+1 = n−1|Xi = k)

Note that once we haveβ from the fixed point approach we
analyse the entire system ofn nodes; hence, the summations
in this section will run up ton. Hence the expected amount
of data sent in a cycle, will be given by

E(L) =

n
∑

k=1

πkEkL



11

Now, using the renewal reward theorem, the aggregate
throughput of the system withn sensor nodes can be seen
to be:

Θ(n) =

∑n
k=1 πkEkL

∑n
k=1 πkEkU

Throughput calculation for a network with a single sensor:
For the case of a single node, a much simpler analysis
gives the saturation throughput. The average time requiredfor
transmission of a packet will beb0 +2δ+δ⌈Tdata−ack

δ
⌉, where

Tdata−ack is actual time required for transmission of data and
the corresponding acknowledgment, includingtack. Since a
new transaction can start at next backoff period boundary only,
Tdata−ack

δ
has been rounded up. Then,

Θ(1) =
Ldata

b0 + 2δ + ⌈Tdata−ack

δ
⌉δ

For a payload of 10 bytes,Ldata = 30 bytes. Taking into
account all headers,tack and acknowledgment,Tdata−ack =
122 symbol times (6.1 backoff periods). Hence⌈Tdata−ack⌉ =
7 backoff periods. With the backoff parameters in the standard,
b0 = 3.5 backoff periods. HenceΘ(1) = 30 bytes /12.5
backoff periods = 60 kbps or 250 packets per second.

B. Packet Discard Analysis

It is known from the description of the slotted CSMA/CA
algorithm that the backoff cycle for a frame may end with
either a successful transmission, a collision or a channel
access failure. In case a backoff failure occurs, the frame
is discarded without any reattempt. If a frame collides, it is
retriedaMaxFrameRetriestimes. A frame will collide only if
while attempting for this frame, the node finds the channel in
first CCA. LetαCCA1 be the probability of the channel being
in first CCA. Then, using the approach in Section V-B, the
probability that a frame collides, given that it is attempted,
can be written as:

αCCA1 =

∑n
k=1 πkEkR(CCA1)

∑n
k=1 πkEkU

=: HCCA1(n, β)

Let pi,j be the probability of a packet being successfully
served after it has facedi collisions and is in thejth backoff
of current backoff cycle (0 ≤ j ≤ K). Thenp0,0 will be the
probability that a packet is successfully served. We recallthat
K andN denotemacMaxCSMABackoffsandaMaxFrameRe-
tries respectively. We see that

p0,0 = 1 − (α + αCCA1) + αCCA1p1,0 + αp0,1

and, also

p0,1 = 1 − (α + αCCA1) + αCCA1p1,0 + αp0,2

Recursing(usingp0,K = 1− (α+αCCA1)+αCCA1p1,0), we

get

p0,0 =
K

∑

k=0

αk (1 − (α + αCCA1) + αCCA1p1,0)

=
(1 − (α + αCCA1))(1 − αK+1)

1 − α

+
αCCA1(1 − αK+1)

1 − α
p1,0

Similarly

p1,0 =
(1 − (α + αCCA1))(1 − αK+1)

1 − α

+
αCCA1(1 − αK+1)

1 − α
p2,0

Again recursing(with pN+1,0 = 0), we get

p0,0 =

N
∑

k=0

(

αCCA1(1 − αK+1)

1 − α

)k

(

(1 − (α + αCCA1))(1 − αK+1)

1 − α

)

Then, the probability of a packet being discarded will be given
by

Pdiscard = 1 − p0,0

Define D(n) to be the rate of discarded packets withn
saturated nodes. By definition

Pdiscard =
D(n)

Θ(n) + D(n)

Hence

D(n) =
Θ(n)

1 − Pdiscard

Pdiscard

VII. N UMERICAL RESULTS AND SOME INSIGHTS

For the simulation results ns2 version 2.26 is used, with
patches for the IEEE 802.15.4 LR-WPAN code provided by J.
Zheng[14]. We have used the source code released on January
1, 2005, with modifications as discussed in Section IV. Static
routing is implemented by using NOAH as the wireless routing
agent. This allows us to ensure multihop wireless routing is
not used. We work in the 2.45 GHz band, with the PHY
data rate 250 Kbps. The simulation scenario consists ofn
nodes distributed uniformly around a circle of radius 8 meters,
with the PAN coordinator at the center. The decoding and the
sensing range thresholds of the nodes are set to 20 meters,
so that all nodes form a single cell. Nodes start associating
with the PAN coordinator one by one at regular intervals of
0.5 seconds. After 5.0 seconds of the last node having started
association, CBR traffic is initiated simultaneously from all
the nodes. The CBR packet size is kept as 10 bytes to which
20 bytes of IP header, 7 bytes of MAC header and 6 bytes
of PHY header are added. To ensure saturation, the CBR
traffic interval is kept very small; each node’s buffer receives
packets at intervals of 5 ms. Where the throughput results are
in bytes/sec, and represent the throughput of the MAC payload.
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Fig. 16. Analytical and ns2 simulation results forβ, Θ(n) (packets per
second), andPdiscard vs. n. Simulation results are accompanied by95%
confidence intervals.

A. Results and Observations

The conditional attempt rates per node,β, aggregate
throughputs,Θ (packets per second), and discard probabilities,
Pdiscard, obtained through simulation are compared against
the analytical results in Figure 16, where 95% confidence
intervals are also shown for the simulation results. We make
the following observations:

• It can be seen that, even after many modeling simpli-
fications, the fixed point analysis provides an excellent
approximation, for a wide range of the number of nodes,
n.

• The results show thatβ decreases untiln = 10 and then
remains almost constant with increasingn, while the ag-
gregate throughput increases initially but then decreases
very sharply with increasingn. The slight increase inΘ
with n is because for smalln the contention is less and
increasingn increases the channel utilisation.

• The discard probability increases rapidly as the number
of nodes increases and approaches approximately 1 as the
number of nodes is increased up to 50.

We will see later that finite load performance is substantially
better, and, in fact, derivable from the saturation performance.

B. Discussion of Default Backoff Parameters

If the expression forΘ(·) in Section VI-A is evaluated with
β as a free variable, for various values ofβ and n, then we
obtain the plots in Figure 17; note that hereΘ is given in Kbps
(60 Kbps = 250 packets per second). Forn ≥ 10, the values
of β for which the aggregate throughputΘ peaks are much
less than those obtained for the actual system for the default
parameters (about 0.09; see Figure 16). Figure 17 also shows
that once a node exceeds these attempt rates its throughput
starts decreasing as the attempt rate increases. This is the
region, in which the network operates with the current set
of backoff parameters (β = 0.09, see Figure 16).Figure 17
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Fig. 17. Aggregate throughput (Θ in Kbps) plots for variousn as a function
of β, obtained from the stochastic analysis.

shows that in this regime of operation, to maintain a constant
throughput asn increases,β must decrease sharply withn;
this does not occur with the given backoff parameters.

It is also observed from Figure 17 that the same throughputs
can be obtained with much smaller attempt rates, while
working in a region where throughput increases with attempt
rate for a fixed number of nodes. The attempt rates, collision
probabilities and hence energy expenditure is much less in this
region. This also leads to lower discard probabilities. It is also
seen that the attempt rate need not decrease significantly in
this region to maintain a constant throughput with increasing
number of nodes.

C. Performance with Alternate Backoff Parameters
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Fig. 18. Analytical and ns2 simulation results for various parameters vs
number of nodes. Plots have been obtained using backoff multiplier p = 3.
Simulation results show95% confidence intervals.

We find that simple changes in the backoff parameters
can lead us to operate in the desired region. Figures 18
and 19 show the results for two ways of altering the backoff
parameters: (i) increasing the backoff multiplier to 3, and(ii)
changing macMinBE to 5 and aMaxBE to 7. Figure 18 shows
the attempt rate, throughput and discard probability plotsafter
we have increased the backoff multiplier from 2 to 3. Figure 19
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Fig. 19. Analytical and ns2 simulation results for various parameters vs
number of nodes. Plots have been obtained withmacMinBE= 5 andaMaxBE
= 7. Simulation results show95% confidence intervals.

is for the case whenmacMinBE andaMaxBE have been
changed to 5 and 7 respectively. These plots show that, with
a slight change of a few backoff parameters we are able to
maintain constant throughput with increasing number of nodes.
Discard probabilities are also substantially smaller. Thelarge
initial backoffs cause less contention in the case of a large
number of nodes, but on the other hand lead to unnecessary
wastage of channel time when number of nodes is small.
Hence, we get worse throughputs as compared to those with
default parameters for small number of nodes (see Figures 18
and 19). Thus it becomes interesting to consider the possibility
of adapting the backoff parameters depending on the number
of nodesn, in an attempt to achieve an attempt rate that yields
the peak saturation throughput for eachn (see Figure 17).

VIII. A NALYSIS WITH FINITE ARRIVAL RATES

Each sensor node receives (generates) packets that have to
be delivered to the hub node. We assume that the rate of
“arrival” of packets at each sensor node isλ and the arrival
processes are independent and Poisson. Note that while a
Poisson arrival model would not be appropriate in a regular
wireless network that handles packet voice or TCP controlled
data, here in a sensor networking context the arrivals are “open
loop,” and a Poisson process may be a reasonable model for
the occurrence of asynchronous events. DefineΛ = nλ.

Let ρ denote the fraction of time a sensor node’s queue is
nonempty and hence the node is contending for the channel.
As before,Θ(n) andD(n) are the aggregate throughputs and
discard rates for a network withn saturated nodes. We adopt
an approach suggested in [8, Chapter 4]. For fixedn, define

µ(n, ρ) =
n

∑

m=1

(

n
m

)

ρm(1 − ρ)n−m(Θ(m) + D(m))

and,

ν(n, ρ) =

n
∑

m=1

(

n
m

)

ρm(1 − ρ)n−mΘ(m)

Thus, givenρ, µ(ρ) is an approximation for the rate at which
packets are being removed from the queue, either by successful
transmission or discard. Similarly,ν(ρ) is an approximation
for the rate of successful transmission. It can be seen that
limρ→1 µ(n, ρ) = Θ(n)+ D(n), andlimρ→1 ν(n, ρ) = Θ(n).
Figure 20 shows plots ofµ(ρ) vs. ρ andν(ρ) vs. ρ for several
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Fig. 20. µ(ρ) (pkts/sec) andν(ρ) (pkts/sec) vs.ρ for n = 10, 20, 30 and40.

values ofn. We see thatµ(ρ) monotonically increases withρ,
whereasν(ρ) first increases and then decreases withρ. Hence,
for eachΛ < Θ(n)+D(n) there will be a uniqueρ such that
µ(ρ) = Λ. We shall take thisρ to be the operating occupancy
of a node corresponding to the arrival rateλ packet per second
into each node, i.e., for eachn, we takeρ = µ−1(Λ).

Now with the above approximation we can easily obtain
various performance measures.
Aggregate throughput: The aggregate throughput of the
network withn nodes can be obtained as

Φ(n, Λ) = ν(n, µ−1(Λ))

Note that, forΛ ≥ Θ(n) + D(n), Φ(n, Λ) = Θ(n).
Mean Sojourn time: As per the approximation made, each
packet is discarded with probabilityPdiscard independently
of anything else. Hence we can view each node’s queue as
having two independent Poisson arrival processes with rates
λPdiscard and λ(1 − Pdiscard). Assuming an M/M/1 model
(i.e., an exponential approximation for the service time) we
obtain the data packet mean sojourn time

∆(n, Λ) =

(

µ−1(Λ)

1 − µ−1(Λ)

)

1

λ

Using an M/G/1 model a more exact sojourn time analysis can
be done; however, this requires both first and second moments
of the packet service time.
Discard probability: The discard probability is approximately

Pdiscard(n, Λ) = (Λ − ν(n, µ−1(Λ)))/Λ

Observations: Figures 21 and 22 show the analytical as
well as ns2 simulation results for 20 and 40 node networks,
respectively. The plots show that the analysis is able to capture
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Fig. 21. Analysis and simulation plots forn = 20 with default parameters,
and Poisson arrivals. The solid lines shown simulation results, and the dashed
lines show analysis results. Simulation results show95% confidence intervals.
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Fig. 22. Analysis and simulation plots forn = 40 with default parameters,
and Poisson arrivals. The solid lines shown simulation results, and the dashed
lines show analysis results. Simulation results show95% confidence intervals.

the trends of all the performance measures very well in all the
cases, and the valuesρ, Θ, andPdiscard are approximated very
well. The following observations can be made:

• We notice that for smallΛ the discard probability is small
and the aggregate throughput,Θ, increases withΛ, until
Θ peaks and then drops down to the saturation throughput
(which can be read off, for eachn, from Figure 16). Thus
with finite load more throughput can be sustained than
the saturation throughput. The reason for this can be seen
from Figure 16. Consider the 40 nodes case in Figure 22.
The saturation throughput for 40 nodes, from Figure 16,
is the same as the value to whichΘ drops in Figure 22,
whenΛ becomes large. WhenΛ is small, however,ρ is
small, thus only a small number nodes contend at a time,
and, as seen from Figure 16, the throughput can be much
larger.

• Notice that, in both examples, asΛ increasesρ increases.
Eventuallyρ approaches 1, i.e., the nodes become satu-
rated. At this point, for each value ofn, 20 or 40, the

values ofΘ, andPdiscard are the same as those shown
in Figure 16, as would be expected.

• For measurement and control applications, it appears
that the discard probability will determine the capacity.
Consider, for example, Figure 22. If the target mean delay
is 50ms, then an arrival rate ofΛ = 700 pkts/sec can
be sustained. However, this gives a discard probability
greater than 50%! For a reasonable discard rate, the value
of Λ can be no more than 200 pkts/sec.

• The mean delay approximation works well in the region
of delay performance that the network would be engi-
neered for. Thus the approximate analysis is adequate for
practical network engineering.

IX. N ODE L IFETIME ANALYSIS

In this section, we use the analytical model developed earlier
to estimate the lifetime of a sensor node in a star topology
network. We assume that the PAN-coordinator is supplied line
power; hence the power consumed by the PAN-coordinator
is not an issue. The network lifetime is determined by the
lifetime of the leaf nodes, which are battery powered. We
analyse the energy consumed by the RF transceiver in a node.
The currents drawn by the other devices in a sensor node
implementation are not considered, under the assumption that
the communication component draws the predominantly larger
current. We define the lifetime of a node as the expected
lifetime assuming that the other nodes continue to work
throughout the life of the node.

A. RF Tranceiver Parameters

It is assumed that the sensor nodes use an RF transceiver
based on the Chipcon CC2420 chip [6]. The nodes are powered
by two AA batteries. These devices need a supply voltage in
the range 3.1 V to 2.1 V [6]. The batteries are used in series,
and we assume that both are rated at 2000mAh down to 1.05 V.
We use the following information from the chipcon CC2240
data sheet [6]:

• The current drawn while a node is sleeping isIidle =
0.426 mA.

• The current consumption of the chip in receive mode is
a constantIrcv = 18.8 mA

• The receiver sensitivity is -94 dBm.
• The transmission power in the nodes can be programmed

from -25 dBm to 0 dBm in steps. The currents drawn
corresponding to the different transmission powers is
shown in Table II.

Transmission Power (dBm) Current (mA)

-25 8.5
-15 9.9
-10 11
-5 14
0 17.4

TABLE II

BATTERY CURRENT CORRESPONDING TO DIFFERENT TRANSMISSION

POWERS FOR THECHIPCONCC2240TRANSCIEVER.
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It can be shown that, given the above receiver sensitivity, a
transmit power of -15 dBm is required for a 10 m radius
network, with path loss exponentη = 2, thus needing a
transmit currentItxmit = 9.9 mA.

B. Time Average Current Drawn by a Node Transceiver

Our analytical approach is to determine the time average
current (in mA) drawn by a node, assuming that all the other
nodes function indefinitely. Dividing the battery capacity(in
mAh) by this time average current yields an estimate of the
node lifetime. We will write the time average current in terms
of the following quantities that can be derived from our earlier
analysis (as we will show below). The number of nodes is
fixed at n, and the aggregate arrival process is Poisson with
Λ (equally distributed over the nodes); these parameters are
implicit in the following notation.

rdata−ack := the rate of successful transmissions by
a node
rCCA := the rate at which a node performs CCAs
rcoll := the rate of a node experiencing collisions
Tdata := the radio time for successful transmission
of a data packet (= (42× 8 bits)/250kbps =1.34 ms)
Tack := the time taken for the reception of an ACK
packet = 384µs
TCCA := the time taken for performing a CCA =
8 symbol times = 128µs
Tcoll := the radio time for transmission by a node
during a collision = (42× 8 bits)/250kbps =1.34 ms
αf := the probability that a CCA by a node fails
αfcoll := the probability that the node finds the
channel in a collision
αfCCA1 := the probability that the CCA 1 by a node
coincides with the CCA 1 of another node
αfdata−ack∗ := the probability that the CCA 1 by a
node overlaps with a timeTdata−ack∗ (see Section V-
A)

In the above notation, the probabilities with subscripts ofthe
form f ··· refer to the fact that we are dealing the finite load
case here. We findαfCCA1, αf , αfdata−ack∗ and αfcoll as
follows (where, as in Section VIII,ρ is the fraction of time
a node has nonempty queues, and hence is contending; and

B(ρ, (n − 1); m) :=

(

n − 1
m

)

ρm(1 − ρ)(n−1)−m)

αfCCA1 =

n−1
∑

m=1

B(ρ, (n − 1); m)(αCCA1(m))

αf =

n−1
∑

m=1

B(ρ, (n − 1); m)(α(m))

αfdata−ack∗ =

n−1
∑

m=1

B(ρ, (n − 1); m)(αdata−ack∗(m))

αfcoll =

n−1
∑

m=1

B(ρ, (n − 1); m)(αcoll(m))

where the argument(m) denotes the corresponding probabil-
ities for them node saturated case.

Then the time average current (in mA) drawn from the
battery

Iav = rdata−ack(ItxmitTdata + IrcvTack) + rcollItxmitTcoll

+rCCAIrcvTCCA(2 − (αfdata−ack∗ + αfcoll))

+Iidle(1 − [rdata−ack(Tdata + Tack) + rcollTcoll

+rCCATCCA(2 − (αfdata−ack∗ + αfcoll))])

The terms in the above equation are explained and derived as
follows.

Given an arrival rateΛ (as in Section VIII) the rate at which
a node transmits packets isrdata−ack = 1

n
ν(n, µ−1(Λ)). As-

sociated with each of these transmissions, the node transmits
for a time Tdata consuming currentItxmit and receives an
ACK for a time Tack using currentIrcv. So the time average
current consumed for this is given byrdata−ack(ItxmitTdata+
IrcvTack).

We next turn to derivingrCCA. As explained earlier (see
Section V-D), when a node has packets, it can be viewed
as going through cycles, each of which starts at the end of
a node activity (success or collision) (see Figure 14). In a
cycle there are several failed CCAs (and perhaps even dropped
packets), followed by either a success, a collision. Denoteby
βf the attempt rate of a node (per backoff period) during the
times when it is performing backoffs (here again the subscript
f means that we are dealing with the finite load case). We
computeβf as follows

βf = G(αf , αfdata−ack∗ , αfcoll)

whereG(·, ·, ·) is as defined in Section V-D. For thejth such
cycle, let Yj denote the number of CCAs performed by the
node, and letZj denote the cycle length. Then

rCCA = ρ
EY

EZ

whereρ captures the fraction of time that the node has packets,
and hence is contending. Since a CCA fails with probability
αf , we obtain the following equation forEY , using a renewal
argument

EY = βf (1 + αfEY + (1 − αf ) · 0) + (1 − βf )EY

This equation is understood as follows. After a backoff period,
a node attempts (i.e., does a CCA) with probabilityβf . The
CCA fails with probabilityαf and the remaining mean number
of CCAs is againEY . This yields

EY =
βf

1 − (1 − βf ) − βfαf

In a similar fashion we obtain the equation (denoting byδ the
backoff period duration)

EZ = δ + (1 − βf )EZ + βfαfEZ + βfαfCCA1Tcoll

+βf(1 − (αf + αfCCA1))(Tdata−ack + δ)

where we note that with probabilityαfCCA1 the node’s CCA1
overlaps with another CCA1, thus leading to a collision.
Solving this equation yields

EZ =
δ + βf (1 − (αf + αfCCA1))(Tdata−ack + δ) + βfαfCCA1Tcoll

1 − (1 − βf ) − βfαf
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Fig. 23. Average currents (mA) (left), and mean node lifetime (days) (right) obtained from analysis vs. per node arrivalrate; 40 nodes; star topology.

Thus, finally, we obtain

rCCA = ρ
EY

EZ
=

ρ
βf

δ + βf (1 − (αf + αfCCA1))(Tdata−ack + δ) + βf αfCCA1Tcoll

A CCA1 succeeds with probability(1 − (αfdata−ack∗ +
αfcoll)). If a CCA1 succeeds, a CCA2 is performed. So
the time average current consumed by CCAs is given by
rCCAIrcvTCCA(2 − (αfdata−ack∗ + αfcoll)).

In a similar way, the rate of collisions can be seen to be

rcoll = ρ
αfCCA1

(1 − (αf + αfCCA1) + αfCCA1)EZ

= ρ
αfCCA1

(1 − αf )EZ

So the current drawn by collisions isrcollItxmitTcoll.
Finally, during the remaining time the node draws the

current Iidle. Thus, all the terms in the above equation for
Iav are explained.

C. Expected Node Lifetime

The lifetime of a node that uses 2000 mAh batteries in series
can be obtained as

Mean Lifetime =
2000

Iav

hours

In Figure 23 we plot the average currents, and mean lifetime
obtained from this approach, versus the arrival rate per node
for a 40 node star topology. When the packet arrival rate is
0, the only power consumption is due to idle current, i.e.,
0.426 mA. So the idle lifetime is2000mAh

0.426mA
=195.6 days. When

the packet arrival rate increases, the current consumption
increases, and the lifetime decreases to about 50 days with
an arrival rate of 29 packets per second per node. Observe
that the CCA sensing current and the collision current both
increase with the arrival rate, whereas the current used in data
transmission increases and then decreases. The decrease inthe
current used for data transmission relates to the behaviourof
ν(ρ) shown in Figure 20; at higher arrival rates more packets
get dropped and throughput decreases. Notice also that the
average idle current decreases only slightly, indicating that the
RF transceiver is active for only a small fraction of the time.

Now turning to Figure 22, if for desired QoS the network is
operated at 200 packets per second, or 5 packets per second
per node, we have a node lifetime of about 135 days.

X. SUMMARY

We summarise here some insights gained from our analysis.

• With saturated nodes, the CSMA/CA channel in the
IEEE 802.15.4 MAC standard has a cyclical evolution
that can be effectively modeled by a Markov renewal
process. We obtained this result as a consequence of
our detailed identification of the various node interaction
scenarios that arise.

• The saturation analysis was found to yield a very effective
heuristic for carrying out a finite arrival rate analysis.
A variety of performance measured were estimated very
well.

• The default back-off parameters are such that the node
attempt rate levels off with increasing number of nodes,
and the saturation throughput drops sharply. Our model
showed that the attempt probability needed to be substan-
tially reduced, which was achieved by simple back-off
parameter adjustments.

• Even though the saturation throughput drops with the
number of nodes, the network can operate at a much
higher finite arrival rate provided the node occupancy,
ρ, at this rate stays small.

The following network engineering insights were obtained.

• For measurement and control applications, the capacity of
the network (with the default parameters) can be expected
to bePdiscard limited.

• Our analytical model yields various rates and probabili-
ties from which a simple node lifetime analysis can be
derived.

• The ns-2 simulations are very time consuming. For 40 or
50 nodes even a single run for a single value of arrival
rate takes 6 to 8 hours. Our analytical model has yielded
very accurate results and hence can be very useful in a
network engineering process.

In other work, we have extended our analysis to multihop
topologies with one or more beaconing devices.
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APPENDIX

A. A NALYSIS OF THE THECHANNEL EVOLUTION MRP

We see that in the Markov renewal process formulated in Section V-A, the only feasible possibilities for(Ui, Xi) are
{(Tcoll + jδ, k), j = 2, 3.....J ; k = 1, 2, ....n− 2; , (Tdata−ack + 2δ, n− 1), (Tcoll + (J + 1)δ, n), (δ, n)}. Using the decoupling
approximation of Section V-C, the transition probabilities for the process can be obtained as follows.

A. Transition probabilities for the MRP

1) Xi = n i.e., this cycle starts with any of the nodes being availableto attempt.

a) (Ui+1, Xi+1) = (δ, n), if none of then nodes attempts. Thus,

P (Ui+1 = δ, Xi+1 = n|Xi = n) = (1 − β)n

b) (Ui+1, Xi+1) = (Tdata−ack + 2δ, n− 1), if exactly one of then nodes attempts. Thus,

P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n) = nβ(1 − β)(n−1)

c) (Ui+1, Xi+1) = (Tcoll + jδ, k2), if exactly n − k2(≥ 2) out of n nodes attempt. Further none of the remainingk2

nodes attempts for(j − 2) backoff periods after the collision, and at least one of themattempts in the very next
backoff period. Thus, for1 ≤ k2 ≤ n − 2, 2 ≤ j ≤ J ,

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n) =
(

n
n − k2

)

βn−k2(1 − β)k2 ((1 − β)k2 )(j−2)(1 − (1 − β)k2 )

d) (Ui+1, Xi+1) = (Tcoll + (J + 1)δ, n), if k, 2 ≤ k ≤ n, nodes attempt, and none of the remainingn − k nodes
attempts for(J − 1) consecutive backoff periods after collision in this cycle.Thus,

P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = n) =
n

∑

k=2

(

n
k

)

βk(1 − β)(n−k)((1 − β)(n−k))(J−1)

It can be checked that
∑

u,x

P (Ui+1 = u, Xi+1 = x|Xi = n) = 1

since

(1 − β)n + nβ(1 − β)(n−1)

+

J
∑

j=2

n−2
∑

k2=1

(

n
n − k2

)

βn−k2(1 − β)k2((1 − β)k2)(j−2)(1 − (1 − β)k2)

+

n
∑

k=2

(

n
k

)

βk(1 − β)(n−k)((1 − β)(n−k))(J−1) = 1

2) Xi = n−1 i.e., this cycle starts with(n−1) of the nodes being available to attempt. This is similar to the caseXi = n.

a) (Ui+1, Xi+1) = (δ, n), if none of then − 1 nodes attempts. Thus,

P (Ui+1 = δ, Xi+1 = n|Xi = n − 1) = (1 − β)n−1

b) (Ui+1, Xi+1) = (Tdata−ack + 2δ, n − 1), if exactly one of then − 1 nodes attempts. Note that the node that was
not included at the start of the cycle would be ready to attempt at the end of the cycle, whether one of the other
nodes would not be able to attempt. Thus,

P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n − 1) = (n − 1)β(1 − β)(n−2)

c) (Ui+1, Xi+1) = (Tcoll + jδ, k2), if exactly n− k2(≥ 2) out of n− 1 nodes attempt. Further none of the remaining
k2 nodes attempt for(j − 2) backoff periods after the collision, and at least one of themattempts in the the very
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next backoff period. We note here that the node that is not available to attempt at the beginning of the cycle, can
attempt afterTcoll + 2δ and is included in the calculation. Thus, for1 ≤ k2 ≤ n − 2, 2 ≤ j ≤ J ,

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n − 1) =
(

n − 1
n − k2

)

βn−k2 (1 − β)(k2−1)((1 − β)k2)(j−2)(1 − (1 − β)k2)

d) (Ui+1, Xi+1) = (Tcoll + (J + 1)δ, n), if k, 2 ≤ k ≤ n − 1, nodes attempt, and none of the remainingn − k nodes
attempts for(J − 1) consecutive backoff periods after collision in this cycle.Thus,

P (Ui+1 = Tcoll + jδ, Xi+1 = n|Xi = n − 1) =
(n−1)
∑

k=2

(

n − 1
k

)

βk(1 − β)(n−1−k)((1 − β)(n−k))(J−1)

As in case 1, it can be checked that
∑

u,x

P (Ui+1 = u, Xi+1 = x|Xi = n − 1) = 1

since

(1 − β)(n−1) + (n − 1)β(1 − β)(n−2)

+
J

∑

j=2

n−2
∑

k2=1

(

n − 1
n − k2

)

βn−k2(1 − β)k2((1 − β)k2)(j−2)(1 − (1 − β)k2)

+

(n−1)
∑

k=2

(

n − 1
k

)

βk(1 − β)(n−1−k)((1 − β)(n−k))(J−1) = 1

3) Considerk1 ∈ {1, 2, . . . , n − 2}, k2 ∈ {1, 2, . . . , n − 2}, j ∈ {2, 3, 4}. If Xi = k1 i.e., this cycle starts withk1 of the
nodes being available to attempt. It itself implies that oneof them has attempted.

a) (Ui+1, Xi+1) 6= (δ, n), because at least one of thek1 nodes has attempted, and the cycle cannot be an idle one.
Thus,

P (Ui+1 = δ, Xi+1 = n|Xi = k1) = 0

b) (Ui+1, Xi+1) = (Tdata−ack + 2δ, n − 1), if exactly one of thek1 nodes attempts, given that at least one of them
has attempted. Thus,

P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = k1) =
k1β(1 − β)(k1−1)

1 − (1 − β)k1

c) (Ui+1, Xi+1) = (Tcoll + jδ, k2), if exactly n − k2(≥ 2) of k1 contending nodes attempt(n − k2 ≤ k1). To ensure
the following cycle length to be(2δ + Tcoll + (j − 2)δ), it is necessary that none of thek2 nodes attempts during
first (j − 2) backoff periods after collision but at least one of them attempts in the very next backoff period. The
next state cannot be(Tcoll + jδ, k2), if n − k2 > k1. As we have already discussed availability of less thann − 1
nodes itself implies that at least one of them has attempted.Thus,

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = k1) =
(

k1

n − k2

)

βn−k2(1 − β)(k1+k2−n)((1 − β)(n−k2))(j−2)(1 − (1 − β)(n−k2))

1 − (1 − β)k1
,

if k1 + k2 ≥ n, k1 > 1,

0, otherwise.

d) (Ui+1, Xi+1) = (Tcoll + (J + 1)δ, n), if some k, 2 ≤ k ≤ k1, nodes attempt out of thek1 nodes available to
contend. To ensure the cycle length to be(2δ + Tcoll + (J − 1)δ), it is necessary that none of then − k nodes
attempts during first(J − 1) backoff periods after collision. Thus,
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P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = k1) =

∑k1

k=2

(

k1

k

)

βk(1 − β)(k1−k)((1 − β)(n−k))(J−1)

1 − (1 − β)k1
, if k1 > 1,

0, otherwise.

As in cases 1 and 2, again it can be checked that fork1 ∈ {1, 2, . . . , n − 2},

∑

u,x

P (Ui+1 = u, Xi+1 = x|Xi = k1) = 1

since fork1 = 1,

k1β(1 − β)(k1−1)

1 − (1 − β)k1
= 1

and fork1 > 1,

k1β(1 − β)(k1−1)

1 − (1 − β)k1

+

n−2
∑

k2=n−k1

(

k1

n − k2

)

βn−k2 (1 − β)(k1+k2−n)((1 − β)(n−k2))(j−2)(1 − (1 − β)(n−k2))

1 − (1 − β)k1

+

∑k1

k=2

(

k1

k

)

βk(1 − β)(k1−k)((1 − β)(n−k))(J−1)

1 − (1 − β)k1
= 1

1) Transition Probabilities for the Channel with Single Node:: In case of a channel comprising of single node, although a
successful transmission takes only 4 symbol times in the last backoff period, the node cannot attempt for its next packetin the
same backoff period. Hence a successful transmission consumes effectivelyTdata−ack + 3δ time. A backoff period will be an
idle cycle, if the node is in backoff and doesnot attempt in that backoff period. There cannot be any collisions. Hence, only
feasible possibilities for(Ui, Xi) are (Tdata−ack + 3δ, 1) and (δ, 1)}. Transition probabilities for the Markov renewal process
can be obtained as follows.

• Xi = 1∀i

1) (Ui+1, Xi+1) = (δ, 1), if the node doesnot attempt. Thus,

P (Ui+1 = δ, Xi+1 = 1|Xi = 1) = 1 − β

2) (Ui+1, Xi+1) = (Tdataack + 3δ, 1), if the node attempts. Thus,

P (Ui+1 = Tdata−ack + 3δ, Xi+1 = 1|Xi = 1) = β

B. Transition Probabilities for the Markov Chain{Xi, i ≥ 0}

Let M be the transition probability matrix for the one dimensional Markov chain{Xi, i ≥ 0}.

For k1, k2 = 1, 2, 3, ......n− 2;
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Mk1,k2 =

J
∑

j=2

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = k1)

Mk1,n−1 = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = k1)

Mk1,n = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = k1)

+P (Ui+1 = δ, Xi+1 = n|Xi = k1)

Mn−1,k2 =
J

∑

j=2

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n − 1)

Mn−1,n−1 = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n − 1)

Mn−1,n = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = n − 1)

+P (Ui+1 = δ, Xi+1 = n|Xi = n − 1)

Mn,k2 =

J
∑

j=2

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n)

Mn,n−1 = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n)

Mn,n = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = n)

+P (Ui+1 = δ, Xi+1 = n|Xi = n)

C. Conditional Distribution of the Cycle Times

The conditional distribution of the cycle lengthUi+1, givenXi, can be obtained as follows.
For k1 = 1, 2, ......n, j = 2, 3, ..J

P (Ui+1 = Tcoll + jδ|Xi = k1) =

n−2
∑

k2=1

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = k1)

P (Ui+1 = Tcoll + (J + 1)δ|Xi = k1) = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = k1)

P (Ui+1 = Tdata−ack + 2δ|Xi = k1) = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = k1)

P (Ui+1 = δ|Xi = k1) = P (Ui+1 = δ, Xi+1 = n|Xi = k1)


