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Abstract— The work in this paper is motivated by the idea of
using randomly deployed, ad hoc wireless networks of miniature
smart sensors to serve as distributed instrumentation. We argue
that in such applications it is important for the sensors to
self-organise in a way that optimizes network throughput. We
then identify and discuss two main problems of optimal self-
organisation: (i) building an optimal topology, and (ii) tuning
network access parameters such as the transmission attempt
rate. We consider a simple random access model for sensor
networks and formulate these problems as optimisation problems.
We then present centralized as well as distributed algorithms for
solving them. Results show that the performance improvement is
substantial and implementation of such optimal self-organisation
techniques may be worth the additional complexity.

I. INTRODUCTION

Advances in microelectronics technology have made it
possible to build inexpensive, low power, miniature sensing
devices. Equipped with a microprocessor, memory, radio and
battery, such devices can now combine the functions of sens-
ing, computing, and wireless communication into miniature
smart sensors.

Since smart sensors need not be tethered to any infras-
tructure because of on-board radio and battery, their main
utility lies in being ad hoc, in the sense that they can be
rapidly deployed by randomly strewing them over a region
of interest. This means that the devices and the wireless links
will not be laid out to achieve a planned topology. During
the operation, sensors would be difficult or even impossible to
access and hence their network needs to operate autonomously.
Moreover, with time it is possible that sensors fail (one reason
being battery drain) and cannot be replaced. It is, therefore,
essential that sensors learn about each other and organise into
a network on their own. In the absence of a centralized control,
this whole process needs to be carried out in a distributed
fashion.

A smart sensor may have only modest computing power,
however, the ability to communicate allows a group of sensors
to collaborate to execute tasks more complex than just sensing
and forwarding the information, as in traditional sensor arrays.
Hence they may be involved in on-line processing of sensed
data in a distributed fashion so as to yield partial or even
complete results to an observer, thereby facilitating control
applications, interactive computing and querying ([1], [2],
[3], [4]). It is this self-organising distributed instrumentation
aspect of sensor networks that we are interested in.

A distributed computing approach will also be energy
efficient as compared to mere data dissemination since it
will avoid energy consumption in long haul transport of the
measured data to the observer; this is of particular importance
since sensors could be used in large numbers due to their
low cost yielding very high resolutions and large volumes of
sensed data. Further, by “arranging computations” among only
the neighbouring sensors the number of transmissions will be
reduced, thereby, saving transmission energy. A simple class
of distributed computing algorithms would require each sensor
to periodically exchange the results of local computation with
the neighbouring sensors. The more frequently such exchanges
can occur, the more rapidly will the overall computation
converge. The more rapid the progress of the computation
the faster the variations of the spatial process that can be
tracked. Thus, in this paper our goal is to study optimal self-
organisation of sensor networks from the point of view of
optimizing their communication throughput.

As an example, consider a scenario where sensors are ran-
domly deployed in a geographical region to gather statistics of
a spatial process; for example, the temperature of an environ-
ment, or the level of some chemical contamination. Suppose
that the observer is interested in knowing the maximum value
of the quantity being measured. Instead of each sensor sending
its measurement to the observer, sensors can compute the
maximum in a distributed fashion, and communicate only the
result to the observer. A simple distributed algorithm for each
sensor can be to collect measurements from its neighbours,
compare them with its local value and only forward the
maximum of these values. The communication structure most
suitable for such a computation is a spanning tree which
sensors can form in a distributed fashion. Moreover, a sensor
needs to transmit the local maximum to its parent only after
it receives the corresponding values from its children. The
algorithm ensures that the observer ultimately receives the
maximum value in the network.

From this example, it is clear that the higher the communi-
cation throughput of sensors, the more rapidly will the compu-
tation of the maximum proceed, thereby allowing the network
to track the variations of the temperature or contamination
with time. The example also shows that the network topology
and the transmission protocol are critical factors that determine
the communication throughput. It is in these two aspects that
we study optimal self-organisation of sensor networks. To



this end, we propose a simple mathematical model for sensor
networks. Instead of limiting ourselves to a particular task, we
consider a general distributed computation scenario in which
sensors are continuously sampling and processing a spatio-
temporal process. We investigate the problem of building an
optimal topology and tuning to an optimal value of channel
access rate in our communication model. The model allows
a concrete mathematical formulation of the problem, and is
also sufficiently general so that the analysis can be applied
or extended to other cases of interest. We then formulate the
optimisation problems and present distributed algorithms for
solving them. We also discuss the convergence and complexity
issues in the algorithms.

Presently, the algorithms are synchronous. Thus, in relation
to our model, their performance gain is the best possible. Our
results show substantial performance improvements but at the
cost of algorithmic complexity. However, compared with the
performance gains, implementation of such self-organisation
techniques may be worth the additional complexity. In this
respect, our work should be seen as a step towards eventually
understanding algorithms for self-optimizing sensor networks.

The paper is organised as follows. In Section II we review
the previous work in this area. Section III discusses the model
and relevance of assumption to the real sensor networks. Sec-
tion IV motivates the optimisation problems. The problem of
optimal network topology is discussed in Section V and tuning
to an optimal channel access rate in Section VI. Section VII
follows with discussion and we conclude in Section VIII.
Proofs are sketched in the Appendix.

II. PREVIOUS WORK

Previous work on self-organisation of ad hoc networks
has largely focused on topology formation by discovering
neighbours, and transmission scheduling. For example, [5]
discusses a cluster formation algorithm (LCA) and a link
activation algorithm based on the topology graph so formed.
In [6], the DEA algorithm forms subnetworks and conflict-free
schedules simultaneously in a step by step fashion. However,
the generation of compatible schedules is a complex task;
particularly for large networks. Moreover, the graph-based
scheduling suffers in network performance as shown in [7]. [8]
describes the SWAN protocol in which nodes maintain wire-
less links using stringent power control thereby obviating the
need for transmission scheduling. However, it does not address
the problem of how nodes should choose their neighbours
thereby setting the topology. [9] presents a message efficient
clustering algorithm for sensor networks. [10] reports experi-
mental performance studies of a self-configuring protocol for
sensor networks. Specific protocols for self-organisation are
discussed in [11].

The existing literature has emphasized mainly on protocol
design without much attention to the performance of the
resulting network organisation. Contrary to this approach
we view performance optimisation as the objective for self-
organisation; hence our algorithms are motivated by this goal.
Our formulations, we believe, are the first of their kind in this

area. The model along with the analytical approach allows us
to study trade-offs as well as performance gains involved in
optimal self-organisation. We also substantiate our results by
simulations.

III. A MODEL FOR SENSOR NETWORKS

Our model takes into account deployment, communication
and distributed computation issues in a sensor network. Since
our interest is in analysing local computing and communica-
tion, we have not explicitly modelled communication between
the network and the observer. We consider a random access
communication model; we believe that sensors will not need
elaborate multiple access or transport protocols since typical
packets will be small and RTS-CTS may be too much of an
overhead. Moreover, it is not clear how much improvement
such a scheme will lead to in dense random networks. We as-
sume slot synchronization among sensors. LAA ([5]), SWAN
([8]) and SEEDEX ([12]) have also assumed a synchronized
TDMA system. Time synchronization is vital for some sensing
tasks ([13], [14]); hence our slotted time assumption may
not be very restrictive. Even in the absence of time synchro-
nization, slot synchronization can be achieved by distributed
algorithms ([15], [16]). Further, it makes analysis tractable and
provides useful insights.
Deployment: We assume that a large number (denoted by � )
of static sensor nodes are randomly and densely located in a
region. By dense we mean that the nearest neighbour distance
is much less than the transmission range. To reconstruct the
properties of a spatial process from its samples in space
with low error, we need sufficiently close “space-samples”.
Hence the interest in dense sensor networks. In the results
presented we model the spatial distribution of sensors as a two-
dimensional Poisson point process of intensity � per m � . � is
thus a natural measure of the spatial density of the network.
However, the model and the following analyses are applicable
to any placement of sensors.
Communication: A sensor cannot transmit and receive simul-
taneously. All sensors transmit on a common carrier frequency
using omni-directional antennas. All transmitters use the same
transmit power, and all powers are normalised to this common
value of transmit power. In fixed-position, short-path, flat
terrain outdoor wireless, the channel variation is very slow, and
there is a strong LOS path ([17]). We, therefore, consider only
the path loss with exponent � . Letting ��� denote the near field
crossover distance, the power received at a distance � from a
transmitter, �
	����������������������� if ������� and �
	������� � if
�"!#��� ; this model is similar to the one in [18]. We say that a
transmission can be “decoded” when its signal to interference
ratio (SIR) exceeds a given threshold1 $ . The transmission
range (denoted by %&� ) is defined as the maximum distance
at which a receiver can decode a transmitter in the absence
of any co-channel interference. It thus follows that a receiver
being within % � from a transmitter does not guarantee that it

1Given a modulation and coding scheme, ' actually governs the maximum
bit error probability. For narrow-band systems ')(+* and for spread spectrum
systems '&,-* .



local
algorithm

local

updates 

measurements

from
neighbours

sensor 1

sensor 3

sensor 4

sensor 2
neighbours
updates to

packet queue

Fig. 1. A traffic model for a sensor network carrying out measurements and
distributed computation.

will decode a packet; the SIR needs to be above $ as well.
Time is slotted and channel access is random, i.e., in each slot,
sensor � decides to transmit with probability ��� and decides
to receive with probability � ������� � independent of anything
else; ��� is called the attempt probability of sensor � .
Computation: We consider a continuous computing model
for sensor networks ([19]). This also models the observer
initiated processing ([19]) with long enough activity peri-
ods. Figure 1 shows a traffic model for a sensor network
engaged in distributed computation. A sensor communicates
only with certain nodes, within %&� from it, designated as
its neighbours. A local algorithm running on each sensor
uses local measurements and updates from its neighbours to
perform certain computations. The raw measurements and/or
computational results to be sent to the neighbours are queued
up in a packet queue as shown in Figure 1. The application
is such that each packet is destined to a random neighbour
uniformly chosen from the neighbours. This is not a restrictive
assumption and can be attributed to isotropy of the physical
process and uniformity of processing. Hence, if a sensor
decides to transmit, the 1-hop destination of the head-of-the-
line packet is equally likely to be any of the neighbours in
the operational topology. A transmission is successful when
the sensor to which it is addressed (by actually inserting a
physical address in the packet header) is in the receive mode,
and is able to decode the transmission. If a transmission is
successful, the corresponding packet is removed from the
queue (i.e., instantaneous acknowledgments are assumed).
Since acknowledgments can be also lost in transmissions, this
assumption gives an upper bound on the performance of sensor
networks. A successfully received packet at a sensor invokes a
new computation that may result in an update being sent to a
neighbour. We model this probabilistically, i.e., the successful
reception of a packet generates another packet to be sent to a
neighbour with probability 	 .

IV. OPTIMAL SELF-ORGANISATION: MOTIVATION

When a sensor network is processing a spatio-temporal
process, to reconstruct the process in time, each sensor has
to sample it at a specific rate (akin to a Nyquist rate). These
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for ��� * and � per ��� . � equals * or ��� .

samples, along with the packets triggered by updates from
the neighbours, form an arrival process into the queue (see
Figure 1). Therefore, this ‘sampling rate’ cannot exceed the
rate at which packets are drained from the queue. More
precisely, assume that � � ����� � !��+! � and that each
sensor has all the nodes within a fixed distance, say % ! %"�
as its neighbours. Note that the probability of successful
transmission of a sensor decreases with distance because of
decrease in the received power. Therefore, a smaller value of
% is desirable. However, a small % also means that a sensor
communicates with only a few of the many sensors within
its transmission range. In [20], we show that if � denotes
the arrival rate of measurements, then at a ‘typical’ sensor in
the Poisson distributed sensor field, the packet queue is stable
if � �"!

# 	%$& � � �'�(� �)	 where !
# 	%$& denotes the probability

of successful transmission in a slot in saturation, i.e., when
the head-of-the-line packet, after its successful transmission, is
immediately replaced by another packet at each queue. !

# 	%$& is
also called the saturation throughput. While processing a time
varying process, most of the time each sensor will have some
local measurements and/or partial results to communicate to
its neighbours. Therefore, in such a scenario, the saturation
throughput can be a good measure of the communication
throughput.

This work is particularly motivated by Figure 2 which
shows the variation of !

# 	%$& with � (we have assumed that
�*� �+�,� � !-� ! � ). We use �/.0.1. Poisson distributed points
as sensors on the plane for �-� � and 2 per 3�� . We take � �54 ,$ � �6. dB and % equals � or 273 . Throughputs are averaged
over �/.1.0. random point placements. Observe that, for a fixed
value of � , !

# 	%$& decreases as % increases and for a fixed value
of % , !

# 	8$& decreases as � increases. Thus, high values of !
# 	%$&

decree small values of % , however, arbitrarily small values of
% result in a disconnected network. Note also from Figure 2
that, for a fixed � and % , there is a value of � which maximises
!
# 	%$& . From this preliminary analysis, we conclude that sensors



need to form a network that is ‘optimally connected’, and
operated at an ‘optimal attempt rate’. A precise formulation
of these problems and their solutions is the objective of the
following sections.

V. OPTIMAL NETWORK TOPOLOGY: OBJECTIVES AND

ALGORITHMS

Let � denote a connected weighted graph with vertex set�
( � � ��� � ), edge set � and weight function �����	��%�
 .

The weight of an edge � ���� ����� is denoted by �)� ����� � . �
can be a directed or an undirected graph. If � is directed,
� ���� � denotes an edge outgoing from � to � and connectivity
refers to strong connectivity.

� 	 denotes the set of sensors;
each element in

� 	 is a triplet of the form � ����� � ���1� � where
����� �1� 2 ������� � ��� is the sensor index, and � � and � � are the
x-coordinate and y-coordinate of � respectively.

Definition 5.1: The transmission graph, � �"! , is the sym-
metric directed graph with

� 	 as its vertex set, and � ����� ����#�"! if sensor � is within a distance % � of sensor � . $
Note that, � � ! is a geometric random graph since sensors are
randomly placed. If the number of sensors is assumed to be
infinite, then [21] shows that there exists a critical number%

for the two-dimensional Poisson sensor field such that if
�'& % �� � % , �(�"! would contain an infinite component with
nonzero probability. An infinite component does not imply
that all the sensors are connected. However, � and the area of
deployment both are large but finite; hence it is reasonable to
expect that most of the sensors belong to the giant component.
This has been found to be true in practice (see [22] for details).
With these considerations, henceforth we take � � ! to be a
connected graph.

Denote by � the vector of � � ’s, � � � � �*)7� � � ������� � �,+ � .
Let � be fixed and let for � ���� �-�	�(�"! , ! �/. � � � denote the
probability of successful transmission from sensor � to � under
� . Recall that, we are assuming that all sensors have packets
to send. Therefore, according to our model

! �0.�� � � � �*� � � � �1. � � 2 ��354763 ! � � �8:9<;= �?> . ��3A@B63 ! � � �DC 9FE � �HG $1I (1)

The last term in (1) is � �?J �0. G $ � where J �/. denotes the SIR
of a transmission from � to � . � 9 . is the distance between K
and � , � � is the near-field crossover distance, � � is thermal
noise power, and C 9 is � if K transmits, . otherwise. Since
! �/.�� � � depends on the geometry of interferers of sensor � ,
!L. � � � � need not equal ! �/.�� � � in a random network.

A. The MAWSS Topology

Let �NM"� � � � M ���NM � denote a subgraph of a given connected
graph � . For �O� � M , let � � �P�(M � denote the out-degree of node
� in �NM . For all �Q� � M , letR � �?� M �S� � �

� � �?� M �UT# �?> . $�V<WYX �)� ���� � (2)

if � � �P� M � �+. otherwise
R � �?� M � � . . Define a function

R
on�(M as R �P� M �F� � T� V[Z X R � �?� M �

and let \� �:]D^`_ba�]dce XfV e,g?h R �?� M �
where, �ji 	 is the set of all connected spanning subgraphs of� . �ki 	 is nonempty since �l�H��i 	 . \� maximises the measureR

over all connected spanning subgraphs of � . We call

\� the
maximum average-weighted spanning subgraph (MAWSS) of� . We will use the term MAWSS to also denote an algorithm
for determining an MAWSS.

Each subgraph of � � ! specifies a network topology, i.e.,
a set of neighbours for each sensor. Let � � �?�(M � (respectivelym � �P�(M � ) denote the set of neighbours (respectively the number
of neighbours) of � in topology �-M . Now for each � define,n � �P� M � � � � �m � �?� M � T. V + 4 # e X $ ! �/. � � � (3)

Thus,
n � �P� M � � � equals the time average throughput of sensor

� . We have used our assumption that in transmit mode a sensor
transmits a packet to one of its neighbours with probability)o 4 # e X $ . Let

n �?�NM � � � denote the network throughput, i.e., the
sum of individual sensor throughputs with topology specified
by �NM . Now if all sensors always have packets to send thenp # e X > q $+ is the average saturation throughput of the network.
The discussion in Section IV, therefore, motivates the problem
of choosing a network topology � M so that

n �?� M � � � is
maximised.

Note that, the “out-degree” of a sensor in �rM is simply
the number of its neighbours, m � �?�(M � . It, thus, follows by
comparing (2) and (3) that for a fixed � if �sM is a subgraph
of � � ! , and if for all � ����� �t�l� � ! , �)� ���� � equals ! �/. � � � ,
then

R �?� M � is
n �?� M � � � . Since a sensor network needs to be

connected, it follows that, the optimal topology of a sensor
network is the MAWSS of its �k�"! .

Proposition 5.1: MAWSS for directed and undirected
graphs is NP-complete.
Proofs are presented in the Appendix.

1) A Centralized MAWSS Algorithm: In the following, we
discuss directed graphs in particular, and propose a heuristic
algorithm for obtaining an approximation to the MAWSS.
Some notation is in order. For node � , u � �K � denotes the K &?v
heaviest outgoing edge and � � �K � denotes its weight. Ties
are resolved arbitrarily. � ) �?� ��� �w�xu � � � ��� �����y� , is the set
of maximum weight outgoing edges of all the nodes in � .
The basic idea is the following. It is clear that the MAWSS
contains �z)��?� � . Hence if � � ���z)��?� � � is strongly connected,
we are done. If not, we convert the “maximum average weight”
problem to the “minimum sum of weights” problem by a
suitable transformation of �&� ���� � to {�&� � ��� � . We consider the
transformation {�)� � ��� � �|� � � � � �}�)� � ��� � and and denote this
weight function by {� . We, then, construct minimum weight



1: if � � �`� ) �?� � � is strongly connected then
2: �� � � � ��� ) �?� � �
3: else
4: For all � ����� �k� � � {�"� ���� �k� � � � � � �,� �)� ���� � and set{� � � � ��� � {� �
5: For all � � � , find � � ��� & � � � ��� ���� & � , the minimum

weight out-branching of {� rooted at �
6: �� � � � � � � V[ZQ� ���� & �

Algorithm 1: Algorithm for finding an approximation �� to
the MAWSS of a directed Graph �
out-branching (directed tree or arborescence) using {�&� � ��� �
rooted at each � . Recall that, any out-branching rooted at a
given node contains one and only one edge incoming to every
other node. The minimum weight branchings pick out edges
with small {�&� ���� � which are the edges with large �)� ����� � . The
resulting graph is taken as an approximation to the MAWSS.
An optimal algorithm for constructing optimal branchings is
presented in ([23]).

Proposition 5.2: The output �� of Algorithm 1, is a strongly
connected spanning subgraph of � .

2) A Distributed MAWSS Algorithm: At the time of de-
ployment, neither ���"! nor ! �0.�� � � is known to sensors. Over
time, sensors “discover” each other by advertising their ids
which can be simply their indices. Let � and the locations of
the sensors be fixed. At time . , the sensors start broadcasting
their ids. Let � o � � � o ��� o � denote the subgraph of � �"!
discovered until time m , i.e.,

� o � � 	 and � ���� �}� � o if
there exists a time slot 3 ! m in which sensor � successfully
received a transmission from � for the first time. ��� � � � 	 ����� .
Note that � o is a random graph. In addition to noting ids of
its neighbours, a sensor also counts the number of times it
received a particular id; the larger this number, the higher is
the probability of successful transmission from that node to
� . To make it precise, let � �/. � m � denote the number of times
sensor � successfully received � till time m . Then the following
holds.

Proposition 5.3: Let . � � � � � for each � . Then � o �� � ! and 	 4/6 # o $o � ! �/. � � � with probability 1.
The convergence of the discovery process is in itself an

interesting problem since how fast � o converges to � � !
will depend on � . Practically, sensors will carry out the
discovery process for either a pre-programmed number of
slots, or during the discovery phase they will detect when
the graph is connected and then stop. For this discussion we
will assume that either � � ! or a connected subgraph of it has
been discovered and sensor � has an estimate of ! �/. � � � for each
� ���� � discovered; � counts the number of times it received the
id from � and sends back the number to � ; � divides it by the
number of slots to form an estimate. A distributed version
of Algorithm 1 is presented in [24]. The algorithm works
by formation of node clusters, detection of cycles, selection
of minimum weight cluster incoming edge in a distributed
fashion. We omit the details.
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B. Results

The setup is as explained in Section IV. �/.0.1. sensors form
a Poisson field on the plane with � � � . In this set of results,
we use the same value of attempt probability for each sensor.
Further, two “types” of � ’s need to be distinguished. The first,
denoted by � 3 , is the attempt probability sensors use while
discovering the topology (subscript ‘d’ denotes discovery). We
use � 3 � . � . � or .'� .�� . For � 3 � .'� .�� , the discovered graph
is connected at � .0. slots and for � 3 � .'� . � it is connected at
�/.0.1. slots. Figure 3 shows ��� � � (recall that � o denotes the
discovered graph at slot m ) and Figure 4 shows the MAWSS
constructed from it for � 3 � .'� .�� ; MAWSS here refers to the
graph obtained from Algorithm 1.

Once the topology formation is complete, sensors switch to
an “operational value” of the attempt probability. Figure 5
shows the variation of average saturation throughput of a
sensor with the operational values of � for network topologies
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given by � � � � , � ) � � � , MAWSS constructed using � 3 �+.'� .��and � ) � � � , MAWSS for � 3 � .'� . � . Recall that, for a given
topology �yM and � ,

n �?�kM � � � denotes the network throughput.
The average saturation throughput which we plot in Figure 5
is simply

p # e X > q $+ . Note that for � � .'� .�� , throughput of�k) � � � is lower than ��� � � since it includes more edges of
low probability of success discovered during additional � .1.
slots. A lower value of � 3 tends to discover longer edges too
which reduce the throughput; hence for � ) � � � , performance
with � 3 � . � . � is worse than with � 3 � . � . � . MAWSS, on
the other hand, eliminates edges with low probability of suc-
cess while maintaining the connectivity; hence, the maximum
throughput achieved by MAWSS (for both the values of � 3 )is almost five times of the corresponding discovered graphs.
Note from (1) and (3) that for any connected topology the
average saturation throughput at � cannot exceed � � � � � � ,
e.g., for � �(. � 2�� the throughput can be no more than .'� � ��� � .

VI. OPTIMAL ATTEMPT PROBABILITIES: OBJECTIVES

AND ALGORITHMS

Apart from the observation that MAWSS gives significant
throughput improvement, a crucial observation from Figure 5
is that the throughput is maximised at a different value of
� than � 3 . For example, for the MAWSS constructed with
� 3 �(. � . � , the throughput is maximised at � �+. � 2�� . At this
� , the throughput is almost five times of � � � � and an order
of magnitude more than that of �-) � � � with � 3 �5.'� . � . Thus,
it is essential to actually operate the network at a throughput-
maximising value of � .

One way to solve this problem is the following. From the
number of sensors to be used and the approximate area of re-
gion to be monitored, estimate the density. Using this estimate,
fix an initial value of � which will lead to fast discovery and
MAWSS formation. After the topology is formed, let sensors
switch to a pre-programmed � which maximises throughput
for that density. Though feasible and simple this approach

has some problems. The � maximising the throughput can
be known for specific point placements (or averages thereof).
In the field, sensors will fall as one particular sample path and
then it is not clear whether that value of � will maximise the
throughput. A more powerful approach is to let the sensors
learn the value of � over time. We do not insist that all
the sensors use the same value. First because maintaining the
same value of � at every sensor at every step of the learning
process is difficult. More importantly, different sensors may
need different values of � to counter the local inhomogeneities
in the node placement. This “learning” approach will also help
sensors to reconfigure themselves if and when some sensors
fail.

Definition 6.1: For a given topology, an independent set
is a set of transmitter-receiver pairs which do not interfere
with each others’ transmission, i.e., if only the sensors chosen
as transmitters in this set are allowed to transmit to the
respective receivers, then their transmissions are successful
with probability 1. $

Proposition 6.1: Let �	��
� denote the largest independent
set in a given topology. Then � , which maximises the network
throughput, is the one with � � � � for all transmitters � �
����
�� and � � �(. for the rest.

It is clear from Proposition 6.1 that if sensors are allowed to
use different values of � � s then the maximisation of average
saturation throughput leads to a degenerate assignment. In
addition, the “maximum calculation” example in Section I
suggests that the overall progress of the computation will be
really limited by the lowest sensor throughput in the network.
This motivates the problem of maximising the minimum of
sensor throughputs.

A. The MAXMIN Throughput

For a given network topology � , consider the following
optimisation problem.a�]Dcq V�� � > )���� a����)�� ��� + n � �?� � � � (4)

In order to get some insight into the throughput functions,n � �?� � � � , recall that � � �?� � (respectively m � �P� � ) denote the
set of neighbours (respectively number of neighbours) of � .
Let � �0. denote the vector � with entries � � and � . omitted.

Proposition 6.2: For a fixed topology � , � and $ , n � �P� � � �
has the following form.n � �?� � � � � �m � �P� � T. V + 4 # e $ � � � � � � . ��� �/. � � �/. �
For each � � � � �P� � ���1�/.��B� � either equals � or there exists
a set � �/. � � 	! �6���� � such that � �/.��B� � is a decreasing and
affine function of �

9
� K �"� �0. and does not depend upon

�
9
�#K ��#� �/. . Moreover, � �/.�� � � �(. and �0�/.�� . � � � . $

It is clear from Proposition 6.2 that
n � �?� ��� � � � ! � !

� are continuous functions of � , and so is a��$� � n � �P� ��� � .
Therefore, an optimum exists for the MAXMIN problem (4)
by Weierstrass Theorem. Since topology � is fixed, henceforth
we suppress it from the notation. It is, however, assumed that



� is connected. Let � � denote an optimum of MAXMIN
and

n � denote a��$� � n � � � � � . We will call � � , the MAXMIN
throughput attempt probabilities (MMTAP).

Definition 6.2: Let the sensor locations be fixed. Then for
fixed $ and � , � is called an interferer of � if

n � �?� � � �
is decreasing in � . . � is called a primary interferer of � if
whenever � transmits, � either decodes it or decodes none. $

Proposition 6.3: If every sensor is a primary interferer of
at least one sensor, then . �-� � � � .

Consider first � collocated sensors; by collocated we mean
that in any slot at most one transmission can be successful.
Then

n � � � � � �*� � . ;= � � �����1.�� � � ! � ! � and � �� � )+
which is an intuitive and desirable operating point for sensors
in this scenario. Secondly, even when sensors are spatially
distributed, � � equalises the throughputs, i.e.,

Proposition 6.4: . � � � � � � n � � � � � � n .�� � � � � � !
� ����! � .
The throughput equalizing property makes the MMTAP par-
ticularly important; with MMTAP, sensors operate at equal
processing rates which is desirable in applications where
computations are iterative.

B. An MMTAP Algorithm

Consider Algorithm 2, an iterative scheme to tune � to
the MMTAP.

�
denotes projection on � . � ��� and � ���PK ��� the

� . � .�� � � . � �������&� �0� 2 ������� � �� �PK � � a��$�) � � � + n � � � �PK � � �tK G .���K � � �/� � � !-� ! � � n � � � �PK � � � � �K �5�
� . �PK E � � � � �	

� . �PK � E�
 . �PK �� ���PK ���:T� V� # 9 $ � n � � � �PK � �� �1.
��

�&� �1� 2 ������� � �
Algorithm 2: An MMTAP algorithm using generalised gradi-
ent ascent.

cardinality of set ���PK � . 
 . �PK � is the step size in the K &?v
iteration at sensor � . Algorithm 2 is a “generalised gradient
ascent” algorithm; )� � # 9 $ � 8 � V� # 9 $�� p 4 # q # 9 $ $� q 6 being a gener-
alised gradient of a��$� � n � � � �PK � � at � �PK � ([25]). Informally
the iterations can be explained as follows. ���PK � denotes the set
of sensors whose throughput is the minimum under operating
point � �PK � . If � ���� �PK � , then � . is reduced in the next iteration
since � p 4 # q $� q 6 ! . � ����|� (see Proposition 6.2). This leads to
an increase in the throughput of � �����K � . If � ��� �PK � , then
�". is increased or decreased based on how it affects others
and how others affect its throughput. Thus the algorithm tries
to equalize as well as maximise the sensor throughputs.

1) A Synchronous Distributed Stochastic Algorithm:
Though fixed in form for a given placement of nodes,

n � �B� �
is not known at sensor � and being a steady-state average,
only noisy measurements of

n � ��� � are available for Algo-
rithm 2. An unbiased estimator of

n � ��� � , denoted by �n � ��� � ,

is )� 8 �. = )�� � � � � where � � � � � � � if � transmits successfully
in slot � , otherwise . . � is the number of estimation slots.
Sensors also need to estimate the gradient of

n � ��� � in order
to use Algorithm 2. Since we need a distributed algorithm and
since IPA and LR-SF ([26]) cannot be applied in this case,
an appropriate method for gradient estimation is simultaneous
perturbation (SP, [27]). Instead of perturbing one component,
i.e., � � at a time to obtain the estimates of partial derivatives, in
SP all �*� s can be perturbed simultaneously given that perturba-
tions for each � � are zero mean independent random variables
with some additional conditions ([27]). This way, by choosing
the perturbation amount locally, sensors can simultaneously
estimate the derivatives. In the K &?v iteration, let � �PK � denote a
vector of � independent Bernoulli random variables such that��� �PK �5� is an independent sequence with � �PK � independent of
� � .�� � � � ��� ������� � � �PK � . Then the “central-difference estimator”

of � p 4 # q $ # 9 $� q 6 is �p 4 # q # 9 $ 
Yi # 9 $ � # 9 $ $ � �p 4 # q # 9 $ � i # 9 $ � # 9 $ $� i # 9 $!� 6 # 9 $ where" �K � is a scalar. SP requires " �PK �O� . so that the estimator is
asymptotically unbiased.

Proposition 6.5: Let in Algorithm 2, the partial derivatives
of
n � �B� � � � !+� ! � be replaced by their estimates (biased

or unbiased). Let 
 . �PK � � 
 �PK � � � ! � ! � �#K G . and
 �PK � satisfy
8$#9 = ) 
 �K �&�&% and

8'#9 = ) 
 �PK � � �(% . Then
the generated sequence � � �K � � K G �<� converges a.s. to the
MMTAP.

For a complete distributed implementation we now only
need a way of obtaining an estimate of � p 4 # q # 9 $ $� q 6 for each
� �)���K � at every sensor � in iteration K . First note
from the form of the derivative estimator that sensor �
does not require such individual estimates to calculate the
sum of the partial derivative in Algorithm 2; if * �PK � � �8
� V� # 9 $ �p 4 # q # 9 $ 
Yi # 9 $ � # 9 $ $ � �p 4 # q # 9 $ � i # 9 $!� # 9 $ $� � # 9 $ � is made known

to it, it can directly obtain the required sum simply by dividing* �PK � by 2 " �PK �+� . �PK � . * �PK � can be obtained at each sensor by
first collecting it at a node designated as the “root” using the
distributed computation approach as in the “maximum calcula-
tion” example discussed in Section I, and then letting the root
distribute this value to all the sensors. The same approach will
work since we have a “minimum calculation” problem at hand,� �PK � being the minimum value of sensor throughputs. Recall
that MAWSS is built using trees. Therefore, the computation
will proceed efficiently using the underlying tree structure.
We assume that such a “computational tree” with a root
has been built; we denote by , � the children of sensor �
in the tree. The distributed MMTAP algorithm proceeds in
synchronized rounds; in every round K all sensors use the
same values of " �K � and 
 �PK � . The number of slots used for
estimating

n � �B� � is denoted by � . Algorithm 3 describes in
detail the procedure to be executed at each sensor in a round.
By the computation at a sensor we mean initialising � � �K � ,
�/� �PK � and *6� �K � , updating them and forwarding them to the
parent (see Algorithm 3); updation commences only after the
corresponding values are obtained from every child. Then the
key step is to note that, at the end of the computation at sensor
� , � � �PK � is the minimum sensor throughput known to sensor



1: operate with � � �K � for next � slots and obtain �n � � � �K � �
by counting the number of times transmission is successful
and dividing it by �

2: randomly choose � � �PK �S� �0� �0� �<�
3: operate with � � �K � E " �K �+� � �PK � for next � slots and obtain

�n � � � �PK � E " �K �+� �PK � �
4: operate with � � �K �7� " �K �+� � �PK � for next � slots and obtain

�n � � � �PK � � " �K �+� �PK � �
5: set � � �K � � �n � � � �K � � , * � �PK � � �n � � � �PK � E " �PK � � �PK � � �

�n � � � �PK � � " �K �+� �PK � � and � � �K � � �
6: receive � . �K � , * . �PK � , � . �K � from each child � � , �
7: set � � �PK � � �A� � � � , � � �6��� � � . �K � �a��$� � � � �PK � � � .��PK � �Q����, � �A�
8: update � � �PK � � 8 . V� 4 # 9 $ �A.��PK � , * � �PK � � 8 . V� 4 # 9 $ *5.��PK �and � � �PK � � a��$� � � � �PK � � � . �PK � �Q����, � �
9: if root then

10: * �K � � � 4 # 9 $� 4 # 9 $
11: set � � �PK E � � �(� � �PK � E 
 �PK � � # 9 $

� i # 9 $ � 4 # 9 $12: forward * �PK � to each � ��, �
13: else
14: forward � � �PK � , * � �PK � , � � �PK � to the parent in the tree
15: upon receiving * �PK � from the parent set � � �K E � � �

� � �PK � E 
 �K � � # 9 $
� i # 9 $!� 4 # 9 $ and forward * �PK � to each ����, �

Algorithm 3: Algorithmic procedure to be executed at each
sensor � in round K G . .
� in round K , i.e., the minimum among those sensors which
form a subtree of the computational tree rooted at � . If � 	� �PK �
denotes the set of sensors in the subtree rooted at � having
the minimum throughput known to � then � � �PK �-� � � 	� �K ���
and * � �PK � � 8 . V� h4 # 9 $ � �n . � � �K � E " �K �+� �K � �,� �n . � � �PK � �" �PK � � �PK � � � . It thus follows that if � is the root then � � �K � is the
global minimum throughput and in Algorithm 3, * �PK � equals8
� V� # 9 $ �p 4 # q # 9 $ 
Yi # 9 $!� # 9 $ $ � �p 4 # q # 9 $ � i # 9 $ � # 9 $ $� � # 9 $ � . Therefore, at

every sensor � , � # 9 $
� i # 9 $!� 6 # 9 $ is the required estimate. We omit

the details.

C. Results

In this section, we study the performance of Algorithm 3
on two example sensor networks. The networks are simple
enough so that

n � �B� � s can be deduced easily (hence the
optimum) and insight into the algorithm can be obtained.
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Fig. 8. 4 node network, � ��� * m, ''� � , ����� ; on left is �� ! and on
right is the operational topology

The first example, as shown in Figure 8, is a network
of 4 sensors symmetrically placed and operating with one
neighbour each. � � 4 � $ � 2 � %)� � � m so that,

� �n � � � ) � � � � ��	 � ��
 � �5� � � �*� � � 
 ) � � �*� � � 
 � � , addition in the
subscript being modulo 4. Note that sensor � is an interferer
of the pair � �0� 2�� . It is also a primary interferer of sensor 2
and an interferer of � since

n )��B� � is decreasing in � 	 . It is
easy to see that � �� � ����� � ����� � ����� � ����� � and

n � � . � �/4 � .
(recall that

n � denotes a���� � n � � � � � ).
Figure 6, and 7 show the variation of � � s and a���� � n � � � �

with the number of iterations in Algorithm 3. Recall that each
iteration consists of three estimation intervals ( � ). We have
used ��� �6.1.1. slots. Adjacent point averaging has been done
to show the trend in a���� � n � �B� � . We choose 
 �K � � ��� � �9 !�� �
and " �PK � � ��� )9 !�� ��� . Observe that within few iterations, the
improvement in the performance is substantial.
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Fig. 9. 9 node network, � � ��* m, ''� � , ����� ; on left is �� ! and on
right is the operational topology

The second example, shown in Figure 9 is that of an
asymmetric network. ��� 4 � $ � 2 � % � � � m. The operational
topology is such thatn ) � � � � � ) � � � � � � � � � ��	�� � � � ��� �

� � � ��
/����� � � � � � ��� � � � � ����� � � � � � � � �n
� � � � � � � � � � ��	 � � � � ��
��n 
�� � � � ��
 � � � � � � � � � � ��� � E � � � ��� � � ��� � � �

� � � ��� � � ��� ��� �
� � � � � �6� ) � 	 � ��� � � � E � �/� ) � � � � � � 	 � E
� � � 	 � � � � � �*) � E � 	 �*) � � � ��� � � � E
� 	 �*) � � � � � � �� 2

From Figure 9 is can be seen that,
n 	���� � � n � �B� � � n ����� � andn ���B� � are similar in form to

n ) ��� � whereas
n � and

n � are
similar in form to

n
� . Note the interferers from

n � �B� � s, e.g.,
sensor � is a primary interferer for sensor 2 , so is � . Sensors
4 and

�
do not disrupt a transmission from � to 2 individually

but together along with at least one sensor from � ,  and
�

do. Thus, by Definition 6.2, 4 , � ,  ,
�

and
�

are interferers of
sensor � .

Table I shows the comparison of performance of Algo-
rithm 3 (indicated by SPSA) with the deterministic Algo-
rithm 2 (indicated by SDA); in SDA the exact gradients
obtained explicitly from the form of

n � �B� � s are used. We
choose 
 �K �"� ��� )9 !�� ! and " �PK ��� ��� )9 !"� #$� . For each of the two
sets of � � .�� , the first column indicates � � . � , and second and
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set 1 set 2

(0) SPSA SDA (0) SPSA SDA
� � 0.494 0.334 0.281 0.916 0.570 0.281
� � 0.129 0.218 0.206 0.219 0.224 0.204
�&% 0.228 0.305 0.287 0.387 0.355 0.286
�&' 0.074 0.257 0.237 0.699 0.342 0.237
� � 0.255 0.295 0.271 0.294 0.380 0.274
�&( 0.609 0.313 0.192 0.520 0.305 0.192
�*) 0.396 0.217 0.278 0.616 0.464 0.276
�&+ 0.021 0.217 0.194 0.270 0.278 0.196
�&, 0.377 0.297 0.289 0.467 0.346 0.289

min �-� 	 � � 0.008 0.091 0.109 0.014 0.078 0.109

TABLE I

COMPARISON OF PERFORMANCE OF THE ALGORITHM USING GRADIENT

ESTIMATES (SPSA) AND EXACT GRADIENTS (SDA) FOR 2 SETS OF

INITIAL � 	 ��� WITH 20000 ITERATIONS.

third column indicate � � 2 .0.1.1. � obtained by SPSA and SDA
respectively Note that, for set 1, a��$� � n � � � � .�� � is only .'� .1. �
whereas with SDA a���� � n � � � � 2 .0.1.1. � ��� .'� �/. � and with
SPSA it is .'� . � � . Similar observations hold for set 2. Figure 10
shows the trends in a��$� � n � ��� � with the number of iterations
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Fig. 10. 9 sensor example; variation of � ��� �.�-� 	 � � with the num-
ber of iteration for set 1 � 	 ��� in Table I. The horizontal line indicates
� ��� �/��� 	 � 	 �����������0� ����� *���� obtained with exact gradients (SDA).

for the set 1 shown in Table I. Observe that, within a few
iterations, the performance gains are significant.



VII. DISCUSSION

It is essential that after their deployment, sensors organise
into an optimal network as fast as possible. This is particularly
true of the network topology. Our approximation algorithm for
MAWSS uses branchings whose time complexity is known to
be ���� ��� for dense networks ([23]). The time (and message)
complexity of the distributed algorithm discussed in Section V-
A.2 which finds � branchings also equals ����#��� ([24]). This
cost appears to be imperative for forming an optimal topology.
In return, as already seen, the performance gain is substantial
(Figure 5). Algorithm V-A.2 also constructs directed trees
rooted at each sensor, which can be used in computational
algorithms and for control information propagation; recall that,
our MMTAP algorithm makes use of this fact. Our approach
can be extended directly to a K -connected or a symmetric
topology (if � has a link to � , � has to have the reverse link).
Note that, symmetric topology problem is also NP-complete
since MAWSS for undirected graphs is a special case of it.
An algorithm for this problem can be found in [28]. Learning
an optimal � is an important but much harder problem. Our
algorithm is simple and makes use of measurements made
locally. Its major complexity is in obtaining the estimates of
partial derivatives of throughputs at each sensor. Stochastic
algorithms are constrained by the “bias-variance dilemma”
([29]), therefore, their convergence properties can be improved
by careful selection of the parameters. In our examples, the
starting points were chosen arbitrarily. Practically, a sensor can
guess its primary interferers from the estimates of probability
of successful transmission obtained during the discovery phase
so that it is possible to find a good starting point for the
algorithm to improve its convergence to the optimum. The
most important point, however, is that the improvement within
a few iterations is significant. So the network after achieving
certain improvement or a target rate may stop executing the
algorithm.

Interestingly, such algorithms can also be seen as a tool
by which the network slowly and continuously keeps on
improving itself. This aspect is particularly important because
even if some sensors fail over time, the remaining sensors
can reconfigure themselves with such an algorithm. Note that,
our algorithms are measurement based hence it is be possible
to extend our approach to other access schemes too. The
other important advantage of stochastic algorithm is that the
throughputs will be measured using the real transmissions,
no special packet transmissions are required. Hence, there is
no extra energy consumption. Further, they will work even in
the presence of any energy saving techniques such as random
sleep time and can account for energy constraints directly, for
example, by upper bounding the attempt probabilities.

We designed algorithms so as to achieve optimal perfor-
mance and found correspondingly higher algorithmic com-
plexity. Our future work, therefore, is to develop asynchronous
algorithms with strictly local information exchange for scal-
ability. This paper lends support to any such effort since
it shows a way to compute the global optimal performance

against which the performance of other algorithms can be
compared.

VIII. CONCLUSION

We viewed performance optimisation as the objective for
self-organisation in sensor networks and argued that the rate
at which a sensor network can process data in a distributed
fashion is governed by its communication throughput; hence
the self-organisation should be throughput optimal. Using a
simple model, we showed that the network topology and
optimal transmission attempt rate are the critical factors which
determine the throughput.

We obtained the optimal topology by MAWSS formulation
and discussed a distributed algorithm for it. This algorithm
uses connectivity and probability of successful transmission
information which can be obtained locally. It was seen in
an example that such a topology gave almost five times the
throughput of the original topology. The overall progress of
iterative computations in a sensor network is limited by the
minimum of the sensor throughputs. Therefore, maximisa-
tion of minimum throughput is an important problem. We
characterised the optimum attempt probabilities, MMTAP for
this problem. The MMTAP were found to have an important
throughput-equalizing property. We presented a synchronous
distributed stochastic algorithm for driving a sensor network
to the MMTAP. The algorithm uses local throughput measure-
ments and yields substantial performance improvement even
within few iterations.

The performance improvement is at the price of algorithmic
complexity. However, this work shows that the performance
gains from optimal self-organisation can be substantial and
such techniques need to be considered during the protocol
design.
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APPENDIX

In this section, we sketch the proofs of some propositions
in the paper.
Proof of Proposition 5.1: The proof for undirected graphs is
by transformation to 3DM (3-dimensional matching, [30]).
MAWSS instance: Connected graph � � � � �`� �`� � , and a
positive integer � .
Question: Is there a set ��) �-� i 	 such that

n �?�y) � !�� ?
3DM instance: A set � � ��� � � C , where � , � , and C
are disjoint set having the same number � of elements.
Question: Does � contain a matching, i.e., a subset � M � �
such that � �QM�� ��� and no two elements of � M agree in any
co-ordinate.

We construct the following gadget; % � and � denote sets
of � points such that there is an edge between points of % �
and � as shown in Figure 11 of weight 1. Each point of



q

q

q

R A

W R
w

Y RyXRx

p

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

Fig. 11. Gadget for proving NP-completeness of undirected MAWSS

� has an additional edge of weight 0. Similarly for %�� , C ,
%�� and � . � is a set of ! points (! � � ). % is a single
node which has ! edges from set � with weights 1 each.
Additional edges of set � can only be connected to � . Claim:
A matching exists if and only if a connected spanning graph
with

n � � � E � ���
E 	��
�
E
�! � 	��


 � can be constructed.
Note that points in % � have weight 1 each and points in �

have ��� 2 each. Thus total (average) weight of points in % � ,� , % � , C , % � and � is � �
E 	��
� . % has average weight 1.

These are unchanging weights in the graph. Weights of points
in � change based on how � , C and � connect.

If a matching exists, then out of ! , � points in � have 3
edges each of weight 0 (from � , C and � ), 1 edge to % and
rest ! ��� points have only 1 edge (connected to % ). Thus
weight of set � is ! � �

E
� �+��� 4)��! ��� ��� 4 . The resulting

graph is connected with
n � � � E � ���

E 	��
�
E
� ! � 	��


 � .
Lemma 1.1: Let� �K � � �K[) E � E �K � E � E ����� E �K	� E �

and consider the problem

a�]dc � �PK �
����� � ��� ."! K � ! � � !-� ! !K ) E K � E ����� E K � � � �
Then, the max

� �PK � � ! ��� ��� 4 and is achieved when in K , �K1� s equal 3 and the rest ! � � are 0.
Lemma 1.1 implies that if a connected graph with

n �
� �
E
� ���
E 	��
�
E
� ! � 	��


 � exists, then out of ! points in � , �
have 3 edges connected to � , C and � , 1 edge to % while
the rest have only 1 edge to % . This implies that the matching
exists ( � points with edges from � , C , � is the required
matching).

NP-completeness of MAWSS for directed graphs is estab-
lished by noting that STA (strong connectivity augmentation,
[31]) is its special case. $
Proof of Proposition 5.2: Follows from noting that Algorithm
1 constructs a route from every node to every other node. $
Proof of Proposition 5.3: Since . � ���(� � for each
� , ! �/. �?� � !0� � �#� . for each � ���� � � � � ! . Therefore, the
probability that � ����� � is discovered in finite time is � . Since

� is finite, � o � � � ! in finite time with probability � . The
second limit follows from the strong law of large numbers. $
Proof of Proposition 6.1: The network throughput is upper
bounded by the maximum number of successful transmissions
in a slot. The upper bound is achieved by assigning � � � �
for transmitter �Q� � ��
�� and � � � . to the rest. $
Proof of Proposition 6.2: Let the sensor locations be fixed.
Recall Equation 1 and Equation 3. Note that, � �/. � � �0. � is
� �?J��0. G $ � with �

9 . fixed; recall that J �0. denotes the SIR

of a transmission from � to � . If
#�� 4/6� ! $����8 @��� 4�� 6 # � @B6� ! $ ��� 
 + ! G $ ,�1�/.�� � �0. �-� � . If not, let � denote an N-dimensional vector

whose each component is either . or � . Let,� � � � � � 354763 ! � � �8 9<;= �?> . � 3 @ 63 ! � ��� � 9 E � � G $! 
Then, � �PJ*�/. G $ � � 8#" V�$ � 9<;= �?> .6� " @9 � � � � 9 � # ) � " @ $
Let � � � denote a vector with 3

&?v
entry omitted and let

�%� � � �&��� � represent � . If there exists an ' such that for every
�%� �)( � � � � �

, �*� �)( � .��S� �
, � �PJ �/. G $ � does not depend on ' .

Let � �0. be the set of sensors for which the previous condition
fails. That � �0.�� � �/. � is decreasing and affine in �

9
� K:� � �0.

follows from the form of � �PJ��0. G $ � .Proof of Proposition 6.3: If � �� � . for some � then clearlyn � � � � �&� . . If � �� � � for some � then
n .�� � � �)� . ���j�

� . where � . are the primary interferers of � . Proposition 6.2
implies that if � � � � . � � � for all � , n � �P� � � � � . � � ! � !#� .
Hence, . �-� � � � . $
Proof of Proposition 6.4: Note that the MAXMIN problem
is equivalent to the following problem.a�]dc �
����� � ��� n � � � � G ��� � ! � ! �� G .

� � � � . � ����� � !-� ! �
Since

n � � � � ! � , � ! � . The KKT conditions for the problem
imply that at if � � is regular, then there exists + � G . such
that following holds.+T � = ) + �� � n � � � � �� � . � . (5)

� �
+T � = ) + �� � .+ �� �5. �-, n � � � � � � n �

Recall Definition 6.2. Let %z. � �6�A� � � � � �P� �5� and � . ��/� � �s� � ��� ; � � denotes the set of interferers of � . Let + �. � .
for some � . Then Equation 5 corresponding to � implies that8
��. � ;= . + �� � p 4 # q / $� q 6 �5. .
Lemma 1.2: If . �+� � � � then � p 4 # q / $� q 6 � . if and only

if � ��+% . � � . .
% . � � . � � means that no sensor transmits to � and �
is not interferer of any sensors. � is thus an isolated sensor



and cannot belong to a connected network. Thus Equation 5
reduces to

8
� . � V � 6 �

	 6 + �� � p 4 # q / $� q 6 � . . For each such � ,� p 4 # q / $� q 6 �-. (Proposition 6.2 and Lemma 1.2) and + �� G . . It

follows that for all �Q� % . � � . , + �� � p 4 # q / $� q 6 �5. and therefore+ �� �(. . Continuing the argument for each such � and further,
let � denote the final set �/� � + �� � .'� . Let � � � K1� K �� �(� .
Then any such K does not transmit to any node in � and
no sensor in � is an interferer of K . Since � is a connected
topology, this implies that for all Kr� � �#K ��H� . Thus, for all
�Q�s� , + �� �(. which implies that

n � �P� � � � � � n � . However,
this is a contradiction since � is finite and the minimum is
achieved. This proves that + �� � . � � !+� ! � and therefore
the proposition.

Remark 1.1: The crucial condition for throughput equality
is that � is connected. Connectedness imposes interference
since if � receives from � , it is an interferer of � by Defini-
tion 6.2 and Proposition 6.2. Therefore, even if sensor � and �
are not mutually interfering or transmitting to each other, their
throughputs are coupled via intermediate sensors. If there are
two disconnected clusters of sensor which are non-interfering,
it is clear that their throughputs need not be equal. $

Proofs of Proposition 6.5: is based on the concept of
generalised gradients of generalised differentiable functions.
See [28], [25] for details.

REFERENCES

[1] S. Graham and P. R. Kumar, “The Convergence of Control, Communi-
cation, and Computation,” in PWC, 2003.

[2] W. Zhang et al., “Distributed Problem Solving in Sensor Networks,” in
AAMAS, 2002.

[3] A. Knaian, “A Wireless Sensor Network for Smart Roadbeds and
Intelligent Transportation Systems,” Master of Engg. thesis, MIT, 2000.

[4] B. Sinopoli et al., “Distributed control applications within sensor
networks,” Proc. of the IEEE, vol. 91, no. 3, pp. 1235–1246, 2003.

[5] D. Baker and A. Ephremides, “The Architectural Organization of a
Mobile Radio Network via a Distributed Algorithm,” IEEE Trans. on
Commn., vol. 29, no. 11, November 1981.

[6] M. Post et al., “A Distributed Evolutionary Algorithm for Reorganizing
Network Communications,” in IEEE MILCOM, 1985.

[7] J. Gronkvist and A. Hansson, “Comparison between Graph-based and
Interference-based STDMA Scheduling,” in MobiHOC, 2001.

[8] K. Scott and N. Bambos, “Formation and Maintenance of Self-
organizing Wireless Networks,” in 31st Asilomar Conf. on Signals,
Systems and Computers, 1997.

[9] R. Krishnan and D. Starobinski, “Message-Efficient Self-Organization
of Wireless Sensor Networks,” to appear in IEEE WCNC, 2003.

[10] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring Sensor
Network Topologies,” UCLA Technical Report UCLA/CSD-TR 01-
0009, May 2001.

[11] K. Sohrabi et al, “Protocols for Self-organization of a Wireless Sensor
Network,” IEEE Personal Communications, vol. 7, no. 5, pp. 16–27,
October 2000.

[12] R. Rozovsky and P. R. Kumar, “SEEDEX: A MAC Protocol for Ad
Hoc Networks,” in MobiHOC, 2001.

[13] K. Romer, “Time Synchronization in Ad Hoc Networks,” in MobiHoc,
2001.

[14] J. Elson et al., “Fine-Grained Network Time Synchronization using
Reference Broadcasts,” UCLA Technical Report 020008, 2002.

[15] Y. Akaiwa et al., “Autonomous Decentralized Inter-basestation Synchro-
nization for TDMA Microcellular Systems,” in IEEE VTC, 1991, pp.
257–262.

[16] A. Ebner et al., “Decentralized Slot Synchronization in Highly Dynamic
Ad Hoc Networks,” in Intl. Symp. Wireless Personal Multimedia
Commn., 2002, pp. 27–30.

[17] A. Domazetovic et al., “Estimating the Doppler Spectrum of a Short-
Range Fixed Wireless Channel,” accepted to IEEE Commn. Letters
2002.

[18] C. Kchao and G. Stuber, “Analysis of a Direct-Sequence Spread-
Spectrum Cellular Radio System,” IEEE Trans. on Commn., vol. 41,
no. 19, pp. 1507–1516, 1993.

[19] S. Tilak et al., “A Taxonomy of Sensor Network Communication
Models,” Mobile Computing and Communication Review, vol. 6, no.
2, April 2002.

[20] A. Karnik and A. Kumar, “Performance of a Distributed Computation
Model of Wireless Sensor Networks,” in National Conference on
Communication (NCC), India, 2004.

[21] E. Gilbert, “Random Plane Networks,” SIAM Journal, vol. 9, pp. 533–
543, 1961.

[22] T. Philips et al., “Connectivity Properties of a Packet Radio Network
Model,” IEEE Trans. on Information Theory, vol. 35, no. 5, pp. 1044–
1047, September 1989.

[23] R. E. Tarjan, “Finding Optimal Branchings,” Networks, vol. 7, pp.
25–35, 1977.

[24] P. Humblet, “A Distributed Algorithm for Minimum Weight Directed
Spanning Trees,” IEEE Trans. on Commn., vol. 31, no. 6, pp. 756–762,
June 1983.

[25] Y. Ermoliev and V. Norkin, “Stochastic Generalized Gradient method
with Application to Insurance Risk Management,” Tech. Rep. Interna-
tional Institute for Applied Systems Analysis IR-97-021, 1997.

[26] P. L’Ecuyer, “An Overview of Derivative Estimation,” in Conf. on
Winter Simulation, 1991.

[27] J. Spall, “Multivariate Stochastic Approximation Using a Simultaneous
Perturbation Gradient Approximation,” IEEE Trans. on Automatic
Control, vol. 37, no. 3, pp. 332–341, March 1992.

[28] A. Karnik, “Performance and Optimal Self-organisation of Wireless
Sensor Networks,” Ph.D. thesis, Indian Institute of Science, under
preparation, 2003.

[29] B. Bharath and V. Borkar, “Stochastic Approximation Algorithms:
Overview and Recent Trends,” Sadhana, vol. 24, pp. 425–452, 1999.

[30] M. Garey and D. Johnson, Computers and Intractability, W. H. Freeman
and company, 1979.

[31] G. Frederickson and J. Ja’Ja, “Approximation Algorithms for Several
Graph Augmentation Problems,” SIAM Journal of Computing, vol. 10,
no. 2, pp. 270–283, May 1981.


