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Abstract— In this paper, we consider the problem of association
of wireless stations (STAs) with an access network served by a
wireless local area network (WLAN) and a 3G cellular network.
There is a set of WLAN Access Points (APs) and a set of 3G
Base Stations (BSs) and a number of STAs each of which needs
to be associated with one of the APs or one of the BSs. We
concentrate on downlink bulk elastic transfers. Each association
provides each STA with a certain transfer rate. We evaluate an
association on the basis of the sum log utility of the transfer
rates and seek the utility maximizing association. We also obtain
the optimal time scheduling of service from a 3G BS to the
associated STAs. We propose a fast iterative heuristic algorithm
to compute an association. Numerical results show that our
algorithm converges in a few steps yielding an association that is
within 1% (in objective value) of the optimal (obtained through
exhaustive search); in most cases the algorithm yields an optimal
solution.

I. I NTRODUCTION

In third generation (3G) wireless cellular networks, mobile
multimedia services requiring data rates of the order of 100s
of Kbps are envisaged. The sophisticated, wide coverage
infrastructure of wireless cellular networks is expensive and
it is difficult to meet the ever increasing traffic demands.
Wireless Local Area Networks (WLANs), on the other hand,
are easy to install and can coexist with a cellular network.
WLANs are being widely deployed in public areas, such as
campuses, hotels and offices. Thus, a seamless integration of
WLANs and 3G cellular networks is imminent. In this paper,
we focus on the problem of optimal association of a number
of wireless stations (STAs) with an access network comprising
WLAN Access Points (APs) and 3G Base Stations (BSs).

In many practical wireless systems including the IS-856
(HDR) system, an STA is associated with the BS from which it
can receive the highest signal to interference plus noise ratio
(SINR). In WLANs, each STA detects its nearby APs and
associates itself with the AP from which it has the strongest
received signal strength, while ignoring load considerations.
In this paper, we formulate an association problem in which
STAs associate with BSs or APs so as to maximize a network
objective function.

Recently, there has been considerable work done in
the area of optimal association and resource allocation
([1],[10],[14],[3]). Hanly [10] and Yates and Huang [14]
studied the base station assignment problems for a CDMA
cellular system. They provided a combined power control and

cell site selection algorithm that minimizes the transmit power
while meeting the uplink target SINR. Lee, Mazumdar and
Shroff [11] studied the downlink rate and power allocation and
base station assignment problem, again for a CDMA cellular
system. They formulated the power allocation and base station
assignment problem based on a pricing approach. Kumar
and Kumar [1] formulate the optimal association problem for
WLANs as a log sum utility maximization problem and obtain
solutions for some simple situations. Bejerano et. al. [3] also
consider the same problem. They propose the idea of fractional
association, formulate a linear programming (LP) problem and
relate the result of the LP problem to the integer solution using
graph theoretic ideas.

In this paper, we study the association and scheduling
problem when there is a heterogenous access infrastructure
comprising 3G BSs and WLAN APs. Several STAs seek to
connect to a 3G cellular network or to a WLAN with the
objective of performing elastic downloads. We formulate the
association problem as a cooperative sum utility maximization
problem. The utility obtained by each STA is the log of the
TCP bulk download rate obtained by the STA in an association.
Our work differs from [10] and [14] since these papers are
concerned with fixed rate services each with a targetEb/N0;
this yields the problem of setting transmitter power so as to
achieve target carrier-to-interference ratio (CIR). In [11] the
problem of joint power and rate control which maximizes the
downlink expected throughput is studied. Our present work is
an extension of the work reported in [1] where the problem
of optimal association with WLAN APs was considered,
while here we consider optimal association in a heterogenous
network of WLAN and 3G cellular network. We formulate the
problem and propose an iterative “greedy search” algorithm for
obtaining a good association in a few iterations. We also give
a sufficient condition to check if the association is optimal.
An extensive numerical study of our algorithm is provided.

The rest of the paper is organized as follows. In Section
II, we describe the WLAN and 3G system with respect to
the association, physical rates, and the throughput. We define
the system utility and state the optimal association problem
based on the system utility in Section III. We analyze the
optimum association problem in Section IV. We present the
algorithm to determine a good association in Section V. A
sufficient condition on the optimality of the solution given by



the algorithm is also discussed. We provide numerical results
in Section VI. Section VII concludes the paper.

II. A SSOCIATION, PHYSICAL RATES, AND THROUGHPUT

There arel WLAN APs indexed by the setL = {1, 2, . . . , l}
andb BSs indexed by the setB = {l+1, l+2, . . . , l+ b}. Let
the setN beL∪B. Let n = l+ b. There arem STAs indexed
by the setM = {1, 2, . . . ,m}. Let ai ∈ N be the AP or BS to
which STAi is associated. LetA = (a1, a2, . . . , am) denote an
association vector, i.e.,A ∈ A = Nm = {(a1, a2, . . . , am) :
ai ∈ N ,∀i ∈ M}. Let Sj be the set of STAs associated
with AP/BS j, j ∈ N and letmj = |Sj |, be the number of
STAs associated with AP/BSj, j ∈ N . We focus on downlink
elastic bulk data transfers to the STAs (e.g., TCP controlled
file transfers). We assume the channel gains to be static over
the time scale of the optimization. Given an associationA =
(a1, a2, . . . , am), let riai

be the raw physical data rate with
which STAi is associated withai, ai ∈ N (ai ∈ L or ai ∈ B).
Since we are considering a CDMA cellular network, ifai ∈ B,
then in generalriai

will depend on the interference and hence
the associations of the other STAs to BSs.

A. Physical rates: WLAN AP to a STA

Let STA i be associated with APj at the raw physical data
rate rij ∈ C. For example, IEEE 802.11b supports the set of
physical data ratesC = {1, 2, 5.5, 11} Mbps. These rates are
achieved depending on the distance between the AP and the
STA. For simplicity, we assume that the WLAN coverage is
such that an STA that can be associated with a WLAN AP
does so at the maximum physical data rate. We also assume
that the cochannel APs are placed sufficiently far apart such
that there is no intercell cochannel interference [12].

B. Physical rates: 3G BS to a STA

Let Gij be the channel gain (which includes distance loss,
shadowing and fading) between STAi and BSj. Let Pij be
the power transmitted from BSj to STA i and let P (j) be
the total power transmitted from BSj to STAs i ∈ Sj . Let
PT be the maximum transmit power of any BS. IfN0 is the
one sided noise power spectral density andW is the system
bandwidth, then the received downlink SINR of STAi when
associated with BSj is given by

Γij =
GijPij∑

k 6=j GikP (k) + N0W
. (1)

assuming that the users of the same cell use orthogonal
spreading codes, and ignoring intracell interference caused by
multipath.

We follow the model given in [13] for computing the
transmission rate as a function of SINR and system bandwidth.
If the physical raterij is used from BSj to STA i then the
energy-per-bit to noise power spectral density ratio of STAi
when associated with BSj is given by

W

rij
· Γij (2)

In order for STAi to be able to decode the BS’s signal with
an acceptable probability of errorε, it is necessary that the
energy-per-bit to noise power spectral density ratio exceedsγ,
where, for a given digital modulation scheme,γ = γ(ε) is a
threshold which is determined by the probability of errorε.
Then from Eqn. 2, the achievable physical rate is given by

rij =
W

γ
· Γij

= αΓij (3)

whereα = W/γ. It should be noted from Eqn. 3 that, withγ
fixed, the achievable physical raterij between STAi and BS
j is linearly proportional to the SINRΓij .

C. TCP Bulk Throughput

We consider persistent, TCP controlled (local area) elastic
data transfers to allm users. Letθij be the TCP throughput
to STA i when associated with AP or BSj from server in the
local area.

Assuming that when an STA associates with an AP it does
so at a fixed rate (e.g., 11 Mbps) and the packet error rate
is negligible, it can be shown that the TCP bulk transfer
download throughput is of the formθij = Θ0/mj if mj STAs
are associated with the AP with which STAi is associated,
whereΘ0 is a number that depends on the IEEE 802.11 MAC
parameters and the TCP packet length (see [8] & [9]). For
example, with a physical data rate of 11 Mbps, TCP packet
size of 1500 B, RTS/CTS for data packets and basic access
for TCP acks,Θ0 = 4.3 Mbps.

In a pedestrian or static scenario, when an STAi is
associated with a BSj we assume that the targetEb/N0,
γ is achieved and hence the packet error rate is sufficiently
low (e.g.,10−2). Thenθij = rij . In the case of a 3G cellular
network, it is shown in [2] that the optimal sum physical rate
can be achieved if each BS transmits to only one data user at a
time (regardless of the topology of the network,the presence of
voice users in the cell, and user locations) and with maximum
power (when there are only data users and no voice users), i.e.,
the multiple users associated with BSj are served in a time
division multiple access (TDMA) mode. It is to be noted that
HDR uses TDMA. We thus takePij = PT ,∀i ∈ M,∀j ∈ B
and P (j) = PT ,∀j ∈ B and a slotted system for 3G cellular
network where the users are served one at a time ([2]). Let
φ

(j)
i be the fraction of time STAi is serviced by BSj. Since,

we consider local area bulk TCP throughput for low packet
error rates,θij = φ

(j)
i rij is the average TCP throughput that

STA i gets on association with BSj. Note that under this
modelrij does not depend on the association.

We define anm×n matrixR, whererij , ∀i ∈M, ∀j ∈ B,
represents the physical rate that STAi gets from BSj and
rij = Θ0, ∀i ∈ M, ∀j ∈ L is the bulk TCP throughput that
STA i gets when it is the only STA associated with an AP.

III. T HE DOWNLINK OPTIMAL ASSOCIATIONPROBLEM

When useri is associated with AP or BSj and obtains
throughputθij we evaluate the utility obtained by useri as



U (θij) where U(.) is an increasing concave function. We
define the system utility as the sum of the individual utilities
of STAs each of which is associated with either a BS or an
AP. We are interested in finding the optimal associationA∗

that maximizes the system utility.

A∗ = arg max
A∈A

∑
i∈M

U (θiai
) (4)

Based on the discussion in Section II-C, Eqn. 4 can be written
as

A∗ = arg max
A∈A

∑
j∈L

∑
i∈Sj

U (θij) +
∑
j∈B

∑
i∈Sj

U (θij)


= arg max

A∈A

∑
j∈L

mjU

(
Θ0

mj

)
+

∑
j∈B

∑
i∈Sj

U
(
φ

(j)
i rij

)
s.t.

∑
i∈Sj

φ
(j)
i = 1,∀j ∈ B (5)

The variablesφ(j)
i , ∀j ∈ B, model the TDM scheduling of

STAs associated with BSj.
In this paper, we considerU(·) = log(·) (see [1]). Thus, we

have the optimum association problem

A∗ = arg max
A∈A

∑
j∈L

mj log

(
Θ0

mj

)
+

∑
j∈B

∑
i∈Sj

log
(
φ

(j)
i rij

)
s.t.

∑
i∈Sj

φ
(j)
i = 1,∀j ∈ B (6)

Remarks 1:

(i) It should be noted that for computing the optimal asso-
ciation, the ratesrij ,∀i ∈M, ∀j ∈ N should be known
at a central device.

(ii) Note also that the solution of this problem will also yield
φ

(j)
i , j ∈ B, i ∈ Sj .

IV. A NALYSIS OF THE OPTIMUM ASSOCIATIONPROBLEM

In this section, we study the optimization problem (Eqn. 6)
we posed in Section III. We divide the above problem into two
sub-problems. The first sub-problem is finding the optimum
partition of m STAs into two groups, one comprising STAs
associated with the 3G cellular network, and the other com-
prising those STAs associated with the WLAN. The second
subproblem is finding the optimum association in each of the
partitions. Let the subset of STAs to be associated with the
WLAN be SW and let |SW | = mW . Also, let the subset of
STAs to be associated with the 3G cellular network beSC

(whereSC = M−SW ). The first sub-problem will yieldSW

and SC . The second sub-problem requires onlymW for the
WLAN. But, SC is required as a whole for the association
with the 3G cellular network.

A. Sub-Problem: Optimum Association among APs

Given mW , we need to find the optimalm1,m2, . . . ,ml

such thatm1 + m2 + . . . + ml = mW . For the log utility
function, we have

max
m1,m2,...,ml

∑
j∈L

mj log
(

Θ0

mj

)
s.t.

∑
j∈L

mj = mW

mj ∈ {0, 1, 2, . . . ,mW }, ∀j ∈ L (7)

We have an integer programming problem. Let us replacemj

by mj/mW . Notice that this does not change the optimization
problem. We relax the integer constraint by settingxj =
mj/mW and lettingxj ∈ [0, 1]. This yields the following
relaxed problemwhose solution will provide an upper bound
to the maximization problem defined in Eqn. 7.

max
x1,x2,...,xl

∑
j∈L

xj log
(

Θ0

xj

)
s.t.

∑
j∈L

xj = 1

xj ≥ 0, ∀j ∈ L (8)

The above problem is a concave maximization problem with
linear constraints. Solving this problem givesx∗j = 1/l. Hence,
m∗

j = mW /l,∀j ∈ L solves the original problem, defined
in Eqn. 7, whenever these are integers. In such a case, the
optimum is to equally divide the STAs over the APs.

B. Sub-Problem: Optimum Association among BSs

GivenSC , definemC = |SC |. We need to find the optimal
Sj , j ∈ B, such that∪j∈BSj = SC . For the log utility
function, we have

max
Φ,Sj ,∀j∈B

∑
j∈B

∑
i∈Sj

log
(
φ

(j)
i rij

)
s.t.

∑
i∈Sj

φ
(j)
i = 1, ∀j ∈ B

φ
(j)
i ≥ 0, ∀i ∈ Sj , ∀j ∈ B
∪j∈BSj = SC

Sj ∩ Sk = ∅,∀j 6= k, j ∈ B, k ∈ B (9)

whereΦ = [φ(j)
i ],∀i ∈ Sj ,∀j ∈ B.

The above maximization problem can be resolved into two
maximization problems one overΦ and the other over the
partitionsSj ,∀j ∈ B of SC . Given a partition ofSC into Sj ,
j ∈ B, the maximization problem overΦ,

max
Φ

∑
j∈B

∑
i∈Sj

log
(
φ

(j)
i rij

)
s.t.

∑
i∈Sj

φ
(j)
i = 1, ∀j ∈ B

φ
(j)
i ≥ 0, ∀i ∈ Sj , ∀j ∈ B (10)



is a concave maximization problem inφ(j)
i s with linear

constraints. It is easily seen that solving this problem yields
φ

(j)
i = 1/|Sj |,∀i ∈ Sj ,∀j ∈ B.
To solve the second maximization problem, we can now

write Eqn. 9 as

max
Sj ,∀j∈B

∑
j∈B

∑
i∈Sj

log
(

rij

mj

)
s.t. ∪j∈BSj = SC

Sj ∩ Sk = ∅,∀j 6= k, j, k ∈ B (11)

The solution to the above problem yields the optimalSj ,
∀j ∈ B. Note that this is a nonlinear combinatorial optimiza-
tion problem, sinceSjs are discrete sets.

C. Optimal Association among APs and BSs: A Special Case

Motivated by the above discussion, in this subsection we
consider a special scenario of a simplified formulation. We
assume that all the STAs are clustered (e.g., as in an audito-
rium). In this scenario, we assume that all STAs see the same
channel to BSj. Thus, forj ∈ B, we denoterij , i ∈ M by
the common valueΘj . We simplify the formulation as follows.
Motivated by the result in Section IV-A, we seek a number
m0 ≥ 0 of STAs that will be associated with each AP, and a
numbermj of STAs that will be associated with BSj. This
yields the following problem.

U∗ = max
m0,mj ,∀j∈B

lm0 log
(

Θ0

m0

)
+

∑
j∈B

mj log
(

Θj

mj

)
s.t. lm0 +

∑
j∈B

mj = m

m0,mj , ∀j ∈ B are non negative integers. (12)

We relax the above integer constraints by takingmj/m = xj .
The solution of the relaxed problem will provide an upper
bound to the maximization problem defined in Eqn. 12. Thus,
the above optimization problem can be written as

U∗ = min
x0,xj ,∀j∈B

lx0 log (x0) +
∑
j∈B

xj log(xj)

− lx0 log(Θ0)−
∑
j∈B

xj log(Θj)


s.t. lx0 +

∑
j∈B

xj = 1

x0 ≥ 0, xj ≥ 0, ∀j ∈ B (13)

The above objective is a convex function ofxjs and the
constraints are linear. Solving the above problem gives the
optimal solution,

x∗0 =
Θ0

lΘ0 +
∑

k∈B Θk
(14)

x∗j =
Θj

lΘ0 +
∑

k∈B Θk
. (15)

Hence consider, forj ∈ B,

m∗
0 =

m

lΘ0 +
∑

k∈B Θk
·Θ0 (16)

m∗
j =

m

lΘ0 +
∑

k∈B Θk
·Θj . (17)

If m∗
0 and m∗

j , ∀j ∈ B, are integers then the above solution
is optimal and the STAs are distributed over the APs and the
BSs in proportion to theΘj values. Even thoughΘ0 is quite
large, (4.3 Mbps for 11 Mbps physical data rate [9]), we see
that a positive number of STAs are associated with the BSs.

We look at the following examples to understand the above
scenario.

Example 1: We takem = 6, l = 2, and b = 2. Let us
consider the scenario whereΘ0 (= Θ1 = Θ2) = 4 Mbps,Θ3 =
2Mbps, andΘ4 = 2 Mbps. We obtain the optimal association
vector, A∗ by enumerating all possible associations. The
optimal utility based association,A∗ is found to be [1 1 2 2 3
4]. It is noted that under optimal associationA∗, AP1 and AP2
service two STAs and, BS3 and BS4 service one STA each.
This result is in conformance with that of Eqns. 16 and 17. It
is to be noted that the resultingm∗

0 andm∗
j (given by Eqns. 16

and 17) are integers in this case. If the STAs are associated
with APs/BSs based on the ratesrij (as in HDR) then the
resulting associationA1 assigns three STAs with AP1 and the
remaining three with AP2. Though the rates that individual
STAs get when associating with APs seem to be more, it is
beneficial to associate some STAs with BSs as this increases
both the individual throughput of the STAs and the system
utility. In associationA1, the throughput of an STA is 1.33
Mbps whereas in associationA∗, the throughput of an STA
is 2.0 Mbps. The system utility for associationA1 is 84.62
whereas the utility corresponding to the optimal association,
A∗ is 87.05.

Example 2: We takem = 9, l = 2, and b = 2. Let us
consider the scenario whereΘ0 (= Θ1 = Θ2) = 4 Mbps,
Θ3 = 2 Mbps, andΘ4 = 1 Mbps. The optimal association
vector, A∗ (obtained through enumeration) for this case is
[1 1 1 2 2 2 3 3 4]. Under optimal associationA∗, AP1
and AP2 service three STAs and, BS3 service two STAs and
BS4 service one STA. In this case, them∗

0 and m∗
j given

by Eqns. 16 and 17 are not integers and the optimal number
of STAs associated among the APs and BSs are distributed in
the ratio of 3:3:2:1 instead of 4:4:2:1. This solution is obtained
by exhaustive search. We consider the associationA1 which
associates (based on the ratesrij) four STAs with AP1 and
the remaining five with AP2 and compare it with that of utility
maximizing optimal association,A∗. This example also shows
that it is beneficial to associate with BSs as this increases
individual STA’s throughput and the overall system utility. In
associationA1, the throughput of an STA is either 0.8 Mbps or
1.0 Mbps whereas in associationA∗, the throughput of an STA
is 1.0 Mbps or 1.33 Mbps. The system utility for association
A1 is 123.22 whereas the utility corresponding to the optimal
association,A∗ is 126.07.



V. A GREEDY SEARCH ALGORITHM

Here, we provide an algorithm to compute anear optimal
associationof STAs with the access network comprising 3G
BSs and WLAN APs. We provide the following theorem which
gives a sufficient condition for an association to be optimal.

Theorem 1:For a given rate matrix,R, if the association
vectorA satisfies

θiai ≥ θij , ∀i ∈M,∀j ∈ N , (18)

where θij = rij

mj
, ∀i ∈ M,∀j ∈ N , then the association

vectorA is a utility maximizing (optimal) association vector.
Proof: See Appendix.

Remarks 2:This result says that an association is optimal
if the throughput an STA gets from the device with which
it is associated is at least as large as the throughput it
would otherwise get if its association is exchanged with the
association of a device associated with any other AP/BS. This
can be used as a way to check if an association is optimal.
This condition is similar to theNash equilibriumof a pure
strategy game.

We now consider a criterion for looking for the best
association among a particular set of associations. Let
U(A) denote the system utility for the association vector
A = [a1, a2, . . . , am]. Let us denote the association vector
[a1, a2, . . . , ai−1, k, ai+1, . . . , am] by Aik. It is to be noted
thatAik differs fromA only in theith position. We thus have
a collection of associations,C = {Aik, ∀i ∈M, ∀k ∈ L∪B}.
Let the change in system utility when STAi’s association is
changed fromai to k be given by∆ (i, k) = U(Aik)−U(A).

Lemma 1:The best association inC is Ai∗k∗ if and only if

(i∗, k∗) = arg max
i∈M,k∈N

∆ (i, k)

= arg max
i∈M,k∈N

[− (mk + 1) log (mk + 1)

+mk log (mk)− (mai
− 1) log (mai

− 1)

+mai log (mai) + log
(

rik

riai

)]
(19)

wheremai is the number of STAs associated with each AP/BS
ai under associationA.

Proof: See Appendix.
We now display a greedy algorithm that computes agood

association.
Algorithm:
1) Let h = 0. ∀i ∈M, associate STAi with the AP/BSai

= arg maxk∈N {rik}. Let the association vector beA(0).
2) Find the number of STAsmj associated with each

AP/BS j.
3) Check ifTheorem1 is satisfied. IfTheorem1 is satisfied,

then the associationA(h) is optimal. Go to step 5. If
Theorem1 is not satisfied, then the associationA(h)

may or may not be optimal.
4) UsingLemma1, compute(i∗, k∗). If k∗ = ai∗ go to step

5. Else, associate STAi∗ with k∗ keeping the association
of the rest of the STAs same. Let the new association
be A(h+1). Let h = h + 1. Go to step 2.

5) A(h) is the association yielded by the algorithm.

VI. N UMERICAL EVALUATION OF THE GREEDY SEARCH

ALGORITHM

In this section, we study the algorithm for various scenarios.
For various values ofm, l, and b, we generate a random
rate matrixR. The first l columns are fixed atΘ0 and the
remaining b columns of R are generated using uniformly
distributed channel gainsGijs. We find the optimal associ-
ation which maximizes the utility by enumerating all possible
associations. We also run our algorithm and the result of our
algorithm is compared against the optimal association got by
enumeration. Though the enumeration technique guarantees
optimal association, its computational complexity is of the
order (l + b)m = nm which is prohibitively high.

We consider 6 different cases of(m, l, b). In each case, we
compute the association for 50 different rate matricesR (12 in
the case of (9,2,5)). For each instance of the rate matrixR, we
observe the utilities of allnm possible associations and thus
note down the maximum and the minimum utilities obtained
for each rate matrixR. Thus from the 50 instances analyzed,
we tabulate the range of the maximum and the minimum
utilities obtained. We also observe the number of computations
required by the enumeration technique, the average time taken
by the enumeration technique, the average number of iterations
taken by our algorithm (averaged over the number of instances
analyzed), the average time taken by our algorithm and the
average percentage of difference between the utilities of the
optimal association computed by the enumeration technique
and that given by our algorithm. The observations are shown
in Table I.

We note from Table I that there is a large gap between the
minimum and the maximum utility of associations, in every
case, thus emphasizing the importance of seeking an optimal
association. For a givenn, the average number of iterations
increases withm. We observe that the number of iterations
taken by the algorithm to converge is significantly lower than
the number of searches to be evaluated in the enumeration
technique. The time taken for the algorithm to converge
is negligible, whereas the time taken for the enumeration
technique is significantly higher.

We observe from Table I that for large number of STAsm
(cases 1,3,4, and 6) our algorithm converge to the optimum
association vector and for small number of STAs (cases 2
and 5) our algorithm is found to converge to a suboptimal
association vector. It is also noted that in Case 2 (m = 7,
l = 2, b = 4) the average difference in the system utility
between the optimal association vector and that obtained by
our algorithm is 0.1% and that in Case 5 (m = 9, l = 2, b =
5), it is 0.15%. This could be explained as follows. Whenm
is small, the gradient search method does a coarse exploration
of the objective function and hence the algorithm converges to
a local maxima. On the other hand for largem, the gradient
search method carries out a finer exploration and hence the
algorithm converges to a better solution.



TABLE I

COMPARISON OFOPTIMAL ASSOCIATION BY ENUMERATION AND THE SOLUTION OF OURALGORITHM.

Case (m, l, b) # of instances System Utility Range Enumeration Algorithm Average
Analyzed No. of Time Average Time % error from

Maximum Minimum evaluations =nm (ms) # Iterations (ms) optimal value.
1 (10,1,2) 50 131.2–136.9 102.3–113.3 59049 154.0 3.36 0.1029 0
2 ( 7,2,4) 50 95.2– 98.0 60.9– 73.5 279936 612.6 6.08 0.254 0.1
3 (10,1,3) 50 130.5–134.9 96.3–107.0 1048576 3166.0 5.94 0.1456 0
4 (15,1,2) 50 191.7–199.4 148.9–163.5 14348907 65939.8 4.82 0.1286 0
5 ( 9,2,5) 12 120.6–123.5 79.5– 88.8 40353607 164845.0 8.42 0.3125 0.15
6 (19,1,2) 50 238.3–247.1 187.0–203.2 1162261467 475364.0 5.74 0.1548 0

It is to be noted ifTheorem1 is satisfied then the solution is
optimal. On the other hand, ifTheorem1 is not satisfied then
the solution of the algorithm may not be optimal. We found
that in Case 4 of Table I,Theorem1 is satisfied for 7 out of
50 rate matrices and in cases 1 and 6,Theorem1 is satisfied
for 4 out of 50 rate matrices. In cases 2, 3, and 5,Theorem1
is not satisfied for any rate matrix.

VII. C ONCLUSION

In this paper, we studied the optimal association of STAs in
a heterogenous wireless access network comprising WLAN
APs and 3G BSs. We formulated the problem as one of
maximizing the total utility provided to the users, where
the utility of a user is evaluated as the log of the elastic
download throughput that the user gets. We studied some
characteristics of the general solution, and derived the solution
for a simple special case. Then we provided a heuristic
greedy search algorithm that yields an optimal or near optimal
association for a large number of problems for which we could
obtain the exact solution by exhaustive search. In our ongoing
work we are studying other algorithmic techniques, such as
the genetic algorithm. Our future work will include optimal
association under user mobility, the effect of network pricing,
and decentralized algorithms for optimal association.

APPENDIX

PROOF OFTHEOREM 1

Let us rewrite Eqn. 4 (motivated by [3]) for the log utility as
follows. Let f

(j)
i be the fraction of time STAi is associated

with AP/BS j. Let the matrixF be [f (j)
i ]. This yields the

following problem.

U∗ = max
F

∑
i∈M

log

∑
j∈N

f
(j)
i rij


s.t.

∑
i∈M

f
(j)
i = 1, ∀j ∈ N

f
(j)
i ≥ 0, ∀i ∈M,∀j ∈ N . (20)

If the matrixF that solves this problem is such thatf
(j)
i = 0,

∀j 6= ai, ∀i ∈ M, then we have solved Eqn. 4, i.e.,∃A ∈ A
which is the optimal association.

The above problem is a concave maximization problem with
linear constraints. The Lagrangian of the above problem is

L(F, λ, ν) =
∑
i∈M

log

∑
j∈N

f
(j)
i rij

−
∑
j∈N

λj

∑
i∈M

f
(j)
i

+
∑
i∈M

∑
j∈N

νijf
(j)
i (21)

Differentiating w.r.t.f (j)
i gives

∂L

∂f
(j)
i

=
rij∑

k∈N f
(k)
i rik

− λj + νij ,∀i ∈M, ∀j ∈ N

(22)

Since we are maximizing a strictly concave function over
linear constraints,F is the optimizer if there exists(λ, ν) that
satisfies the followingKKT conditions

rij∑
k∈N f

(k)
i rik

− λj + νij = 0, ∀i ∈M, ∀j ∈ N

(23)

νij ≥ 0, ∀i ∈M, ∀j ∈ N (24)

νij · f (j)
i = 0, ∀i ∈M, ∀j ∈ N . (25)

Now consider an associationA = (a1, a2, . . . , am) and
examineF such thatf (ai)

i > 0, and f
(j)
i = 0, ∀j 6= ai,

∀i ∈M. For such a solution to be aKKT point we need

νij =
{

0 if j = ai

≥ 0 if j 6= ai , ∀i ∈M, ∀j ∈ N (26)

Eqn. 23 gives∑
k∈N

f
(k)
i rik =

rij

λj − νij
, ∀i ∈M, ∀j ∈ N (27)

For the set of STAs,i ∈ Sp, associated with AP/BSp ∈ N ,
we have from Eqn. 27,

f
(p)
i rip =

rij

λj − νij
, ∀i ∈ Sp, ∀j ∈ N (28)

When j = p, we needνip = 0, ∀i ∈ Sp. This gives

λp =
1

f
(p)
i

, ∀i ∈ Sp, ∀p ∈ N



Thus,

λp = (f (p)
i )−1 = |Sp|, ∀i ∈ Sp, ∀p ∈ N (29)

Then from Eqn. 23, it is clear that

νij = λj −
rij

f
(ai)
i riai

=
maimj

riai

(
riai

mai

− rij

mj

)
(30)

To ensureνij ≥ 0, we need
riai

mai
≥ rij

mj
∀i ∈ M, ∀j ∈ N .

Thus we have aKKT point if
riai

mai
≥ rij

mj
∀i ∈M, ∀j ∈ N .

PROOF OFLEMMA 1

The system utilities corresponding to the associationsA and
Aik are given by

U(A) =
∑
p∈N

∑
q∈Sp

log
(

rqp

mp

)
U(Aik) =

∑
p∈N ,p 6=ai,p 6=k

∑
q∈Sp

log
(

rqp

mp

)
+

∑
q∈Sai

,q 6=i

log
(

rqai

mai − 1

)

+
∑

q∈Sk∪{i}

log
(

rqk

mk + 1

)
Hence,

U(Aik)− U(A) = − (mk + 1) log (mk + 1)
+mk log (mk)− (mai − 1) log (mai − 1)

+mai
log (mai

) + log
(

rik

riai

)
Thus, in a collection of associationsC, Ai∗k∗ is one of the best
associations ifU(Ai∗k∗) − U(A) ≥ U(B) − U(A),∀B ∈ C.
Thus the maximizer of Eqn. 19 gives the best association inC.
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