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Abstract—We consider a dense, ad hoc wireless network

in a single cell framework, i.e., only one successful transmis-
sion is supported at a time. Data packets are sent between
source-destination pairs by multihop relaying. We assume
that all hops are of length � meters, where � is a design pa-
rameter. We consider a multiaccess contention scheme and
assume that every node always has data to send, either orig-
inated from it or a transit packet (saturation assumption).
Our objective is to maximize the transport capacity of the
network (measured in bit-meters per second) over power
controls (in a fading environment) and over the hop distance� (a routing parameter), subject to an average power con-
straint.

We argue that for a dense collection of nodes confined
to a small region, single cell operation is nearly optimal.
Hence, for a dense ad hoc wireless network operated as a
single cell, we study the optimal hop length and power con-
trol that maximizes the end-to-end throughput for a given
network power constraint. More specifically, for a fading
channel and for a fixed transmission time strategy (akin to
the IEEE 802.11 TXOP), we find that there exists an intrin-
sic aggregate bit rate ( �����
	 bits per second, depending on
the contention mechanism and the channel fading charac-
teristics) carried by the network, when operating at the op-
timal hop length and power control. The optimal transport
capacity is of the form �����
	
��
� 	����������
	 with ������	 scaling as
� 	��� , where 
� 	 is the available time average transmit power
and � is the path loss exponent. Under certain conditions on
the fading distribution, we then provide a simple character-
isation of the optimal operating point.

Index Terms— Optimal Power Control, Self-
Organisation, Fixed Transmission Time

I. INTRODUCTION

We consider a large number of stationary nodes that
form a multihop ad hoc wireless network. Source-�
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destination pairs are chosen randomly and we assume that
the traffic in the network is homogeneous. A distributed
multiaccess contention scheme is used in order to sched-
ule transmissions between nodes in the cell; for exam-
ple, the CSMA/CA based distributed coordination func-
tion (DCF) of the IEEE 802.11 standard for wireless lo-
cal area networks (WLANs). We assume that all nodes
can decode all the contention control transmissions (i.e.,
there are no hidden nodes), and only one successful trans-
mission takes place at any time in the network. In this
sense we say that we are dealing with a single cell sce-
nario. Thus our work in this paper can be viewed as an
extension of the performance analysis presented in [2] and
extended in [1]. We further assume that, during the ex-
change of contention control packets, pairs of communi-
cating nodes are able to estimate the channel fading be-
tween themselves and are thus able to perform power con-
trol per transmission.

There is a natural tradeoff between using high power
and long hop lengths (single hop direct transmission
between the source-destination pair), versus using low
power and shorter hop lengths (multihop communication
using intermediate nodes), with the latter necessitating
more packets to be transported in the network. The ob-
jective of the present paper is to study optimal routing, in
terms of the hop length, and optimal power control for a
fading channel, when a single cell network (such as that
studied in [1]) is used in a multihop mode. Our objective is
to maximise a certain measure of network transport capac-
ity (measured in bit-meters per second; see Section IV),
subject to a network power constraint. A network power
constraint determines, to a first order, the lifetime of the
network.

Situations and considerations such as those that we
study could arise in a dense ad hoc sensor network. Ad
hoc sensor networks are now being studied as possible
replacements for wired measurement networks in large
factories. For example, a distillation column in a chem-
ical plant could be equipped with pressure and temper-
ature sensors and valve actuators. The sensors monitor
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the system and communicate the pressure and tempera-
ture values to a central controller which in turn actuates
the valves to operate the column at the desired operating
point. Direct communication between the sensors and ac-
tuators is also a possibility. Such installations could in-
volve hundreds of devices, organised into a single cell ad
hoc wireless network because of the physical proximity
of the nodes. There would be many flows within the net-
work and there would be multihopping. We wish to ad-
dress the question of optimal organisation of such an ad
hoc network so as to maximise its transport capacity sub-
ject to a power constraint. The power constraint relates to
the network life-time and would depend on the applica-
tion. In a factory situation, it is possible that power could
be supplied to the devices, hence large power would be
available. In certain emergencies, “transient” sensor net-
works could be deployed for situation management; we
use the term “transient” as these networks are supposed
to exist for only several minutes or hours, and the devices
could be disposable. Such networks need to have large
throughputs, but, being transient networks, the power con-
straint could again be loose. On the other hand sensor
networks deployed for monitoring some phenomenon in a
remote area would have to work with very small amounts
of power, while sacrificing transport capacity. Our for-
mulation aims at providing insights into optimal network
operation in a range of such scenarios.

A. Preview of Contributions

We motivate the definition of the transport capacity of
the network as the product of the aggregate throughput (in
bits per second) and the hop distance (in meters). For ran-
dom spatio-temporal fading, we seek the power control
and the hop distance that jointly optimise the transport
capacity, subject to a network average power constraint.
For a fixed data transmission time strategy (discussed in
Section III-B), we show that the optimal power alloca-
tion function has a water pouring form (Section V-A). At
the optimal operating point (power control and hop dis-
tance) the network throughput ( �! �"$# , in bits per second)
is shown to be a fixed quantity, depending only on the
contention mechanism and fading model, but independent
of the network power constraint (Section V-B). Further,
we show that the optimal transport capacity is of the form%  &"'#)(+*, #.-0/ �  �"$# , with

%  �"$# scaling as *, #213 , where *, # is the
available time average transmission power, and 4 is the
power law path loss exponent (Theorem V.2). Finally, we
provide a condition on the fading density that leads to a
simple characterisation of the optimal hop distance (Sec-
tion V-C).

II. MOTIVATION FOR SINGLE CELL OPERATION

In this context, the seminal paper by Gupta and Kumar
[4] would suggest that each node should communicate
with neighbours as close as possible while maintaining
network connectivity. This maximises network transport
capacity (in bit-metres per second), while minimising net-
work average power. It has been observed by Dousse and
Thiran [5], however, that if, unlike [4], the practical model
of bounded received power for finite transmitter power is
used, then the increasing interference with an increasing
density of simultaneous transmitters is not consistent with
a minimum SINR requirement at each receiver. The fol-
lowing argument illustrates that the network transport ca-
pacity actually goes to 5 , as spatial reuse is increased.

Consider a dense wireless planar network in a square of
area 6 . Let

,
be the transmit power per node and 7 be

the receiver noise power. Let 8 denote the spatial cover-
age radius of each transmitter, i.e., there are 9:�;�< trans-
mitters in a given unit area. Since

,
is the maximum

signal power received at any given receiver, the SINR
achievable per node in such a network is bounded, i.e.,=?> 7A@CB DEGFIHKJML
N , where

> ; denotes the interference at
a node due to spatial reuse. The minimum interference
by any simultaneous transmission is bounded below byDEGO P
Q+N 3 . Hence,

=?> 7R@SB DFIHUTV L <XWY < T[Z 3 < . Observe that re-

ducing the transmit power
,

only decreases the SINR at a
node. The capacity (bits/sec) achieved in such a network
is now bounded above by\ ( 8 -^]`_ 6a 8 P�bdcfe gh0i^j ,7 j Q:�; < DEkP
QKN 3 <

lm
Clearly,

\ ( 8 - is a monotone decreasing function of 8 for8on 5 and
\ ( 8 - B \ ( 5 -qp r . For a given spa-

tial coverage, 8 , of the transmitter, we expect that the
transmitter-receiver separation is bounded above by 8 .
Then, the transport capacity achieved in the network, is
bounded above by

\ ( 8 - 8 . We see that, btsvu ;�wyx 8 \ ( 8 -z_5 . This implies that there exists an optimal 8|{ 5
which maximises the transport capacity in the network
i.e., the optimum spatial reuse is finite. Further, the max-
imum transport capacity is bounded above, i.e.,

\ ( 8 - 8�B\ ( 5 -
} ~ 6�B (�~ 6 - 3 < } ~ 6 , independent of the node den-
sity or power

,
. Suppose that the nodes do not have a

maximum power constraint but only an average power
constraint

,
. Then a simple TDMA scheme with di-

rect transmissions between the source and the destination
with transmit power � , (and hence, an average power

,
),

achieves bdcfe ( � - order transport capacity. As seen above,
however, with spatial reuse, the system becomes interfer-
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ence limited, and hence, becomes inefficient both for large� and for large
,

. Thus, we conclude that single cell op-
eration (as defined earlier) is efficient for such networks.
In the context of sensor networks, bdcfe ( � - scaling has been
achieved with maximum node power constraints as well,
using cooperative transmission techniques ([6]).

With the above motivation, in this work, we study the
transport capacity of power constrained dense ad hoc net-
works operated as a single cell. More recently, El Gamal
and Mammen [7] have shown that, if the transceiver en-
ergy at each hop is factored in, then the operating regime
studied in [4] is neither energy efficient nor delay optimal.
Fewer hops between the transmitter and receiver (and
hence, less spatial reuse) reduce the energy consumption
and lead to a better throughput-delay tradeoff. While op-
timal operation of the network might suggest using some
spatial reuse (finite, as discussed above), coordinating si-
multaneous transmissions (in a distributed fashion), in a
constrained area, is extremely difficult and the associated
time, energy and synchronisation overheads have to be ac-
counted for. In view of the above discussions, in this pa-
per, we assume that the multiple access control (MAC) is
such that only one transmitter-receiver pair communicate
at any time in the network.

A. Outline of the Paper

In Section III we describe the system model and in Sec-
tion IV we motivate the objective. We study the transport
capacity of a single cell multihop wireless network, op-
erating in the fixed transmission time mode, in Section V.
Section VI concludes the paper and discusses future work.

III. THE NETWORK MODEL

There is a dense network of immobile nodes that use
multiaccess multihop radio communication to transport
packets between various source-destination pairs.� All nodes use the same contention mechanism with

the same parameters (e.g., all nodes use IEEE 802.11
DCF with the same back-off parameters).� We assume that nodes send control packets (such as
RTS/CTS in IEEE 802.11) with a constant power
(i.e., power control is not used for the control pack-
ets) during contention, and these control packets are
decodable by every node in the network. As in
IEEE 802.11, this can be done by using a low rate,
robust modulation scheme and by restricting the di-
ameter of the network. This is the “single cell” as-
sumption, also used in [1], and implies that there can
be only one successful ongoing transmission at any
time.

� During the control packet exchange, each transmit-
ter learns about the channel “gain” to its intended
receiver, and decides upon the power level that is
used to transmit its data packet. For example, in
IEEE 802.11, the channel gain to the intended re-
ceiver could be estimated during the RTS/CTS con-
trol packet exchange. Such channel information can
then be used by the transmitter to do power control.
In our paper, we assume that such channel estimation
and power control is possible on a transmission-by-
transmission basis.� In this work, we model only an average power con-
straint and not a peak power constraint.� We assume that the traffic is homogeneous in the net-
work and all the nodes have data to send at all times;
these could be locally generated packets or transit
packets (saturation assumption).

A. Channel Model: Path Loss, Fading and Transmission
Rate

The channel gain between a transmitter-receiver pair
for a hop is a function of the hop length and the multipath
fading “gain” ( � ). Based on our dense network and traffic
homogeneity assumption, we further make the following
assumption.� The nodes self-organise so that all hops are of length%

, i.e., a one hop transmission always traverses a dis-
tance of

%
meters. This hop distance,

%
, will be one

of our optimisation variables.

The path loss for a hop distance
%

is given by 9� 3 , where 4
is the path loss exponent, chosen depending on the prop-
agation characteristics of the environment (see, for e.g.,
[15]). This variation of path loss with

%
holds for

% { % x ,
the far field reference distance; we will assume that this
inequality holds (

% { % x ), and will justify this assumption
in the course of the analysis below (see Theorem V.2).

We assume that for each transmitter-receiver pair, the
channel gain due to multipath fading may change from
transmission to transmission, but remains constant over
any packet transmission duration. Since successive trans-
missions can take place between randomly selected pairs
of nodes (as per the outcome of the distributed contention
mechanism) we are actually modeling a spatio-temporal
fading process. We assume that this fading process is
stationary in space and time with some given marginal
distribution � . Let the cumulative distribution of � be6 ( � - (with a p.d.f. � ( � - ), which by our assumption of
spatio-temporal stationarity of fading is the same for all
transmitter-receiver pairs and for all transmissions. We
assume a flat and slow fading channel with additive white
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Gaussian noise of power � P . And, �'� , the channel coher-
ence time applicable to all the links in the network, upper
bounds the time taken to complete any data transmission
in the network. We assume that � and � � are independent
of the hop distance

%
.

When a node transmits to another node at a distance
%

(in the transmitting antenna’s far field), using transmitter
power

,
, with channel power gain due to fading, � , then

we assume that the transmission rate given by Shannon’s
formula is achieved over the transmission burst; i.e., the
transmission rate is given by\ _�� bdcfe�� i^j � ,!�� P %2�K�
where � is the signal bandwidth and

�
is a constant ac-

counting for any fixed power gains between the transmit-
ter and the receiver. Note that this requires that the trans-
mitter has available several coding schemes of different
rates, one of which is chosen for each channel state and
power level.

B. Fixed Transmission Time Strategy

We focus on a fixed transmission time scheme, where
all data transmissions are of equal duration, independent
of the bit rate achieved over the wireless link. This im-
plies that the amount of data that a transmitter sends
during a transmission opportunity is proportional to the
achieved physical link rate. Let � ( p ��� , the channel
coherence time), be the data transmission time. Upon
a successful control packet exchange, the channel (be-
tween the transmitter, that “won” the contention, and its
intended receiver) is reserved for a duration of � sec-
onds independent of the channel state � . This is akin to
the “TxOP” (transmission opportunity) mechanism in the
IEEE 802.11 standard. Thus, when the power allocated
during the channel state � is

, ( � - , and
, ( � - {�5 , then

data transmission occupies the channel for the duration �
seconds, sending

\ ( � - � bits across the channel, where\ ( � -�_�� bdcfe�� i�j D Ek��Nt�'�� < � 3�� . If
, ( � -�_ 5 , we assume

that the channel is left idle for the next � seconds.
The optimality of a fixed transmission time scheme, for

throughput, as compared to a fixed packet length scheme,
can be formally established (see Appendix D), but, due to
lack of space, we only provide an intuition here. When
using fixed packet lengths, a transmitter may be forced
to send the entire packet even if the channel is poor, thus
taking longer time and more power. On the other hand,
in a fixed transmission time scheme, we send more data
when the channel is good and limit our inefficiency when
the channel is poor.

IV. MULTIHOP TRANSPORT CAPACITY

Let
%

denote the hop length and � , ( � -)� a power allo-
cation policy, with

, ( � - denoting the transmit power used
when the channel state is � . We take a simple model for
the random access channel contention process. The chan-
nel goes through successive contention periods. Each pe-
riod can be either an idle slot, or a collision period, or
a successful transmission with probabilities � �¢¡�� � and �K£
respectively. Under the node saturation assumption, the
aggregate bit rate carried by the system, ��¤ ( � , ( � -)� ¡ % - ,
for the hop distance

%
and power allocation � , ( � -)� , is

given by (see [2], or [1])�¥¤ ( � , ( � -)� ¡ % -¦]`_ � £�(M§©¨x«ª ( � -­¬ 6 ( � -®-� � � � j �¯�¢� � j � £�( �  j � - (1)

where ª ( � -�_ \ ( � - � , and, � � ¡°� � and �  are the aver-
age time overheads associated with an idle slot, collision
and data transmission. For e.g., in IEEE 802.11 with the
RTS/CTS mechanism being used, a collision takes a fixed
time independent of the data transmission rate. We note
that � � ¡�� £ ¡��¯�±¡°� � ¡°�  ¡ and � � depend only on the parame-
ters of the distributed contention mechanism (MAC pro-
tocol), and not on any of the decision variables that we
consider.

With �z¤ ( � , ( � -)� ¡ % - defined as in (1), we consider� ¤�( � , ( � -)� ¡ % -²/ % as our measure of transport capac-
ity of the network. This measure can be motivated in
several ways. � ¤�( � , ( � -)� ¡ % - is the rate at which bits
are transmitted by the network nodes. When transmit-
ted successfully, each bit traverses a distance

%
. Hence,� ¤�( � , ( � -)� ¡ % -³/ % is the rate of spatial progress of

the flow of bits in the network (in bit-metres per sec-
ond). Viewed alternatively, it is the weighted average
of the end-to-end flow throughput with respect to the
distance traversed. Suppose that a flow ´ covers a dis-
tance µ � with ¶®·� hops (assumed to be an integer for
this argument). Let ¸¯���¥¤ ( � , ( � -)� ¡ % - be the fraction of
throughput of the network that belongs to flow ´ . Then,¹ ·tºK» Ev¼ D Ek��N&½)¾ � N¿ ·À is the end-to-end throughput for flow ´ and¹ ·tºK» Ev¼ D Ek��N&½)¾ � N¿ ·À / µ ��_ ¸ � � ¤^( � , ( � -)� ¡ % -Á/ % is the end-

to-end flow throughput for flow ´ in bit-metres per second.
Summing over all the flows, we have � ¤^( � , ( � -)� ¡ % -­/ % ,
the aggregate end-to-flow throughput in bit-metres per
second.

With the above motivation, our aim in this paper is to
maximise the quantity � ¤^( � , ( � -)� ¡ % -Â/ % over the hop
distance

%
and over the power control � , ( � -)� , subject to

a network average power constraint, *, . We use a network
power constraint that accounts for the energy used in data
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transmission as well as the energy overheads associated
with communication.

V. OPTIMISING THE TRANSPORT CAPACITY

For a given � , ( � -)� and
%
, and the correspond-

ing throughput � ¤�( � , ( � -)� ¡ % - , the transport capacity
in bit-meters per second, which we will denote byÃ ( � , ( � -)� ¡ % - , is given byÃ ( � , ( � -)� ¡ % -¦]`_ � ¤^( � , ( � -)� ¡ % -¥/ %

Maximizing
Ã (¢Ä ¡ Ä`- involves optimizing over

%
, as well

as � , ( � -)� . However, we observe that, it would not be
possible to vary

%
with fading, as routes cannot vary at

the fading time scale. Hence, we propose to optimize first
over � , ( � -)� for a given

%
, and then optimize over

%
, i.e.,

we seek to solve the following problem,u²Å�Æ� u²Å�Æ¼
¼ D Ek�ÇNÈ½)É Ê?Ed¼ D EG��NÈ½°N�Ë�ÌD ½ Ã ( � , ( � -)� ¡ % - (2)

where the network average power, Í ( � , ( � -)��- , is given
by, Í ( � , ( � -)��-¦]`_� �&Î¦� j �+� Î � j � £�(�Î¦ j � § ¨x , ( � -®¬ 6 ( � -?-� � � � j �¯�.�K� j � £�( �  j � - (3)Î¦� ¡ Î � and Î¥ correspond to the energy overheads asso-
ciated with an idle period, collision and successful trans-
mission. Thus, Î¥� denotes the total energy expended in
the network over an idle slot, Î � denotes the total average
energy expended by the colliding nodes, as well as the
idle energy of the idle nodes, and ÎÁ denotes the average
energy expended in the successful contention negotiation
between the successful transmitter-receiver pair, the re-
ceive energy at the receiver (in the radio and in the packet
processor), and the idle energy expended by all the other
nodes over the time �  j � .

For a given
%

and power allocation � , ( � -)� , define the
time average transmission power, *, #)( � , ( � -)� ¡ % - , and the
time average overhead power, *,  (which does not depend
on � , ( � -)� or

%
), as*, #)( � , ( � -)� ¡ % -Ï]`_ �+£ (M§ ¨x , ( � -­¬ 6 ( � -?- ����È�+� j � � � � j �+£ ( �K j � -*,  Ð]`_ � �&Î¦� j �¯� Î � j � £
Î¦ � � � � j �¯�¢� � j � £�( �  j � -

Then the network power constraint can be rewritten as*, #)( � , ( � -)� ¡ % - B *,�Ñ *,  
where the right hand side does not depend on � , ( � -)� or%

. Observe that *, #)(¢]`_ *,ÒÑ *,  $- is the time average trans-
mission power constraint.

A. Optimization over � , ( � -)� for a fixed
%

Consider the optimization problemu²Å�Æ¼
¼ D Ek��N&½)É Ê?Ed¼ D Ek�ÇNÈ½°N�Ë ÌD ½ Ã ( � , ( � -)� ¡ % - (4)

The denominators of � ¤^(¢Ä ¡ Ä`- in (1) and of Í in (3) are in-
dependent of

%
and the power control � , ( � -)� . Thus, with%

fixed, the optimization problem simplifies to maximiz-
ing § ¨xÓª ( � -®¬ 6 ( � - or,Ô ¨x bvcfe � iIj , ( � - � �� P %2� � ¬ 6 ( � -
subject to the average power contraint,Ô ¨x , ( � -Õ¬ 6 ( � - B *, #�Ö
where *, # Ö is given by,*, # ÖK]`_ ( � � � � j �¯�¢� � j � £�( �  j � -
-� £ � *, #
Notice that *, #�Ö is also independent of � , ( � -)� or

%
and is

the average transmit power constraint averaged only over
the transmission periods.

This is a well-known problem whose optimal solution
has the water-pouring form (see [3]). The optimal power
allocation function � , ( � -)� is given by, ( � -0_ � i× Ñ % � � P� � � H
where

×
is obtained from the power constraint equationÔ ¨Ø�Ù < À 3Ú � ( � - , ( � - % � _C*, #�Ö

The optimal power allocation is a nonrandomized policy,
where a node transmits with power

, ( � - every time the
channel is in state � (whenever

, ( � - {Û5 ), or leaves the
channel idle for � such that

, ( � -0_ 5 .
B. Optimization over

%
By defining Ü ( � -�]`_ D EG��N� 3 , the problem of maximising

the throughput over power controls, for a fixed
%
, becomesu²Å�Æ Ô ¨x bdcfe � i�j � �� P Ü ( � - � � ( � - % �

subject to Ô ¨x Ü ( � - � ( � - % �ÝB *, #�Ö% �
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Denoting by Þ � ÌDfßtà� 3 � the optimal value of this problem,

the problem of optimisation over the hop-length now be-
comes u²Å�Æ� % / Þâá *, #�Ö%ã�Iä (5)

Theorem V.1: In the problem defined by (5), the objec-

tive
% / Þ � ÌDfß à� 3 � , when viewed as a function of

%
, is con-

tinuously differentiable. Further, when the channel fad-
ing random variable, � , has a finite mean ( Î�( � -ypÒr ),
then

1) bvstu � wyx % / Þ � ÌDfßtà� 3 � _ 5 and,

2) if in addition, 4ån ~ , 9� < �Âæ 9��ç is continuously dif-
ferentiable and è ( � {Ó� -�_�éÛæ�9� < ç for large � ,

then, bvstu � w ¨ % / Þ � ÌDfß à� 3 � _ 5 ,
Proof: The proofs of continuous differentiability of% / Þ � ÌDfßtà� 3 � , 1) and 2) are provided in Appendix B

Remarks V.1:
1) Under the conditions proposed in Theorem V.1, it

follows that
% / Þ � ÌDfßtà� 3 � is bounded over

%�êìë 5í¡ râ-
and achieves its maximum in

%�ê ( 5í¡ rî- .
2) When the objective function (5) is unbounded, the

optimal solution occurs at
% _�r .

3) We note that, in practice, 4ïn ~ .
Theorem V.2: The following hold for the problem in

(5),
1) Without the constraint

% { % x , the optimum hop

distance
%  �"$# scales as ( *, # Ö - 13 .

2) There is a value *, #�Öð©ñóò such that, for *, #�Ö { *, #�Öð©ñóò ,%  �"$#0{ % x , and hence the optimal solution obeys the
scaling shown in 1).

3) For *, #�Ö { *, #�Öð©ñóò , the optimum power control� , ( � -)� is of the water pouring form and scales as*, #�Ö .
4) For *, # Ö { *, # Öð©ñóò , the optimal transport capacity

scales as ( *, # Öd- 13 .
Proof:

1) Let
%  �"$# be optimal for *, # Ö {ô5 . We claim that, forõ {ö5 , õ 13 %  �"$# is optimal for the power constraintõ *, # Ö . For suppose this was not so, it would mean

that there exists
% {â5 such thatá õ 13 %  �"$# Þ á õ *, # Ö( õ 13 %  &"'#M- � ä!ä p % Þ á õ *, # Ö% � ä

or, equivalently,á %  �"$# Þ�á *, #�Ö% �  �"$# ä!ä p õÕ÷ 13 % Þ�á *, #�Ö( õ ÷ 13 % - � ä

which contradicts the hypothesis that
%  �"$# is optimal

for *, #�Ö .
2) Using the path loss model D� 3 , we see that for

% p% x , the received power is scaled more than
,

, due to
the factor D� 3 , and an

% � x factor in
�

, i.e., the model
over-estimates the received power and the transport
capacity. Hence, the achieved transport capacity for% p % x is definitely less than

% Þ � ÌD ß à� 3 � . The result

now follows from the scaling result in 1).
3) It follows from 1) that, if *, # Ö scales by a factor õ ,

then the optimum
%

scales by õ 13 , so that, at the opti-
mum,

ÌDfßtà� 3 is unchanged. Hence the optimal ��Ü ( � -)�
is unchanged, which means that � , ( � -)� must scale
by õ . The water pouring form is evident.

4) Again, by 1) and 2), if *, #�Ö scales by a factor õ , then

the optimum
%

scales by õ 13 , so that, at the optimum,ÌD ß à� 3 is unchanged. Thus Þ � ÌD ß à� 3 � is unchanged, and

the optimal transport capacity scales as the optimum%
, i.e., by the factor õ 13 .

Remarks V.2:
The above theorem yields the following observations for
the fixed transmission time model.

1) As an illustration, with 4 _�ø , in order to double
the optimal transport capacity, we need to use ~[ù
times the *, #�Ö . This would result in a considerable
reduction in network lifetime, assuming the same
battery energy.

2) We observe that as the power constraint *, #�Ö scales,

the optimal bit rate carried in the network, Þ � ÌDfß à� 3 � ,

stays constant, but the optimal transport capacity in-
creases since the optimal hop length increases. Fur-
ther, because of the way the optimal power control
and the optimal hop length scale together, the nodes
transmit at the same physical bit rate in each fading
state; see the proof of Theorem V.2 part 3).

C. Characterisation of the Optimal
%

By the results in Theorem V.1 we can conclude that the
optimal solution of the maximisation in (5) lies in the set

of points for which the derivative of
% / Þ � ÌDfßÈà� 3 � is zero.

For fixed *, # Ö , define a ( % -ì]`_ ÌDfßÈà� 3 . Differentiating
% /Þ ( a ( % -
- , we obtain, (see Appendix A for the details)úú % ( % Þ ( a ( % -
-û_ Þ ( a ( % -
- Ñ 4 a ( % - × ( a ( % -
-

where
× ( a - is the Lagrange multiplier for the optimisa-

tion problem that yields Þ ( a ( % -
- . Since
%

appears only
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Fig. 1. Plot of ü?ý�þzÿ 1À�� � (linear scale) vs. ü (log scale) for a channel
with two fading states � 1�� � < . The fading gains are � 1�� �
	�	 and� < � 	
� � , with probabilities ��� � � 	�� 	�� � ��� ����� . The function has
3 non-trivial stationary points.

via a ( % - , we can view the right hand side as a function ofa . We are interested in the zeros of the above expression.
Clearly, a _ 5 is a solution. This solution corresponds to
the case

% _�r ; However, we are interested only in solu-
tions of

%�ê ( 5í¡ râ- , and hence, we seek positive solutions
of a of Þ ( a - Ñ 4 a × ( a -�_ 5 .

Remarks V.3: The above analysis has been done for a
continuously distributed fading random variable � . The
analysis can be done for a discrete valued fading dis-
tribution as well, and we provide this analysis in Ap-
pendix C. The following example then illustrates that, in
general, the function Þ ( a - Ñ 4 a × ( a -z_ 5 can have mul-
tiple solutions. Consider a fading distribution that takes
two values: � 9 _ i 5f5 and � P _ 5���� , with probabilities� � 1 _ 5�� 5 i _ i Ñ � � < . Figure 1 plots

% / ÞÝæ 9��� ç for
the system with 4 _ ø . Notice that there are 3 stationary
points other than the trivial solution

% _ r (which is not
shown in the figure). Also, the maximising solution is not
the first stationary point (the stationary point close to 5 ).
If, on the other hand, � � 1 _ 5�� 5f5 i _ i Ñ � � < , we again
have ø stationary points, but the optimal solution now is
the first stationary point.

More generally, and still pursuing the discrete case, let�
denote the set of fading states when the fading random

variable is discrete with a finite number of values; � � �
denotes the cardinality of

�
.

Theorem V.3: There are at most ~ � � � Ñ i
stationary

points of
% Þ ( a ( % -
- in 5 p % p r .

Proof: See Appendix C for the related analysis and
the proof of this theorem.

We conclude from the above discussion that it is dif-
ficult to characterise the optimal solution when there are
multiple stationary points. Hence we seek conditions for
a unique positive stationary point, which must then be the
maximising solution. In Appendix A, we have shown that

10
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π
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Fig. 2. Plot of ü­ý þ �"!W$#&%À �(' (linear scale) vs. ) ( � !W�#*%À � ) (log scale) for

a fading channel (with exponential distribution). We consider + power
levels ( ,- ß à �/. ,- ß à and 01,- ß à ) and 2 �43 . The function has a unique
optimum )6587 ß:9 )6587 ß<; 	
� 3�= for all the + cases.

the equation characterising the stationary points, Þ ( a - Ñ4 a × ( a -0_ 5 , can be rewritten asÔ 9x ( bdcfe (*> - Ñ 4 (*> Ñ i -
- × P> P@? � ×> � % >²_ 5 (6)

for ? ( õ -!]`_ � � � <BA� � � <� , the density of the random vari-

able
�DC� < . Notice that a does not appear in this expres-

sion. The solution directly yields the Lagarange multiplier
of the throughput maximisation problem for the optimal
value of hop length. The following theorem guarantees
the existence of atmost one stationary point of (6).

Theorem V.4: If for any
× 9 { × P {C5 , EGF Ø <HJIE F Ø 1H I is a

strictly monotonic decreasing function of > , then the ob-

jective function
% / Þ � ÌDfß à� 3 � has at most one stationary

point
%  �"$# ¡�5 p %  &"'#0p r .

Proof: The proof follows from Lemmas A.1, and
A.2 in Appendix A.

Corollary V.1: If � has an exponential distribution and4 n ~ , then the objective in the optimisation problem of
(5) has a unique stationary point

%  �"$# ê ( 5í¡ râ- , which
achieves the maximum.

Proof: � ( � - is of the form KML ÷ON � and the mono-
tonicity hypothesis in Theorem V.4 holds for � ( � - . Also,

from Theorem V.1, we see that bvstu � wyx % / Þ � ÌDfß à� 3 � _ 5
and bvsvu � w ¨ % / Þ � ÌDfß à� 3 � _ 5 .

Remarks V.4: 1) Hence, for 4ïn ~ , for the Rayleigh
fading model there exists a unique stationary point
which corresponds to the optimal operating point.

2) For *, # Ö { *, # Öð©ñóò , and for the conditions in Theo-
rem V.1 and V.4, let a  �"$# denote the unique station-
ary point of (6). Then define Þ ( a  �"$#.-�_ �  �"$# . It
follows from Theorem V.2 that the optimal trans-
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port capacity takes the form � ÌD ß à: 587 ß � 13 �  �"$# , where�  &"'# depends on � ( � - and the MAC parameters but
not on *, (or *, # ).

3) Figure 2 numerically illustrates our results for
Rayleigh fading and 4 _ ~ . Scaling *, # Ö by P
scales the transport capacity from ~ � ø to PG��Q , i.e.,

by P 13 _ } P and similarly for scaling *, #�Ö by R .
The uniqueness results guarantees that a distributed im-

plementation of the optimization problem, if it converges,
shall converge to the unique stationary point, which is the
optimal solution.

VI. CONCLUSION

In this paper we have studied a problem of jointly
optimal power control and self-organisation in a single
cell, dense, ad hoc multihop wireless network. The self-
organisation is in terms of the hop distance used when
relaying packets between source-destination pairs.

We formulated the problem as one of maximising the
transport capacity of the network subject to an average
power constraint. We showed that, for a fixed transmis-
sion time scheme, there corresponds an intrinsic aggregate
packet carrying capacity at which the network operates at
the optimal operating point, independent of the average
power constraint. We also obtained the scaling law re-
lating the optimal hop distance to the power constraint,
and hence relating the optimal transport capacity to the
power constraint (see Theorem V.2). Because of the way
the power control and the optimal hop length scale, the
optimal physical bit rate in each fading state is invariant
with the power constraint. In Theorem V.4 we provide
a characterisation of the optimal hop distance in cases in
which the fading density satisfies a certain monotonicity
condition.

One motivation for our work is the optimal operation
of sensor networks. If a sensor network is supplied with
external power, or if the network is not required to have a
long life-time, then the value of the power constraint, *, ,
can be large, and a long hop distance will be used, yielding
a large transport capacity. On the other hand, if the sensor
network runs on batteries and needs to have a long life-
time then *, would be small, yielding a small hop length.
In both cases the optimal aggregate bit rate carried by the
network would be the same.

Future work on this topic will include developing a dis-
tributed algorithm for nodes to adapt themselves towards
the optimal operating point, and studying the effect of spa-
tial reuse, mobility of nodes on multihop communications.

We observed that for dense wireless networks, single
cell operations with simple TDMA schemes are through-

put optimal (and also delay optimal, é�( i - ). This moti-
vated us to study single cell operations for power con-
strained dense ad hoc networks. We expect that single cell
operations may be efficient and optimal as well for many
ad hoc and sensor network scenarios. A thorough study
on such scenarios involving node power

,
, area 6 and

the number of nodes � would help design better wireless
systems with simpler operations.
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APPENDIX

A. Stationary Points of
% / Þ ( a ( % -
-

Recall that we defined a ( % - ]`_ ÌDfß à� 3 . Further, Þ ( a ( % -
-
was defined byÞ ( a ( % -
-�]`_ u²Å�Æ Ô ¨x bdcfeï� i�j � �� P , ( � -%2� �R� ( � - % � (7)
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where the maximum is over all power controls � , ( � -)�
satisfying the constraintÔ ¨x , ( � -%2� � ( � - % �AB a ( % - (8)

For ease of notation, let us use the substitution õ ]`_ �f�� < .

Write S ( õ -²]`_ S ( �f�� < -Â_ D EG��N� 3 and ? ( õ -²]`_ � � � < A� � � <� .

Note that ? (¢Ä`- is the probability density of the random
variable T ]`_ �DC� < . Then, equations (7) and (8) can be
rewritten asÞ ( a -0_ u�Å�Æ Ô ¨x bvcfe ( i^j õ S ( õ -
- ? ( õ - % õ
and Ô ¨x S ( õ - ? ( õ - % õ B a
This optimisation problem is one of maximising a convex
functional of ��S ( õ -)� , subject to a linear constraint. The
optimal solution of the problem has water-pouring form,
and the optimal solution is given by,

S ( õ -�_ � i× ( a - Ñ
iõ � H

where
× ( a - is obtained fromÔ ¨U E : N �

i× ( a - Ñ
iõ � ? ( õ - % õ _ a

Further, the derivative of the optimum value Þ ( a - , w.r.t.a , i.e., VXW E : NV : _ × ( a - (see Aubin [16]).
Let us now reintroduce the dependence on

%
, and con-

sider the problem of optimising
% / Þ ( a ( % -
- over

%
. Dif-

ferentiating
% Þ ( a ( % -
- w.r.t.

%
, we get,úú % ( % Þ ( a ( % -
-C_ Þ ( a ( % -
- j % úú %®Þ ( a ( % -
-_ Þ ( a ( % -
- j % ú Þú a ( a ( % -
- / ú a ( % -ú %_ Þ ( a ( % -
- j % Þ Ö ( a ( % -
- / Ñ 4 *, # Ö%2� H 9_ Þ ( a ( % -
- Ñ 4 a ( % - Þ Ö ( a ( % -
-

where Þ Ö ( a -ï]`_ VXW E : NV : . Substituting Þ Ö ( a -�_ × ( a - , we
have, úú % ( % Þ ( a ( % -
-I_ Þ ( a ( % -
- Ñ 4 a ( % - × ( a ( % -
- (9)

The stationary points of
% / Þ ( a ( % -
- are now obtained

by equating the right hand side of (9) to zero. Note that

since
%

appears in this equation only as a ( % - , we need
only study the roots of the equationÞ ( a - Ñ 4 a × ( a -�_ 5 (10)

We now proceed to obtain a characterisation of the sta-
tionary points. Substituting the optimal solution in the ex-
pression of Þ ( a - and

× ( a - , and suppressing the argumenta in
× ( a - , we get,Þ ( a -0_ Ô ¨U bdcfe � õ × � ? ( õ - % õ (11)

with
×

being given bya _ Ô ¨U � i× Ñ iõ � ? ( õ - % õ (12)

Using the substitution Y _ 9A , Z _ 9U , and defining [ ( Y -I_9\)< ? æ 9\ ç , we get,Þ ( a -0_ Ô^]x bdcfe � ZY � [ ( Y - % Y (13)

with Z (actually, Z ( a - ) being given bya _ Ô_]x ( Z Ñ Y - [ ( Y - % Y (14)

We note that [ (¢Ä`- is the density of the random variable` ]`_X9a _ � <�DC .
For a function b (¢Ä`- of the random variable

`
, define the

operators c ] (¢Ä`- and d ] (¢Ä`- as

c ] ( b ( ` -
-X]`_ § ]x b ( Y - [ ( Y - % Y§ ]x [ ( Y - % Yd ] ( b ( ` -
-X]`_ Ô_]x b ( Y - [ ( Y - % Y
Lemma A.1: The roots of (10) are equivalent to obtain-

ing the roots of the equation4@d 1Ø ( × ` Ñ i -0_ d 1Ø ( bdcfe ( × ` -
- (15)

with a then being given bya _ Ô ¨U � i× Ñ iõ � ? ( õ - % õ
Proof: Using the definitions of c ] (¢Ä`- and d ] (¢Ä`- , (13)

and (14) simplify toÞ ( a -0_ bdcfe ( Z - è ( ` BeZ - Ñ d ] ( bdcfe ( ` -
- (16)a _ Z°è ( ` BeZ - Ñ d ] ( ` - (17)
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(17) provides the Z (actually Z ( a - ) to be substituted in (16).
Substituting for Þ ( a - (from (16)), and for Z (from (17)),
into the right hand side of (9), dividing across by è ( ` BZ - , and using the definition of c ] (¢Ä`- , we have,bdcfe � a j d ] ( ` -è ( ` B^Z - � Ñ c ] ( bdcfe ( ` -
- Ñ 4 aa j d ] ( ` - _ 5bdcfeï� aè ( ` BeZ - j c ] ( ` - � Ñ c ] ( bdcfe ( ` -
- Ñ 4 aa j d ] ( ` - _ 5bdcfegf � ad ] ( ` - j i � c ] ( ` -:h j bdcfe�� L ÷ji�k Emlon�p'Erq+NtN �Ñ 4 aa j d ] ( ` - _ 5
Rearranging terms, we get,bdcfe � a j d ] ( ` -d ] ( ` - � j bdcfe � c ] ( ` - L ÷ji k Eslon�p�Erq+NtN �Ñ 4 aa j d ] ( ` - _ 5
Denote t ] ]`_ bdcfe æ c ] ( ` - L ÷ji k Eslon�p�Erq+NtN ç . Then, we have,bdcfe � a j d ] ( ` -d ] ( ` - � j t ] Ñ 4 aa j d ] ( ` - _ 5
Using (17), we haved ] ( ` -a j d ] ( ` - _ d ] ( ` -Z°è ( ` BeZ - _ c ] ( ` -Z
which, with the previous equation, yieldsbdcfeï� Zc ] ( ` - � j t ] Ñ 4 � i Ñ c ] ( ` -Z � _ 5
Recall that Z is actually Z ( a - . We now find that a appears
in the equation only as Z ( a - . Hence we can view this as an
equation in the variable Z (M_ 9U - . Rearranging terms, we
get Ñ bdcfe � c ] ( ` -Z � j 4 c ] ( ` -Z _ Ñ ( t ] Ñ 4 -
Exponentiating both sides, and substituting back for t ] ,
yields c ] ( ` -Z L ÷ �Gu k Ywv Zk _ c ] ( ` - L ÷ji�k Eslon�p'Erq+NtN L ÷ �
On cancelling c ] ( ` - , and transposing terms, we next ob-
tain L ÷ � F u k Y�v Zk ÷ 9 I _ L ÷ji�k ( lon�p ( v k -
-
or, L ÷ � ( i�k ( vyx kk -
- _ L ÷jizk ( lon�p ( v k -
-

Taking bdcfe on both sides, we have,4{c ] � `âÑ ZZ � _ c ] ��bdcfe�� ` Z �¥�
In terms of d ] (¢Ä`- , this is equivalent to4@d ] � `âÑ ZZ � _ d ] � bdcfe � ` Z �¥�
which is the desired result after writing Z _ 9U .

We next address the question of a unique positive so-
lution of (15). The following lemma guarantees the exis-
tence of a unique positive solution, when ? (¢Ä`- , the density
of
�DC��< , satisfies a certain monotonicity condition.
Lemma A.2: (15) has at most one positive solution if

for any
× 9 { × P {S5 , E F Ø <H|IE F Ø 1H I is a strictly monotone de-

creasing function of > .
Proof: Expanding d 1Ø (¢Ä`- , (15) becomes,4 Ô 1Øx ( × Y Ñ i - [ ( Y - % Y Ñ Ô 1Øx bvcfe ( × Y - [ ( Y - % Y _ 5

Rewriting the equation in terms of ? (¢Ä`- , we have,Ô 1Øx ( 4 ( × Y Ñ i - Ñ bdcfe ( × Y -
- iY P ?³�
i
Y � % Y _ 5

In this last equation change the variable to >�]`_ × Y , yield-
ing Ô 9x ( bdcfe (*> - Ñ 4 (*> Ñ i -
- × P> P@?³� ×> � % >²_ 5 (18)

Define } (*> - ]`_ ( bdcfe (*> - Ñ 4 (*> Ñ i -
- 9~ < and t U (*> -U]`_? � U ~ � . Thus, we are interested in a positive
×

that solvesÔ 9x } (*> - t U (*> - % >�_ 5
Observe that bvstu ~ wyx } (*> - _ Ñ r and } ( i -¥_ 5 . Further,
there exists a unique > Ö such that } (*> - Bâ5 for all 5²B > B> Ö and } (*> - nÒ5 for all > Ö B > B i

. Since t U (*> - nÛ5 for
all > and

×
, we have } (*> - t U (*> - Bâ5 for all 5²B > B > Ö and} (*> - t U (*> - nâ5 for all > Ö B > B i .

Consider
× 9 ¡ × P such that

× 9 { × P {�5 . By hypoth-

esis, � Ø < E ~ N� Ø 1 E ~ N is a strictly monotone decreasing function of> . Hence,
� E ~ N � Ø < E ~ N� E ~ N � Ø 1 E ~ N is also a strictly monotone decreasing

function of > . We then have,§ ~ àx � } (*> - � t U < (*> - % >§ ~ àx � } (*> - � t U 1 (*> - % > _ § ~ àx � } (*> - � � Ø < E ~ N� Ø 1 E ~ N t U 1 (*> - % >§ ~ àx � } (*> - � t U 1 (*> - % >



11{ t U < (*> Ö -t U 1 (*> Ö - ¡
And, § 9~ à } (*> - t U < (*> - % >§ 9~ à } (*> - t U 1 (*> - % > _ § 9~ à } (*> - � Ø < E ~ N� Ø 1 E ~ N t U 1 (*> - % >§ 9~ à } (*> - t U 1 (*> - % >p t U < (*> Ö -t U 1 (*> Ö -
Hence, § ~ àx � } (*> - � t U < (*> - % >§ ~ àx � } (*> - � t U 1 (*> - % > { § 9~ à } (*> - t U < (*> - % >§ 9~ à } (*> - t U 1 (*> - % >
i.e., § ~ àx � } (*> - � t U < (*> - % >§ 9~ à } (*> - t U < (*> - % > { § ~ àx � } (*> - � t U 1 (*> - % >§ 9~ à } (*> - t U 1 (*> - % >
i.e., the ratio of the negative area of the integral to the pos-
itive area of the integral is a strictly monotonic function of×

. Hence, as
×

decreases, the integral can cross 5 at most
once, or, there exists at most one (non-trivial) solution for
(18).

B. Additional Proofs for the Continuous Fading Case

Lemma B.3:
% / Þ � ÌDfßÈà� 3 � is continuously differentiable

with respect to
%
.

Proof: Þ � ÌD ß à� 3 � and
× ( a ( % -
- are continuous function

of a ( % - , and a (¢]`_ ÌD ß à� 3 - itself is a continous function of
%
.

Hence, from (9), we see that
% / Þ � ÌD ß à� 3 � is a continously

differentiable function of
%
.

Remarks B.1: The following are some points to note
about the characterisation in Lemma A.1.

1) Note that both sides of (15) are negative quantities,
and d 1Ø ( × ` Ñ Z - n�d 1Ø ( bdcfe ( × ` -
- for all

× nâ5 .
2) d 1Ø ( × ` Ñ i - and d 1Ø ( bdcfe ( × ` -
- are concave increas-

ing functions of
×

. The following is a proof ford 1Ø ( bdcfe ( × ` -
- . Let
× _ � × 9 j ( i Ñ � - × P for5 p � p i

and
× 9 p × p × P (equivalently9U 1 { 9U { 9U < ). We then have,d 1Ø ( bdcfe ( × ` -
-�_ d 1Ø ( bdcfe (
( � × 9 j ( i Ñ � - × P - ` -
-_ Ô 1Øx bdcfe (
( � × 9 j ( i Ñì� - × P - Y - [ ( Y - % Y

From the concavity of the logarithm function, we
have,n Ô 1Øx ( � bdcfe ( × 9 Y - j ( i Ñ � - bdcfe ( × P Y -
- [ ( Y - % Y_ � Ô 1Øx bdcfe ( × 9 Y - [ ( Y - % Y j ( i Ñ¦� - Ô 1Øx bvcfe ( × P Y - [ ( Y - % Y_ � á Ô 1Ø 1x bvcfe ( × 9 Y - [ ( Y - % Y Ñ Ô 1Ø 11Ø bdcfe ( × 9 Y - [ ( Y - % Y2äj ( i Ñ¦� -¦á Ô 1Ø <x bdcfe ( × P Y - [ ( Y - % Y j Ô 1Ø1Ø < bdcfe ( × P Y - [ ( Y - % Y2än � Ô 1Ø 1x bdcfe ( × 9 Y - [ ( Y - % Y j ( i Ñ¥� - Ô 1Ø <x bvcfe ( × P Y - [ ( Y - % Y
The last inequality follows from the fact that in the

integral § 1Ø 11Ø (¢Ä`- % Y , the function bvcfe ( × 9 Y - is negative

and in the integral § 1Ø 1Ø < (¢Ä`- % Y , the function bdcfe ( × P Y -
is positive. Hence, we have,d 1Ø ( bdcfe (
( � × 9 j ( i Ñì� - × P - ` -
- n� d 1Ø 1 ( bdcfe ( × 9 ` -
-

j ( i Ñ � - d 1Ø < ( bdcfe ( × P ` -
-
which completes the proof.

3) Differentiating � 1Ø (¢Ä`- , we have,� VV U d 1Ø ( bdcfe ( × ` -
-0_�9U , ( ` B 9U -� VV U d 1Ø ( × `UÑ i - B VV U d 1Ø ( bdcfe ( × ` -
-� btsvu U wyx VV U d 1Ø ( × ` Ñ i -0_ôÎ�( ` -� btsvu U w ¨ VV U d 1Ø ( × ` Ñ i -0_ 5� btsvu U wyx VV U d 1Ø ( bdcfe ( × ` -
-0_�r� btsvu U w ¨ VV U d 1Ø ( bdcfe ( × ` -
-0_ 5
Lemma B.4: If � (or equivalently T ]`_ C^�� < ) has a fi-

nite mean, then bvstu � wyx % / Þ � ÌDfßtà� 3 � _ 5 .
Proof: From (14), we have,Ô_]x ( Z Ñ Y - [ ( Y - % Y _ a

where Z is in fact Z ( a - . Talking Z outside the integral and
rewriting the integral as an expectation, we get,

Z Ô ]x � i Ñ Y Z � [ ( Y - % Y _ a
Z Î q � i Ñ ` Z � H _ a
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or, Î q � i Ñ ` Z � H _ a Z
By Monotonce Convergence Theorem, we have,btsvu] w ¨ Î q � i Ñ ` Z � H�� i
Since Zj� r as

% � 5 (or a � r ), we have,bvstu:fw ¨ Z ( a -a _ i (19)

Consider now, btsvu � wyx % / Þ ( a ( % -
- , or equivalently,bvstu :fw ¨ a ÷ 13 Þ ( a - . Observe that,5 B a ÷ 13 Þ ( a -0_ a ÷ 13 Î q � Ñ bdcfe�� `Z ( a - �¥� H
where the last equality is obtained from (13). Expanding
the term inside the expectation, we have,_ a ÷ 13 Î q � bdcfe � i`²� j bdcfe � Z ( a -a � j bdcfe ( a - � H
Using the inequality bdcfe æ 9\ ç B 9\ for Y²nâ5 , we have,B a ÷ 13 Î q � i` j bdcfe � Z ( a -a � j bdcfe ( a - � H
Since Î q æ 9qIç p r (by hypothesis on Î � ), 4Ð{5 and using (19), we have the right hand side of the
above expression � 5 as a � r , which impliesbvstu :fw ¨ a ÷ 13 Þ ( a -0_ 5 , orbvsvu� wyx % Þ ( a ( % -
-^_ 5

Lemma B.5: Let 4 n ~ , 9A < ? æ 9A ç be continu-
ously differentiable and btsvu A wyx 9A < ? æ 9A ç _ 5 . ThenVV � � % / Þ � ÌDfß à� 3 � � Bâ5 as

% � r .

Proof: From (9) and the proof of Lemma A.1, we
see that,úú % ( % Þ ( a ( % -
-û_ Þ ( a ( % -
- Ñ 4 a ( % - × ( a ( % -
-� Ô 1Øx ( 4 ( × Y Ñ i - Ñ bvcfe ( × Y -
- iY P�?Ý�

i
Y � % Y� Ô 9x ( 4 (*> Ñ i - Ñ bdcfe (*> -
-

i
> PO?³� ×> � % >

where the last equation is obtained by substituting >ô_× Y . We know that that as
%

increases,
×

increases. Define

t (*> - ]`_ 4 (*> Ñ i - Ñ bdcfe (*> - . For 4å{ i
, there exists a > Ö

(depending on 4 ) such that t (*> - nÛ5 for 5 B > B > Ö andt (*> - B 5 for > Ö B > B i , also t ( i -�_ 5 . Continuing with
the right hand side expression above,_ Ô ~ àx ( 4 (*> Ñ i - Ñ bvcfe (*> -
- i> P ?³� × > � % >j Ô 9~ à ( 4 (*> Ñ

i - Ñ bdcfe (*> -
- i> P ?³� × > � % >
Further, Ô 9x ( 4 (*> Ñ i - Ñ bdcfe (*> -
- % >�_ i Ñ 4 ~
Hence, for 4 n ~ , the integral § 9x t (*> - % > is non-positive.

Let [ ( õ -²]`_ 9A < ? æ 9A ç . Then [ ( õ - is continuously dif-
ferentiable function and bvstu A wyx [ ( õ -¥_ 5 by hypothesis.
Define Y x asY x ]`_����G� �
Y ] [ ( õ -�_ 5í¡�5�B õ BeY �
If Y x {â5 , then, we see that for

×
sufficiently large,Ô ~ àx ( 4 (*> Ñ i - Ñ bdcfe (*> -
- i> PO? � × > � % >�_ 5

This is because for
×

sufficiently large, 9~±< ? � U ~ � _ 5 for5 B > B > Ö . Hence, bvsvu � w ¨ VV � � % / Þ � ÌDfß à� 3 �+� Bâ5 .
If Y x _ 5 , we then have [ Ö ( Y - n 5 in a small neigh-

bourhood of 5 (since [ is continuously differentiable by
hypothesis). Hence, the function [ ( Y - is a monotonic in-
creasing function in an � neighbourhood of 5 , i.e., [ ( 5 -�p[ ( Y - B�[ ( Y Ö - B�[ ( � - for all 5 p Y p Y Ö p � . Hence for
all sufficiently large

×
, 9~ < ? ( U ~�- is a monotone increasing

function of y in
ë 5í¡ i�� . Hence,Ô ~ àx ( 4 (*> Ñ i - Ñ bdcfe (*> -
- i> P�? � × > � % > jÔ 9~ à ( 4 (*> Ñ

i - Ñ bdcfe (*> -
- i> PO? � × > � % >B � i> Ö � P ? � ×> Ö � Ô ~ àx ( 4 (*> Ñ i - Ñ bdcfe (*> -
- % > jj � i> Ö � P ? � ×> Ö � Ô 9~ à ( 4 (*> Ñ
i - Ñ bdcfe (*> -
- % >

_ � i> Ö � P ? � ×> Ö � ( i Ñ 4 ~ - Bâ5
for 4 n ~ . Thus, VV � � % / Þ � ÌD ß à� 3 �K� Bâ5 as

% � r .
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Lemma B.6: Let 4 n ~ and 9A < ? æ 9A ç be continuously
differentiable. If for large õ , è ( T { õ - _|é²( 9A < - (or

equivalently for � _ � < a� ), then bvstu � w ¨ % / Þ � ÌD ß à� 3 � _5 .
Proof: Let è ( T { õ -0_�é�( 9A < - (for large õ ). i.e.,Ô ¨A ? ( õ - % õ _�é²( iõ P -

Now substitute for Y _ 9A . We then have,Ô 1�x
i
Y PO? �

i
Y � % Y _�é²(

iõ P -
Define [ ( Y - ]`_ 9\)< ? æ 9\ ç . We claim that [ ( 5 -R_ 5 . If[ ( 5 -g�_ 5 , we then have [ ( Y - n�� for all 5ìB�Y p�� for
some � . Then, Ô 1�x [ ( Y - % Y�n�� iõ
for all 9A B � , which is a contradiction. Hencebvstu \ wyx [ ( Y -�_ 5 or bvsvu \ w�x 9\)< ? æ 9\ ç _ 5 .

We know from (9) thatúú % ( % Þ ( a ( % -
-
-I_ Þ ( a ( % -
- Ñ 4 a ( % - × ( a ( % -
-
Now from Lemma B.5, we see that, for 4 n ~ ,Þ ( a ( % -
- Ñ 4 a ( % - × ( a ( % -
- B 5
for large

%
, or as

% � r ,Þ ( a ( % -
- B�4 a ( % - × ( a ( % -
-
Multiplying by

%
on both the sides, we have,% Þ ( a ( % -
- Bâ4 a ( % - × ( a ( % -
- % _ 4 *, #MÖ × ( a ( % -
-%2� ÷ 9 (20)

Since VV � � % Þ � ÌD ß à� 3 �K� B 5 as
% � r , the func-

tion
% Þ ( a ( % -
- is monotonic decreasing for

% � r .
Hence, if bvstu � w ¨ % Þ ( a ( % -
- �_ 5 , it implies thatbvstu � w ¨ % Þ ( a ( % -
- n���{�5 , which, using (20), implies
that

U E : E � NtN� 3 x 1 n�� or
× ( a ( % -
- n�� % � ÷ 9 for

% � r .
From (12), Ô ¨U � i× Ñ iõ � ? ( õ - % õ _ *, #�Ö%2�

ignoring the negative term, we have,i× Ô ¨U ? ( õ - % õ n *, #�Ö% �

or, Ô ¨U ? ( õ - % õ n *, # Ö% � ×
Using

× ( a ( % -
- n�� % � ÷ 9 , when bvstu � w ¨ % Þ ( a ( % -
-��_ 5 ,
we have, n *, # Ö% � � % � ÷ 9_ *, #�Ö � i%
But we haveÔ ¨U ? ( õ - % õ _ è ( T { × -0_�é²( i× P - B é�( i% P � ÷ P -
Hence we find that é æ 9� ç B é æ 9� < 3 x < ç , which is a con-

tradiction for 4în ~ . Hence, bvsvu � w ¨ % / Þ � ÌDfß� 3 � _ 5 .
C. Discrete Fading States

The optimization problem (4) for the discrete fading
state case, simplifies tou²Å�Æ���6��� � � b�� � i^j � � �� P � , ( � -% � �

subject to ��6��� � � , ( � - B *, # Ö (21)

For notational convenience, let us index the set of fading
states,

�
, in descending order by the index ´�¡ i B�´IB�� � � ,

i.e., � 9 {î� P {î� ù { Ä$Ä$Ä . Further, denote� � · _ �[�°¡ õ � _ � � �� P ¡ and S$� _ , ( � ��-% �
Also, denote � _ *, # Ö%2�
We will later recall that, for each power constraint *, # Ö , �
is a function of

%
. Using this new notation and change of

variables, we obtain the problemu²Å�Æ � � � � b�� ( i^j õ � S �M-
subject to � � � � S � B � (22)

We have the maximisation of a concave mapping from��� � �
to
�

subject to a linear constraint. The KKT condi-
tions are necessary and sufficient, and the following “wa-
ter pouring” form of the optimal solution is well known.
There exists

× ( � - {î5 , such that, for

i B�´�B�� � � ,
S �Õ_ � i× ( � - Ñ

iõ � � H
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with
× ( � - being given by�¼ � É � ·Ø Y�� Z�� 9 ½ � � �

i× ( � - Ñ
iõ � � _ �

Defining, for

i B� ïB�� � � ,�{¡ _ � 9 j � P j Ä$Ä$Ä j �<¡ã¡ and
� ¡ _ ¡� ��¢ 9 � �õ �

and

� x _ 5í¡ � � � � _�r , the Lagrange multiplier,
× ( � - , is

given by × ( � -�_ � i�@¡ ( � ¡ j � - � ÷ 9 (23)

for

� ¡ ÷ 9 p � B � ¡ when

i B£  B¤� � � Ñ i , and for
� � � � ÷ 9 p � p r when   _ � � � . Here the break-points
� ¡ã¡ i B� åB¥� � � Ñ i , are obtained by equating the val-
ues of

× ( � - on either sides of the break-points, and are
expressed as � ¡ _ á �D¦
§ 1" ¦
§ 1 Ñ � ¦" ¦9" ¦ Ñ 9" ¦
§ 1 äThe denominator of this expression is clearly { 5 , and a
little algebra shows that, since õ ¡ H 9 { õ � ¡ i B ´�B�  , the
numerator is also {î5 .

For each

�
, let us denote the optimal value of the prob-

lem defined by (22) by Þ ( � - . We infer thatú Þú � _ × ( � -
Now, fixing the power constraint *, # Ö , and reintroducing
the dependence on

%
, we recall that

� ( % -0_ ÌD ß à� 3 , and hence
conclude that ú Þú % _ × ( � ( % -
-¦á Ñ 4 *, #�Ö% � H 9 ä
Define

% x _ r ¡ % � � � _ 5 , and, for

i B¥ �B¨� � � Ñ i ,
define % � ¡ _ *, # Ö[Ä©á 9" ¦ Ñ 9" ¦
§ 1�D¦
§ 1" ¦
§ 1 Ñ � ¦" ¦ äNote that 5 _ % � � � p % � � � ÷ 9 p�Ä$Ä$Ä©p % P p % 9 p % x _r . Now, substituting for

× ( � ( % -
- from (23) and integrat-
ing, yields the following result

Theorem C.1: For given *, #�Ö , the optimal value Þ ( % - of
the problem defined by (21) has the following characteri-
sation.

1) The derivative of Þ ( % - w.r.t.
%

is given byú Þú % _ i% á Ñ 4��{¡ *, # Ö� ¡ % � j *, # Ö ä (24)

for
% ¡ B % p % ¡ ÷ 9 when

i B©  Bª� � � Ñ i , and for5 p % p % � � � ÷ 9 when   _ � � � .
2) VXWV � is a negative, continuous and increasing function

of
%
. In particular Þ ( % - is a decreasing, and convex

function of
%
.

3) The function Þ ( % - is given byÞ ( % -0_ �@¡ b�� á � ¡ j *, # Ö%2� ä¬« ¡ (25)

for
% ¡ B % p % ¡ ÷ 9 when

i B©  Bª� � � Ñ i , and for5 p % p % � � � ÷ 9 when   _ � � � , with the constants
of integration « ¡ being given as follows.

« 9 _
i� 9 _ õ 9� 9

and, for ~ B� ïB � , « ¡ is obtained recursively as

« ¡ _ �+� � ¡ ÷ 9 j ÌDfß à� 3 ¦ x 1 � « ¡ ÷ 9 �­F 7
¦ x 17 ¦ I� ¡ j ÌDfßtà� 3 ¦ x 1Proof: (25) is obtained by integrating the derivative

in (24) over each segment of its definition. The integration
constants « ¡ are obtained by equating Þ ( % - on either sides
of the break-points of the argument

%
.

1) Optimisation over
%
: Using Theorem C.1, we con-

clude that we need to look at the stationary points ofÞ ( % - % . To this end, consider the solutions ofÞ ( % - j % Þ Ö ( % -�_ 5
Reintroducing the variable

� _ ÌD ß à� 3 , and canceling �®¡ , we
need the solutions ofb�� � i�j �� ¡ � � ¡ « ¡ Ñ 4 �� ¡ j � _ 5
for

� ¡ ÷ 9 p � B � ¡ when

i B¥  B¤� � � Ñ i , and for
� � � � ÷ 9 p � pqr when   _ � � � , with the break-points� ¡[¡ i B¯  B°� � �`¡ as given earlier. Let us write ±�D¦±H ± _i Ñ 99 H �Ú ¦ , define t�¡ _ b�� � ¡ « ¡ (observe that t 9 _ 5 - , and,

for given   , use the new variable

> _ ii^j ±� ¦
Note that, for 5 p � p r ,

i { > { 5 . Define � ¡ _99 H � ¦Ú ¦ . Then we seek the solutions of

b�� i> j t�¡ Ñ 4 ( i Ñ > -©_ 5
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Fig. 3. The stationary points of þ 9 ü = ü lie among the intersections
of the curve ²
³ x 3BH and lines ³ �*´ x 3 � ��µ·¶¸µ�¹ º»¹ , in the interval	½¼ ² ¼g� . Here the plot is drawn for 2 � + .
for � ¡³B >åp°� ¡ ÷ 9 , for each  +¡ i B° âB¾� � � ; note that� x _ i

, and � � � � _ 5 . The equations can be written more
simply as L � ¦ ÷ � _¿> L ÷ � ~ ¡
and are depicted in Figure 3. At this point we can con-
clude the following

Theorem C.2: 1) bvsvu � wyx Þ ( % - % _ 5
2) There are at most ~ � � � Ñ i

stationary points ofÞ ( % - % in 5 p % p r .
Proof: 2) follows from the arguments just before

the theorem statement, since each line L E � ¦ ÷ � N , for ~ B �B�� � � , has at most two intersections with > L ÷ � ~ , in5 pe>�p i , and L ÷ � has only one such intersection.

D. Fixed Transmission Time vs Fixed Packet Size

In this section, we will formally establish that fixed
transmission time schemes are more throughput efficient
compared to fixed packet size schemes, for a given aver-
age power constraint. We will prove this result in a gen-
eral framework, without explicitly modelling the underly-
ing MAC, the power control schemes used or the channel
fading distribution.
Data Transmission Model: In a fixed transmission time
scheme, all data transmissions (with positive rate) are of a
fixed amount of time � , independent of the channel state �
and the power used. Earlier, in our work (see Section III-
B), we assumed that, when the channel fade is poor (and
hence

, ( � -ì_ 5 ), the channel is left idle for the next� seconds. Further, the optimal power control policy for
such a system was found to be a non-randomized policy,
where a node transmits with constant power

, ( � - every
time the channel is in state � (see Section V-A). Here,
we will allow the possibility of the channel being relin-
quished when bad with a fixed time overhead B � . We
consider a spatio-temporal fading process with successive
transmitter-receiver pairs being selected by a distributed
multiaccess contention mechanism. Hence, relinquishing
the channel might improve throughput, as successive fade
levels might have little correlation. The optimal policy for

such a MAC could be a randomized policy. Hence, we
will allow a randomized power control, i.e., for a channel
state � , the transmitter chooses a power

, � according to
some distribution. In a fixed packet size scheme, all data
transmissions (with positive rate) carry a fixed amount of
data ª independent of the channel state � and the power
control used. Here as well, we will allow the possibility
of a randomized power control and the posibility of relin-
quishing the channel with a fixed time overhead (when the
channel fade is poor).
Optimality Criterion: The throughput optimality of a
data transmission scheme is established either by compar-
ing the energy required to send a certain amount of bits in
a given time or by comparing the amount of bits sent with
a given amount of energy in a given time. (We will discuss
more about this optimality criterion in Remark D.2). We
study a data transmission scheme by considering two data
transmissions of positive rates, in some arbitrary channel
states with gains � 9 and � P and with applied powers

, � 1and
, � < . We do not make any assumption on the proba-

bilities of � 9 and � P , and about the power control policy
which yields the powers

, � 1 and
, � < .

For a given power control scheme ( � ¡ , � ), we will then
assume that the transmission rate given by Shannon’s for-
mula is achieved over the transmission burst; i.e., the
transmission rate is given by\ � _�� bdcfe ( i^j � , � -
We have absorbed the factor

�� < � 3 in to the term � (since%
is fixed in this discussion). Hence, the time durations

taken to transmit the ª bits during the channel states � 9
and � P (with the powers

, � 1 and
, � < ) are given by � � 1 ]`_ÀÁ lon�p$E 9 HK� 1 D � 1 N and � � < ]`_ ÀÁ lon�p$E 9 HK� < D � < N . Then, the total

time occupied by these two transmissions is� D _ ª� bvcfe ( i^j � 9 , � 1 -
j ª� bdcfe ( i^j � P , � < - (26)

spending an amount of energy equal toÎ D _ ª , � 1� bvcfe ( i^j � 9 , � 1 -
j ª , � <� bdcfe ( i^j � P , � < - (27)

Define ª D ]`_Ò~y/ ª as the amount of bits sent in time � D
using an energy Î D in channel states � 9 and � P .

Lemma D.7: Let � 9 { � P . For a fixed packet size
scheme, if

, � 1 and
, � < are applied powers during channel

states � 9 and � P , then having � 9 , � 1 nô� P , � < is through-
put optimal.

Proof: Suppose that � 9 , � 1 p � P , � < . Then,bdcfe ( i^j � 9 , � 1 -Ip bdcfe ( iIj � P , � < -



16

Find power controls Â, � 1 and Â, � < such thatbdcfe ( iIj � 9 , � 1 - _ bdcfe ( i^j � P Â, � < - (28)bdcfe ( iIj � P , � < - _ bdcfe ( i^j � 9 Â, � 1 - (29)

or, equivalently, � 9 , � 1 _ � P Â, � < (30)� P , � < _ � 9 Â, � 1 (31)

With the power control scheme ( � 9 ¡ÃÂ, � 1 - ¡ ( � P ¡JÂ, � < - , the
total time occupied in the transmissions of ~!/ ª bits dur-
ing the channel states � 9 and � P is,�ÅÄD _ ª� bdcfe ( i^j � 9 Â, � 1 -

j ª� bdcfe ( i^j � P Â, � < -_ � D
(from (28) and (29)). Now, consider the energy spent to
transmit these ~ / ª bits, i.e.,Î ÄD _ ª Â, � 1� bdcfe ( i^j � 9 Â, � 1 -

j ª Â, � <� bvcfe ( i^j � P Â, � < -
Substituting for Â, � 1 and Â, � < from (30) and (31), we have,Î ÄD _

i
� 9 ª � P , � <� bdcfe ( i^j � P , � < - j

i
� P ª � 9 , � 1� bdcfe ( i^j � 9 , � 1 -

Rearranging the terms, we have,Î ÄD _ i
� P ª � 9 , � 1� bdcfe ( i^j � 9 , � 1 -

j i
� 9 ª � P , � <� bdcfe ( iIj � P , � < -p i

� 9 ª � 9 , � 1� bdcfe ( i^j � 9 , � 1 -
j i
� P ª � P , � <� bdcfe ( iIj � P , � < -_ ª , � 1� bvcfe ( i^j � 9 , � 1 -

j ª , � <� bdcfe ( i^j � P , � < -_ Î D
where the inequality follows from the fact thatª � 9 , � 1� bdcfe ( i^j � 9 , � 1 - �

i
� P Ñ

i
� 9 �p ª � P , � <� bdcfe ( i^j � P , � < - �
i
� P Ñ

i
� 9 �

since � 9 { � P and � 9 , � 1 p � P , � < (by assumption) and
the fact that

Alon�p'E 9 H A N is strictly monotone increasing.
It follows that an optimal power control must have� 9 , � 1 nî� P , � < .Remark: From Lemma D.7, we see that, when � 9 { � P ,\ � 1 ]`_�� bdcfe ( i©j � 9 , � 1 - n � bdcfe ( i0j � P , � < -0_Â] \ � < ,

or equivalently, � � 1 B�� � < .

We will now provide a comparison of the fixed packet
scheme with a fixed transmission time scheme and show
the optimality of the fixed transmission time schemes.
The comparison is done under the following assump-
tion.� The channel has the same marginal fading distri-

bution, whenever sampled by a transmitter, for ei-
ther schemes. This is a reasonable assumption as
we consider spatio-temporal fading, with succes-
sive transmissions from possibly different source-
destination pairs chosen by the distributed multiac-
cess contention scheme.

For the fixed packet size scheme, ª D ]`_q~�/ ª bits were
transmitted in � D (M_ � � 1 j � � < - time (see (26)) with an
amount of energy equal to Î D (see (27)), in two channel
samples � 9 and � P . A reasonable comparison would be to
find the throughput of a fixed transmission time scheme
for a total duration of � D seconds involving two data
transmissions with channel samples � 9 and � P of equal
duration � _ ¤ WP and a total energy of Î D . We will as-
sume that

, � 1 and
, � < , the power used for the fixed packet

size scheme are such that � � 1 B�� � < (see Lemma D.7).
Hence, we have � � 1 Bq�«Bq� � < , or, the fixed transmis-
sion time scheme spends relatively more time on a better
channel. Clearly, its throughput is better than the fixed
packet size scheme for the same energy constraint, as seen
below.

Let
, # � 1 and

, # � < be the optimal power control for the
fixed transmission time strategy such thatÎ�¤ ]`_ , # � 1 �

j , # � < � _ , � 1 � � 1 j , � < � � < _UÎ D
We have,ª D _ ~ ª _ � � 1 � bdcfe ( iIj � 9 , � 1 - j � � < � bdcfe ( i^j � P , � < -
Expanding the left hand side, we have,~ ª _ � � 1 � bdcfe ( i^j � 9 , � 1 - j ( � � < Ñ � -
� bvcfe ( i^j � P , � < -j � � bdcfe ( i^j � P , � < -
Using � 9 {î� P , we get,~ ª B � � 1 bdcfe ( iIj � 9 , � 1 - j ( � � < Ñ � - bdcfe ( i^j � 9 , � < -j � bdcfe ( i^j � P , � < -B � bdcfe ( i^j � 9 , # � 1 -

j � bdcfe ( iIj � P , # � < -_Â] ª ¤
where the last inequality follows from the fact that( � 9 ¡ , # � 1 - and ( � P ¡ , # � < - is the optimal power control
scheme for the fixed transmission time scheme with time� D (M_ô~ / � - and energy Î ¤^(M_ Î D - .
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Remarks D.2: For ª ( b - defined as the amount of bits
sent upto time b , and Î�( b - defined as the total energy spent
upto time b , the average throughput ( � ) and the average
power ( *, ) of the system are, in general, defined as� ]`_ bvsvuâsÆ�GÇ# w ¨ ª ( b -b*, ]`_ bvstu �È�G�# w ¨ Î�( b -b
Under additional assumptions on the fading process and
the power control scheme used, the expressions are sim-
plified as an ensemble average (for example, see (1) and
(3) for a fixed transmission time scheme). In this sec-
tion, the optimality of the schemes have been shown di-
rectly, by comparing the amount of bits transmitted for a
particular sample of channel for a given amount of time
and energy, or by comparing the amount of energy used
to transmit a given amount of bits for a particular sample
of channel in a given amount of time. For example, the
argument provided here directly translates to an argument
with the ensemble average for the discrete fading case.
This approach is not only straightforward, but also is very
general.

In the remaining part of this section, we will establish
a property of the optimal solution of a fixed packet size
scheme.

Lemma D.8: Let � 9 { � P . For a fixed packet size
scheme, if

, � 1 and
, � < correspond to a optimal power

control for channel states � 9 and � P , then
, � 1 B , � < .Proof: Suppose that

, � 1 { , � < . For Î^" and � "
defined as before, define

, ]`_ÊÉ 7¤ 7 . Clearly,
, � 1 { , {, � < . Since

, � 1 and
, � < correspond to optimal solutions,

we require,

���¢ 9 ¾ P ª� bdcfe ( i^j � � , � · - B ���¢ 9 ¾ P ª� bvcfe ( i^j � � , -, � 1 and
, � < are the optimal throughput solutions of the

problem for the given time and energy constraint. When
the power allocated to channel state � 9 is increased be-
yond

, � 1 (to infinity), then for the same energy constraint,
the time required to transmit ~ / ª bits increases to in-
finity. Hence, there will exist power controls

, ( � 9 - and, ( � P - (
, ( � 9 - { , ( � P - ) satisfying the energy constraint

with the throughput same as that of
,

, i.e.,

���¢ 9 ¾ P ª� bvcfe ( i^j � � , ( � ��-
- _ ���¢ 9 ¾ P ª� bdcfe ( i^j � � , -
Since the two power controls

, (¢Ä`- and
,

satisfy the en-

ergy constraint, we also have,, ( � 9 - ª� bdcfe ( iIj � 9 , ( � 9 -
-
j , ( � P - ª� bdcfe ( i^j � P , ( � P -
-_ , ª� bvcfe ( i^j � 9 , -

j , ª� bdcfe ( i^j � P , -
Ignoring ª and � , we will use the following notation for
simplicity. õ 9 _ ibdcfe ( i^j � 9 , -õ P _ ibdcfe ( i^j � P , -> 9 _ ibdcfe ( i^j � 9 , ( � 9 -
-> P _ ibdcfe ( i^j � P , ( � P -
-
Notice that > 9 p õ 9 p õ P pË> P . The throughput con-
straint can be rewritten as, õ 9 j õ P _�> 9 j > P . And the
energy constraint can be rewritten as,õ 9

i
� 9 (*Ì Æ � 1� 1 Ñ

i - j õ P i� P (*Ì Æ � 1� < Ñ i -_¿> 9
i
� 9 (*Ì Æ � 1H 1 Ñ

i - j > P i� P (*Ì Æ � 1H < Ñ i -
or, i

� 9 ë > 9 (*Ì Æ � 1H 1 Ñ
i - Ñ õ 9 (*Ì Æ � 1� 1 Ñ i - �_ i

� P ë õ P (*Ì Æ � 1� < Ñ i - Ñ > P (*Ì Æ � 1H < Ñ i - (32)

Define ? ]`_ õ (*Ì Æ � 1� Ñ i - . We know that ? is a convex
decreasing function. And if we can show that� ? Ö ( õ 9 - �í{ � 9� P � ? Ö ( õ P - �
then, clearly the equality in the energy constraint (32) can-
not hold for > 9 Ñ õ 9 _ õ P Ñ > P . Differentiating ? , we have,? Ö ( õ -C_ Ì Æ � 1� � i Ñ iõ � Ñ i
Reverting back to the original variables, we have,? Ö ( õ 9 -C_ ( i^j � 9 , -±( i Ñ bdcfe ( i^j � 9 , -
- Ñ i? Ö ( õ P -C_ ( i^j � P , -±( i Ñ bdcfe ( i^j � P , -
- Ñ i
Without loss of generality, assume � P _ i

. Hence, we
need to show that ÍÍÍÍ ? Ö ( õ 9 -? Ö ( õ P -

ÍÍÍÍ {î� 9
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or, ( iIj � 9 , -±( i Ñ bdcfe ( i^j � 9 , -
- Ñ i( i^j , -±( i Ñ bdcfe ( i^j , -
- Ñ i {î� 9
rewriting, we have,i Ñ bdcfe ( iIj � 9 , - j � 9 ,ÒÑ � 9 , bdcfe ( i^j � 9 , - Ñ ip � 9 ë i Ñ bvcfe ( i^j , - j ,�Ñ , bvcfe ( i^j , - Ñ i��
(the change of sign is because the derivative is negative).
Simplifying further, we need to show,Ñ bvcfe ( i^j � 9 , -±( i^j � 9 , -�p Ñ � 9 bdcfe ( i^j , -±( i^j , -
or,bdcfe ( iIj � 9 , -±( i�j � 9 , - { � 9 bdcfe ( iIj , -±( iIj , -
But the function ( i¥j � - bdcfe ( i¥j � - is a convex increas-
ing function with the derivative greater than

i
, implying

that the above inequality is infact true. This proves that
we cannot find

, ( � 9 - and
, ( � P - (satisfying the energy

constraint) which has the same throughput as
,

.
Hence, for an optimal power control policy

, � 1 B , � <when ever � 9 {î� P .
Corollary .1: For a fixed packet size scheme, if

, 9� and, P� correspond to an optimal power control policy for a
given channel state � , both positive, then

, 9� _ , P� .
Remark: For the fixed transmission time scheme, the opti-
mal power control has the water pouring form, with more
power allocated for a better channel. In contrast, the opti-
mal power control for a fixed packet size scheme suggests
more power for a poorer channel, thus leading to a reduc-
tion in the efficiency of the system. However, we note
that, the rate allocated for a better channel state is always
greater than a poorer channel in either case.


