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Abstract 
The ABR sessions in an ATM network share the bandwidth left over after 

guaranteeing service to CBR and VBR traffic. Hence the bandwidth available to 
ABR sessions is randomly varying. This bandwidth must be shared by the sessions 
in a max-mn fair fashion. 

Our point of departure in this paper is to formulate the problem of determin- 
ing the max-min f a r  session rates as the problem of finding the root of a certain 
nonlinear vectorequation; the same formulation also arises with our notion of max- 
min famess with positive MCRs. This formulation allows us to use a stochastic 
approximation algorithm for online distnbuted computation of the max-min fair 
rates We use the well known ordinary differential equation technique to prove 
convergence of the algorithm in the synchronous update case. We provide simu- 
lation results using the NIST simulator to show that the algorithm i s  able to track 
the max-min fair rates for slowly varying random available link bandwidths 

1. INTRODUCTION 

A reactive rate control approach, with rate fairness between ses- 
sions has been chosen for allocating the available link rates (left 
over after allocation to the CBR and VBR classes) to ABR ses- 
sions. In order to guarantee a minimum throughput for some ABR 
sessions, should they demand it, the notion of a Minimum Cell 
Rate (MCR) has been introduced. Thus MCR units of bandwidth 
must be reserved for such a session on all the links that the session 
uses. An admission control will be essential in order guarantee the 
MCRs. 

The notion of fairness proposed by the ATM forum is max-min 
fairness (MMF). This notion of fairness was discussed in earlier 
literature in the context of speech networks with variable rate cod- 
ing; see [5] for a textbook treatment. A few ad-hoc proposals for 
extending this notion of fairness to the non-zero MCR case have 
been proposed by the ATM Forum [ 13. These include MCR plus 
ma-min share, and allocation proportional to the MCR. 

The control algorithms for feedback control of ABR traffic will 
be implemented in the switches. The switches compute a suitable 
rate and communicate with the sources using RM (Resource Man- 
agement) cells. Hence only distributed algorithms will be viable 
for practical implementation. The specifics of distributed feed- 
back control algorithms for ABR traffic have not been standard- 
ised. This is a topic of current research and it is most likely that 
this is an area in which switch vendors will seek to differentiate 
their products. 

Binary feedback based schemes [14] have been discussed for 
ABR traffic due to their simphcity in implementation. However 
recent research on ABR rate control focuses on explicit rate feed- 
back algorithms. Charny [6] and Tsang [ 131 have proposed dis- 
tributed versions of a centralised max-min allocation algorithm, 
Since these algorithms emulate a centralised algorithm, they need 
to track session bottlenecks. Distributed algorithms for max-min 
allocation which do not require tracking of session bottlenecks 
were proposed in the context of speech networks with variable 
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rate coding in [SI and [12]. These algorithms are of a succes- 
sive approximation type and are simple to implement. A recent 
distributed algorithm achieving max-min allocation without need- 
ing to track session bottlenecks was proposed by Fulton et al. in 
[7]. All these algorithms require that the available capacity remain 
fixed for the algorithm to converge. If a fixed available capacity 
is not available, then the available capacity sequence is averaged 
(filtered), and the average value is used in the computation of the 
rates. These algorithms operate on the assumption of no MCR 
requirements or that the computed rate is added to the MCR. 

Distributed algorithms have also been designed using a con- 
trol theoretic approach by Benmohammed et al. [3]. Kolarov et 
al. have extended the ideas in [3] to obtain algorithms that track 
changes in available rate quickly [lo]. However these algorithms 
require explicit knowledge of the round trip times of individual 
sessions. 

In this paper we examine the problem of distributed ma-min 
fair share rate allocation to ABR sessions in a network in which 
the available link capacities are not constant, but are randomly 
varying. The notion of max-min fairness that we use was de- 
veloped in [2], and is a natural generalisation of the notion with 
MCR=O. It was shown in [2] that the max-min allocation can be 
expressed in terms of the solution of a nonlinear vector equation. 
In the present paper, we study the use of stochastic approxima- 
tion for solving this vector equation when the available capacities 
are random. We analytically prove convergence of the distributed 
stochastic approximation algorithm for the synchronous situation. 
We then present simulation results for an example wide-area net- 
work; the simulations incorporate the details of the ABR rate con- 
trol protocol; Le., RM cells, incremental additive increase, imme- 
diate decrease, etc. 

11. MAX-MIN FAIR ALLOCATION THEORY - A BRIEF REVIEW 

A. The Model and Notation 

A session comprises a source node, cells from which traverse 
a fixed sequence of links to reach the destination node. The net- 
work topology, the link capacities, the sessions and their routes 
are all given and static. Each source has an infinite backlog, and 
can transfer it to the network at any specified rate l .  For the pur- 
pose of defining the max-min fair notion we assume that the link 
capacities are fixed. We now describe the notation used. 
We first describe some generic notation. Throughout I A I de- 
notes the size of, the set A, A\B denotes A U BC, 9 denotes 
the empty set and if (XI, x2, . . . , 2,) is a real valued vector, then 
( E l ,  52, . . . , Zn) denotes the elements of the vector ordered in 
ascending order. For two vectors x and y, we say x > y, if 

Note that a maximum transfer rate from a source can be easily incorporated by 
augmenting the network topology with a source access link with capacity equal to 
the source transfer rate limit. 
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kxico-max vector in the smaller 
feasible aot 

Lexico-max vector in full feasible set 

Feasible set with no MCRs 

Fig. 1. Relationship between the feasible rate vectors with and without MCR 
requirements. 

xi > yi, V i ,  and similarly for <, 2, and 2. S the set of ses- 
sions, L the set of links, Cl the capacity of link 1 E L, C denotes 
the ordered set (Cl,1 E L), L,  the set of links used by session 
s E S, SI the set of sessions through link 1 E L. Let ri denote 
the rate of the ith session, 1 5 i <I S I; r = (r1, rz,  . . . , r lq )  
denotes the rate vector. Let ,us denote the minimum cell rate for 
session s E S and let M denote the set { p ,  : s E S} .  

For a rate vector r ,  and 1 E L denote the total flow through link 
1 by 

f l ( Y )  = E rs 
J E S l  

Note that the 4-tuple (L ,  C, S, M )  characterises an instance of the 
bandwidth sharing problem. 

B. Max-Min Fair Bandwidth Sharing with Nonzero MCR 

The max-min fair sharing idea developed in [2], can be viewed 
as a natural generalisation of the conventional max-min fair allo- 
cation [5]. 

DejinitionZZ.1: A rate vector r feasible for the problem 
( L , C , S , M )  ifforalls E S, r ,  2 ps andforalll E L, f i ( r )  = 

Note that the set of feasible vectors is non-empty iff for all I E 
L ,  CJES, p s  5 Ci. We will assume that this is so, with strict 
inequality, in all the following discussions. 

DejinitionZZ.2: A feasible rate vector r is max-min .fair for 
(L, C, S,  M )  if it is not possible to increase the rate of a session 
s, while maintaining feasibility, without reducing the rate of some 
session p with r,, 5 r, .  

DefinitionZZ.3: Given a rate vector r ,  a link 1 is said to be a 
bottle-neck link for a session j if link 1 is saturated, Le., fl ( r )  = 
Cl, and for all the sessions s E Sl, such that r8 > ps, r ,  5 r j ;  
Le., every session in 1, that is not at its MCR, has flow no more 
than that of session j ,  or equivalently r ,  < max(ps, r j )  

Recalling the notation in Section 11-A, we give the following 
definition. 

DejinitionZZ.4: Let 2 = (21~x2, * + a ,  zn) ,  y = (YI, YZ,. - e ,  yn) E 
R". Then y is defined as lexicographically larger than x (de- 
noted >lei) if & > 21, or if 51 = 21 then & > 22, etc. 

The following theorem gives two equivalent characterisations 
of the Max-Min rate vector. 

Theorem ZZ.1: [2] If r is a feasible rate vector, then the follow- 
ing statements are equivalent: (i) r is Max-Min fair. 
(ii) Every session s E S has a bottle-neck link. 
(iii) r is lexicographically the largest among all feasible rate vec- 
tors. 

CS€SI rs I G* 

2Note that such feasibility will be ensured by an admission control procedure. 

The relationship between the above definition and of Max-Min 
allocation is shown in Figure 1. Hence our definition with MCR 
is a generalisation of that without MCRs. 

111. MMF FORMULATION AS THE ROOT OF AN EQUATION 

In this section we motivate the construction of distributed algo- 
rithms for computing a MMF allocation. Consider a MMF allo- 
cation problem (L, C, S, M ) .  Let r* = ( r ; ,  r ; ,  . . .) denote the 
Max-Min fair vector. Let L b  C L be the set of all links that are 
bottlenecks for at least one session through them. Let r]i be a link 
parameter associated with link 1 E L. The following result has 
been proved in [2]. 

TheoremZZZ.1: For d l  1 E L\Lb let r]; = co. Then if r]:, 

1 E C b ,  satisfy 

then 
(2) 

Thus any solution to E,quation (1) yields the (unique) MMF rate 
vector via Equation (2). We call r ] ~  the link control parameter for 
link 1. 

Let r] = (a, 1 E L) denote the vector of link control parame- 

r: = max(ps, min 71;) 
I € & *  

ters, Dkne the  vector'function - -  f(r]) = ( f i ( r ] ) , l  - E C) by- 
fdg) = E maX(Ps1 g i n  r ] J  ~- 3EC.  

S E 3 1  

Let C denote the vector of link capacities, for a MMF allocation 
problem (L, C, S, M ) ,  if it is known that every link is bottleneck 
for at least one session, i.e., = L, then Theorem 111.1 implies 
that the MMF allocatilon can be computed by first solving for r]  
such that 

For each session s, we then compute a virtual rate as the minimum 
of the link control parameters along its path, i.e., 

is = minql 
A session's rate is the virtual rate if the virtual rate is is larger 
than the session's MCR, otherwise it is the MCR, Le., 

f(y) = c (3) 

lEC,  

Ys = max(ps, F 8 )  

IV. STOCHASTIC APPROXIMATION ALGORITHMS 
The result in Section I11 shows that computing a MMF rate is 

simply a problem of fiinding the link control parameters to max- 
imise link bandwidth utilisation. A class of successive approxima- 
tion type algorithms have been proposed in the literature (see,e.g., 
[8] [7]) for distributed computation of the link control parameters. 
These algorithms operate by increasing or decreasing the link con- 
trol parameters depending on whether the total input rate to the 
link is less than or greater than the link capacity. The link control 
parameter update functions for simple iterative additive and mul- 
tiplicative schemes are given below; k denotes the iteration index. 
Recalling that fi (9) is the flow in link 1 and letting nl =I Sl 1, the 
algorithm in 181 i s  

(4) 
and the algorithm in [ ; I ]  is 

r]l(k + 1) = r]l(k) + (G - fi(y(k)))h 
i t  1) = 771(WCdfi(g(W ( 5 )  

In [ 8 ]  there is no consideration of nonzero MCRs. In [7], the 
rate computed is added to the MCR to give the session rate. Both 
approaches require a fixed number Cl for the computations to con- 
verge to the max-min fair share. However, note that ABR sessions 
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are expected to utilise bandwidth left over after servicing the CBR 
and VBR class. Due to the inherent bursty nature of the VBR traf- 
fic, the leftover bandwidth is of a perturbed nature. In addition, 
if the link utilisations are obtained by measurements, then mea- 
surement errors will have to be considered. We club the effects 
of perturbed available capacity and measurement error into a zero 
mean random process w ( k )  and view the available capacity as the 
sum of a constant and w ( k ) .  In [7] ,  the authors suggest the use 
of an estimate of the mean available capacity obtained by filtering 
the "noisy" capacity sequence, however, they have not analytically 
proved the tracking ability of their algorithm. In this paper we re- 
sort to stochastic approximation theory to obtain such a proof. 

To illustrate this approach, consider the case of a single link 
network with a nominal available capacity C, and with some ses- 
sions s E S, each with MCR p s .  Observe that Equation( 3) asks 
for u* such that 

s €S 
This corresponds with the intersection of the solid curve and 
the solid line shown in Figure 2. In the iterations of Equa- 
tion (4) or (3, if we replace C by C + w ( k ) ,  then the sequence 
q ( k )  will not converge, but will jitter around q*; see Figure 2. 
Thus we see that at each link we have the problem of searching 

I I 

q* - 
11( k) 

Fig. 2. Sessions in a single link. v* is the link control parameter with the mean 
capacity C When C ( k )  is random, the correspondinga(lc) varies around q*. 

for the root of a certain function given only noisy observations of 
the function. Such problems have been tackled using stochastic 
approximation algorithms [4]. The main idea is to weight the "er- 
ror estimate" at each iteration by a reducing gain sequence a(k) .  
Hence, incorporating MCRs in the successive approximation al- 
gorithm, and introducing the decreasing gain sequence, yields the 

We assume that each link 1 has a maximum available capacity 
,Fax. A portion of CFax, with mean Ct < CFax is available 
for ABR traffic. At each computation of a link control parame- 
ter, the iterate computed using Equation (6) is truncated to remain 
between 0 and ,Fax. 

Algorithm IKI: 
Initialisation: 
IC = 0, for each 1 E C, 0 5 q ( 0 )  < CFax 
Do forever 

1. k t k S 1  
2. For all I E C, update the link control parameter 

C Iy, 

L 121 
3. For each session s E S, update the virtual rate 

4. Each session s E S calculates its actual rate 
is ( k )  = min 71 ( k )  

l € G 8  

To understand why Algorithm IV.1 is a distributed algorithm 
note that to compute ql (k  + 1) at link 1, we only need q i ( k )  
which is the previously computed link control parameter and 
CsESl r s ( k  - I), which is the total flow through link 1. Both 
these quantities are locally available information. In the following 
theorem we prove that the session rates converge to the max-min 
fair value for the case when every link is a bottleneck for some 
session and the equation 

has a unique solution v*. Extensions of this result to more general 
conditions and to the asynchronous situation (switches updating 
their link control values based on delayed previous values, and 
the updates not being synchronous at the various switches) will be 
presented in future papers. 

Theorem ZVI: Consider a max-min problem (L ,  C, S, M ) ,  
with unique q* such that 

Let the noise sequence w1 ( k )  be i.i.d., bounded with zero mean for 
all 1 E C, then the sequence of iterations given in Algorithm IV.l 
yield 

fs  ( k )  = max(is ( k )  1 Ps)  

c - f ( q * )  = 0 

c - f(f) = 0 

(IC) such that, almost surely, 

where 
r: = max(ps, min 17;) 

Since we have assumed a zero mean, bounded i.i.d. noise se- 
quence w~ ( k ) ,  and have bounded the values of q1 ( k )  by truncation, 
the proof of Theorem IV.l consists of showing that a certain ordi- 

i € C S  

algorithm. nary differential equation is asymptotically stable [ 111. The main 
S ( k )  - rsESl max(ps, minjECc, v j ( k ) )  idea involved is the observation that the asymptotic evolution of 

the sequence q1 ( k )  is equivalent to the evolution of the solution of 
this differential equation. Heuristically, the differential equation 
is obtained as follows (see also [l I]). Rewrite Step 2 of Algo- 
rithm IV.l as 

nl ) 
(6 )  

where C, ( k )  = Cl + w ( k ) .  The sequence a ( k )  is chosen such that 
it has the following properties 

81(k+1) = Vl(k)+Q(JE) 

Cp- 
03 03 V ( k )  - vr(k - 1) = 

CL + w ( k )  - ESES/ fs(k - 1) 
[ s ( k  - 1) - w ( k )  1 1, ""k - 1) 

a ( k )  = co a ( k ) 2  < 00 

k = l  k = l  
This property is satisfied by a sequence of the form If we view the decreasing gain a r ( k )  as a step size in time, then 

the rate of change of ql ( k )  can be written as a@)  = l /P 1/2 < 2 5 1 
Such algorithms are said to be of Robbins-Monro type [ l  I]. We 
now present a synchronous distributed algorithm that uses this 
idea. We use the notation that 

- ql(k  - '1) / a l ( k )  = 
C l + w r ( k ) - C * G S I  r s ( k - 1 )  

[v(k - 1) - ai(k) nl 

= min(b, max(a, x)) Q1 (k.1 
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Fig. 3. Network topology; showing switches (SWi), links, sessions (Si,Di), mean 
link capacities and link lengths. 

D1) 
H 6 0 0  

Max-Min 

As k increases to infinity, a1 ( k )  goes to zero, and the limiting rate 
of change is given by the following differential equation. 

[rll(t) + A(Cl - fi(rl(t))l:' - rll(t) 
(7) 

The proof of asymptotic stability of the differential equation (7) 
is given in Appendix A. The case where the noise processes are 
more general can be handled; these extensions will be discussed 
in future work. 

A 
rll ( t )  = lim 

A-tO 

D2) D3) D4) D5) D6) 
0 0 0 

60 60 20 40 60 

v. SIMULATION RESULTS FOR AN EXAMPLE WIDE AREA 
NETWORK 

In this section we present simulation results from the stochastic 
approximation algorithm applied to a wide area network exam- 
ple. The available link capacities are random with time varying 
means. The source rate adjustment mechanism prescribed in the 
[l] are simulated. There are propagation delays, and hence the 
link control parameter updates are asynchronous. The simulations 
demonstrate how the session rates track the max-min fair rates. 

for the results pre- 
sented here. This simulation package provides users with mod- 
ules for switches, terminal equipment and links. A GUI is also 
provided to enable users to build a given network topology and 
witness the progress of the simulation. The implementation of 
the modules follows the guidelines provided by the ATM Forum 
closely. We have included the stochastic approximation algorithm, 
discussed above, in the switch module. 

We have used the NIST ATM simulator 

A. Simulated Network 

The network being simulated is illustrated in Figure V-A. The 
source and destination for session i are denoted by Si and Di re- 
spectively. The WAN links are labelled L1, . . . , L4. The mean 
available link capacity is indicated above the links. The access 
links are assumed to have infinite capacity. The blocks labelled 
SW1 to SW4 denote the switches, the link control parameter com- 
putations for link i are carried out in SWi. Table I gives the MCR, 
the Max-Min fair rates and the link control parameters required to 
achieve the Max-Min fair rates. 

B. Implementation of the Algorithm 

For the purpose of ABR flow control, a special cell called the 
RM (Resource Management) cell has been introduced for the ex- 
change of rate information between the sources and the switches. 
An RM cell is sent by the source after every N data cells, where N 
is some chosen constant number. There are three important fields 
in the RM cell for the purpose of Explicit Rate control. They are 

3ftp://isdn.csnl.nist.gov/atm-sim 

I Sessions I (Sl,  I (S2, I (S3, I (S4, I (S5,  I (S6 I 

SESSION MCRS, MAX-MIN FAIR RATES AND LINK CONTROL PARAMETERS. 

the ER, MCR, and CClR fields. The MCR field holds the mini- 
mum cell rate for the slession and the CCR field holds the current 
sending rate. 

The ER (for Explicit Rate) field is set by the source to the de- 
sired peak rate. At a link, in the forward path of the RM cell (i.e., 
from the source to the destination), if the link control parameter is 
less that that the ER fielld value, then the ER field is changed to the 
link control parameter, otherwise the ER field is left unchanged. 
Thus after the RM cell has visited all switches along the path for 
the session, the ER field will hold the minimum of the link control 
parameters of all these switches, given that the desired peak rate 
is higher than this minimum. Hence this process executes Step 3 
of Algorithm IV. 1. 

The session destination sends the RM cell back to the source 
along the same path taken by the cell in the forward direction. 
Every switch now reads the ER of the returning RM cell and stores 
this value. Thus the switch is informed of the virtual rate (is of 
each session through it. The MCR of a session can also be read of 
the RM cell. Hence all information for the execution of Step 1 of 
Algorithm IV.l is available at the switch. 

The choice of link control parameter update epochs is an im- 
portant issue when the computations at the switches are not syn- 
chronised, and when session responses to link control updates are 
delayed due to propagation delays. Highly frequent updates could 
lead to oscillations in the computed link control parameter. In 
our implementation we compute a new link parameter only after 
receiving at least one returning RM cell from each session with 
an ER value less than or equal to the present link control param- 
eter. Since we wait for returning RM cells to arrive from each 
session before computing, the time interval between link control 
parameter computations are determined by the session whose time 
spacing between RM cells is the largest. We note that this choice 
of update epochs is heuristic, however the simulation results seem 
to indicate that it is an effective method. The problem of choosing 
an optimum update interval will be taken up in our future studies. 

In the simulations with stochastic link capacities, the noise se- 
quence wi ( k )  for a link with mean available link capacity Cl is 
assumed to be i.i.d., uniformly distributed between -0.25Cl and 
0.25Cl. The gain sequence a l ( k )  is chosen to be 

1 

k 
1+m 

where TI[ is the number of sessions through link 1. 

C. Simulation Results 

Two sets of simulation results are presented here. In the first set 
of results, we keep the mean of the link capacities fixed. In prac- 
tice this would correspond to the case when the background CBR 
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and VBR traffic sessions are fixed. In the second set of results we 
vary the mean of the link capacities available for ABR traffic. This 
captures the realistic scenario in which there will be entry and exit 
of CBRNBR sessions. Whenever the mean of the link capacity 
changes, we reset the gain term in the stochastic approximation 
algorithm to a large value. This requirement is not unreasonable, 
as a switch would be expected to know the entry and exit times of 
the CBRNBR sessions. 

C .  1 Results with Fixed Mean Capacity 

The mean value of the link capacities has been indicated in Fig- 
ure V-A, In Figure 4, we show the time series of the session rates 
obtained when the link capacities are kept fixed at their mean val- 
ues. The algorithm used is identical to Algorithm IV.l with the 
gain term cy1 (k) removed. This is a slightly modified version of 
Hayden's Algorithm [12]. Note that the session rates converge to 
the Max-Min values. 

In Figure 5 ,  we give the stochastic link rate sequence. The ses- 
sion rates obtained using stochastic approximation type updates 
are given in Figure 6. Note that in spite of the noisy capacity, the 
session rates obtained are very close to the Max-Min values. 

(2.2 Results with Varying Mean Capacity 

In Figure 7, the variation of mean link capacity is given. The 
actual link capacity sequence used Is given in Figure 8. The ses- 
sion rates obtained with this link capacity is given in in Figure 9. 
Note that the session rates during a period of constant mean con- 
verge to the max-min fair value corresponding to the mean link 
capacity in that region. We note that the session rates adapt well 
to the increasing means of the link capacity. However, when the 
means of the link Capacities reduce, the convergence is poor. This 
is due to the fact that, there are an increased number of in-rate RM 
cells at a higher transmission rate, which are in transmission when 
the mean rate changes. The sudden fall of the available link ca- 
pacity, causes these RM cells to be backlogged at the output port 
of the switches. Hence, the RM cells carrying the new reduced 
rates experience more delay before arriving at the source. 

P 
....................................................... 

v 
0 

0 50 1 5 0  200  250  
T" in ms 

100 

Fig. 4. Time series of session rates when link capacities are constant. 

VI. CONCLUSION 
In this paper we have discussed stochastic approximation algo- 

rithms for the problem of max-min fair allocation of rates to ABR 
sessions with MCR requirements. We have presented a distributed 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  ", 

Fig. 5. Time series of the stochastic link capacity. 

7 0 ,  

/*- ............ ..... -. ............................................ 

Fig. 6. l lme series of session rates computed with the stochastic approximation 
algorithm. 

Fig. 7. Plot of the variation of the mean of available link capacities. 

synchronous stochastic approximation algorithm and analytically 
proved that the sessions rate converge to the max-min fair share. 
This approach seems to hold the promise of simple implementable 
algorithms for max-min fair rate computation. We presented sim- 
ulation results for an example wide area network, in which the 
random rates of the links were assumed to have varying means. 
The session rates were observed to converge. 

In our future work, we plan to analytically examine asyn- 
chronous distributed stochastic approximation algorithms. We 
shall also study the performance of stochastic approximation al- 
gorithms when the estimates of link capacity and link utilisarion 
are obtained using various measurement schemes that have mea- 
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Fig. 8 .  Time series of stochastic link capacity with varying mean. 

Fig. 9. Time series of session rates obtained using stochastic approximation and 
adaptation when link capacities are stochastic with varying mean. 

surement error. The choice of the link control update interval at 
the switches is also an important issue for future study. 

APPENDIX A: PROOF OF THEOREM IV. 1 

Lemma A.1: Let ~ ( t ) ,  y(t) E ?J?, consider the two differential 
equations 

2 ( t )  = g 1 ( 4 t ) , t )  
y ( t )  = , gz(y(?),t) 

Assume that gl and g2, are continuous in  both arguments. Let, for 
1 < 1 5 n, gzl(y(t),t),  denote the Ith component of gz(y(t),t).  
Assume that (i)g21(y(t),t) = gz(yl( t ) , t ) ,  Le., thelth component 
g21(y(t), t) depends only on the Ith component of y(t) 
(ii) gz is a non decreasing in its first argument. 
( i i i ) F o r a l l ~ E % ~ , l e t g 1 ( u , t )  >gz (u , t ) .  
At t o ,  let the initial conditions be such that z(t0) = ? / ( t o ) ,  then 
for all t E ( t o ,  co) z ( t )  2 y(t). 

We omit the proof of the above lemma due to lack of space. 
In order to prove the stability of the differential equation (7), 

we require to partition the sets of sessions and links. This par- 
titioning is based on the operation of a centralised algorithm for 
computing the max-min allocation. Given the max-min problem 
( L , C , S , M ) .  Let us define L(1) = C and S(l) = S. A cen- 
tralised algorithm would operate as follows. Consider each link 
and the sessions through it in isolation. Compute the max-min al- 
location for each of the single link problems separately. Let q:, be 
the link control parameter computed for link 1, i.e., 7: solves 

ma+, , 17:) = CI 
s €SI 

Let 
1 p1 = min qr 

l E C ( 1 )  
For each session let its ;allocated rate be given by 

Let C1 be the set of all links 1, such that 

For all links in C1, the allocation given by Equation (8) results in 
full capacity utilisation, i.e., V1 E C' CsES, r, = Cl. Let S' 
be the set of all sessions that have at least one link in C'; this is 
the set of sessions that got bottlenecked at Step 1. Now we define 
C(2) as we remove the links 1 E C1 from L(1) and we call the 
resulting set C(2), i . e . 4 2 )  = L(1)\ C1. Note that C(2) is the set 
of all links which have spare capacity, when the allocation is done 
as explained above. Further define S(2) as S(2) = S(l)\S1. 
Note that S1 is the set of all sessions that have reached their fair 
allocations at Step 1. For each link in C( 2), we reduce the capacity 
by an amount used up by sessions s E S' .  To the reduced set 
of links, sessions and reduced link capacities we apply the above 
procedure again and obtain a minimum link control parameter p2, 
and the sets S2 and C2. This procedure is carried on until all 
sessions have been removed. Let M denote the number of steps 
executed before all sessions are removed. The procedure gives 
us a partition of S, i.e.,Si, i = 1, , M .  If s E Si ,  we call it 
bottlenecked at the iteration. Note that all s E Si, have at least one 
link 1 E Ci as their bottleneck link (c.f., Definition 11.3). Observe 
that 

C ( i )  = U&Ci and S(i)  = UJ"=,S' 
C ( i )  is the set of links not yet bottlenecked just before the execu- 
tion of the ith step and Ci is the set of links that get bottlenecked 
at the ith step. Similarly for Si and S( i). In our notation for these 
(and subsequently defined) sets the following rule is consistently 
followed: the iteration index i appearing as an argument (i.e., (i) ) 
indicates a cumulative set for iterations 2 i, and the index i ap- 
pearing as a superscript indicates a set corresponding to iteration 
i. For each link 1 E L we define the following 

f s  = ma+,  P') ( 8 )  

77: =P1 

s/(i) = s(i) nsl 
S; = si nSl 

&(i) is the set of all sessions through link 1 that are not bottle 
necked prior to the execution of ith step and S: is the set of ses- 
sions in link 1 that are bottlenecked at the ith step. Note that if 
1 E Ci, then S/ = d, V j  > i. Similarly for each session s E S we 
define 

c8(q = c(i) nc8 
c: = &nc, 

C i  is the set of all links for session s that become bottlenecks at 
the ith iteration. Note that if s E Si, then for j < i, C{ = 4. 

From the above obtained partitions, we deduce an alternate par- 
tition on the set of sessions. Let po  = 0 and pM+' = co; for 
i =  1, . . . ,  Mdefine 
S' = {s : s E s i , p L ,  <: __ pil or s E sj, j 5 i , p i  < ps 5 pi+') 

(9) 
8i is the set of all sessions which obtain their max-min allocation 
at the ith iteration and their rate allocation is precisely pi, or those 
session which have been bottlenecked prior to the ith iteration, but 
have MCR lying between pi and pi+'. We define the set s(i) as 
follows, 

&(i) = Ug,& i = 1, ...., MS 1 

,.. 

1363 

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on July 26,2022 at 11:47:24 UTC from IEEE Xplore.  Restrictions apply. 



For each link 1 E C we define 

Now consider the differential eauation 
&(i) = S ( i )  n sl 

cy= 
[ V l ( t )  + A ( G  - f i ( l l ( t ) ) l o  - W(t)  (10) 

A 
ql ( t )  = lim 

A 3 0  
Let the rate allocation to a session s E S be given by 

fact along with the lower bounding allow us to conclude that r ,  ( t )  
converges to pi. 

In the second part we consider any session s E 9 with ps > 
pi. The hypothesis of the lemma along with the first part of the 
proof allow us to conclude that T,  ( t )  converges for all s such that 
TJ 5 pi. We then show using arguments similar to the first part, 
that for large enough t ,  if all links 1 E C, have an ql ( t )  > ps , 
then the derivative ( t )  < 0 for all links 1 E La, j 5 i. We then 
conclude that there will be at least one link in L,  in which ql ( t )  
remains below or equal to ps for sufficiently large t. 
Proof: Consider the set C ( i ) .  For each 1 E C ( i ) ,  define the 
following. 

G ( t )  = max(ps1 minqdi))  
i € C s  

If the vector T* = (rJ , s E S)  is the max-min fair rate vector, then 
we show that 

lim r , ( t )  = r,* 'ds E S 
t 4 o o  

Lemma A.2: Consider a link 1 E C, given the (one dimen- 
sional) differential equation 
x ( t )  = 

Cl- 
[+) + A(Cl - C S € S I  max(ps, g t ) )  + Wl0 - 4 4  

A 
lim 
A+O 
with E(t) continuous and 

Let the initial condition x( t0)  E [0, Cy""], then 

where x* solves 

lim ~ ( t )  = 0 
t-too S€SI\SI(i) 

lim x ( t )  = x* 
t-tw 

C;, is the capacity of link 1 remaining after removing the max-min 
flows of all sessions whose flows are assumed to converge. 

fl'(rl(t)) = . S ( t )  = max(PS, min r l j ( t ) )  (13) 
J E L .  

s €SI (i) S € S l  (i) G - max(ps, x*) = o 
f / ( q ( t ) )  is the sum of the flows in link 1 of all sessions whose 
flows have not been assumed to converge converge in the hypoth- 
esis of this theorem. With the definitions in Equations (1 1) (12) 
and (13), for each 1 E C ( i )  we can rewrite the differential equa- 
tion (10) as 

J E S I  
Proof: Note that due to truncation and x( t0)  E [0, Cr""], x ( t )  E 
[O, Cy""] for all t .  If x* is unique, we have x* > minsES1 p s .  
Choose € 1  and € 2  such that (i) 0 < € 1  < € 2 ,  (ii) € 2  < x* - 
minSEsl p, Let T be large enough so that for all t 2 T I E ( t )  l< 
€ 1 .  Now let 0 < x ( t )  < x* - 

Hence 2 ( t )  > 0 and z ( t )  increases till x ( t )  2 x* - €2. Now if for 

then Cl-Q= G-C max(p,,x(t))+r(t) > S-X max(ps,x*)+E2-E1 > o . [m + - f f ( q( t ) )  + w], - rll(t)) 

A 
ql ( t )  = lim 

€SI ,€SI A-tO 
(14) 

Let $( t )  = (q i ( t ) ,  1 E L( i ) ) ,  denote the vector of such ql ( t ) .  To 
obtain a lower bound on qi ( t ) ,  we consider the auxiliary differen- 
tial equation 

t 2  > T ,  x ( t )  2 x* - € 2  and for some t 3  > t 2 ,  x ( t 2 )  < x* - €2, 
then consider t 4  = sup(t2 < t < t 3  : z ( t )  2 x* - € 2 ) .  Note that 
due to continuity of x ( t ) ,  x(t4) = x* - c2.  But then x (t4) > 0, 
which means that there is a 6 > 0 such that for t E ( t 4 ,  t 4  + S), 
we have x ( t )  > x* - € 2 .  This contradicts the definition t 4 .  Hence 
z ( t )  continues to remain above z* - € 2 .  

Arguing similarly, we can show that, given any arbitrarily small E, 
for sufficiently large t ,  we have, x ( t )  < z* + E .  

Now consider the case of non-unique x*, then any x* 5 
minsES, p, ,  will solve the Equation (VI). Then argue similarly 
to show that for any given E > 0, for t large enough, 
z ( t )  < minsESl ps + E. Hence the proof. 0 

tions(9). Let 1 < i < M .  I f foral ls  E 9, j < i 
Lemma A.3: Consider the partition of sets given by Equa- 

S€SI \S I ( i )  

E ;  ( t )  is the "error" in the flow of sessions that are assumed, by the 
hypothesis, to have flows that converge. Further define 

- -  
lim r,(t)  = r: 

t+w 

then for all s E 3, 
lim v,(t) = vJ 

The proof of Lemma A.3 is divided into two parts. In the first 
part we consider any session s E 3 and ,us 5 pi. For all sessions 
in 1 E C (i), we construct an auxiliary differential equation whose 
solution is a lower bound to ql ( t ) .  The solutions of the auxiliary 
differential equation for 1 6 Li converge to pi. The solutions 
for the other links converge to a value > p* .  This allows us to 
conclude that for large enough t ,  r, ( t )  > pi - E for any E > 0. We 
then argue that if for large enough t ,  r ,  ( t )  > pi, then the derivative 
i l l  ( t )  < 0 for all links 1 E Ci,  thus forcing T,  ( t )  to reduce. This 

t+w 

A 

and let d ( t )  = ( z ~ ( t ) ,  1 E L( i ) ) .  Observe that these ODES corre- 
spond to the isolated link problem at the ith step in the centralised 
algorithm. Now observe that 
I 

6; 
Hence 

-Cmax(p. ,ul( t ) )  5 Cj - C m a x ( p , ,  3EC. minuj( t ) )  
~ € 5 1  (i) SESl (i) 
given identical initial conditions for Equations (14) and 

(15), the conditions of Lemma A.l are satisfied with S I ( . ,  .) cor- 
responding to Equation (14) and g 2  (., .) corresponding to Equa- 
tion (15) and we have 

W(t) 2 Z l ( 4  Vt (16) 
Now using Lemma A.2 note that 21 ( t )  converges for all 1 E L( i )  
and also 

(17) 
Let 

(18) 
From Equations (16) (17) (18) we can conclude that 

lim x:l(t) = pi tll E L' 

lim xl(t) = ql > pi vz E c(i)\ci 
t - tm 

t+cc 

liminfql(t) 2 pi V1 E L ( i )  (19) 

j liminfr,(t) 2 max(ps,pi) vs E ~ ( i )  (20) 
t-+w 

t-tw 
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Now consider u E n Si. This is the set of all sessions that 
get bottlenecked at the ith iteration of the centralised algorithm 
and have a ma-min value of pi. Hence r: = pi (2 p,). By 
Equation (20) 

lim inf r, ( t )  2 pa (21) 
We now show that given an arbitrary 6 > 0, for large enough t ,  
r,(t) < pi + t, i.e., limsup,,, 7* , ( t )  5 pi Let ?I > maxcEr. I 
SL I ,  choose 111 such that 

t+co 

Note that 
pi +E?) < q[ -A* vz E C(i)\Cc“ 
pi +E?) < cyax - 7i$ v1 E C: 

( A  - 1)tl + (2 < 
Choose& > 0 and& > 0 such that 

Given ( 19 note that we can choose T large enough so that for all 
t > T ,  we have 

7 / l ( t )  > pi - v1 E Ci 
7) l ( t )  > q1 - E?) v1 E G(i)\Lc” 

I N )  I < E2 

If there exists some tl  > T such that r,(t) 2 pi  +A$, then for 
all 1 E ,Ci we have 
6; - f;(V(tl)) + &l) 

< 6; - (pi + 7i$) - 

< 6; - (pi + E+) - 

max(pJ, pi - < I )  + t z  

max(ps , pi) + ( E  - 1)<1+ €2 

S E &  (i)\{u3 

S€St ( i ) \ {u)  

< O  
Hence note that i l  ( t l )  < 0 for all 1 E C l .  Thus r,(t) will con- 
tinue to decrease till r,(t) < pi + E?). Now consider t 2  > T 
such that r u ( t )  < pi  + E$. It can now be shown (using an ar- 
gument similar to the argument in Lemma A.2) that, V t > t z ,  
T, ( t )  < pi  + E .  Since f is arbitrary and positive subject to Equa- 
tion (22), we have shown that for all sessions u E 9 n Si (i.e, 
those sessions that bottleneck at pi at the ith step of the centralised 
algorithm), we have 

(23) 
Now using Equation (21) and ( 23) we conclude that 

lim ~ , ( t )  = p* (24) 
Now consider those sessions with u E S with pu > pi. Let u E 
Sk , k 5 i and pi+’ 2 pu > pi. Note that from the hypothesis of 
the lemma and equation (24), we have that the rates of all sessions 
with max-min rates less than or equal to pi converge, i.e., 

lim r s ( t )  = r: vs s.t. r: 5 pi .  

Let 3 be the set of all such sessions Le., 
s i = { s :  s ~ ~ r : < p ~ }  

For all Z E L ( k ) ,  define 

lim sup r, ( t )  5 pa 
t-bw 

t+W 

t+oo 

Let 

sEslnS* 
Now over all 1 E L ( k )  we get the differential equations 

ct- 
[V I@)  + A(C; - $ ( t )  + ci(t))lO - V L ( ~ ) )  

A 
171 ( t )  = lim - 

A-tO 
(25) 

Proceeding in a manner similar to the previous case, observe that, 
if for large enough t ,  ~ l ( ; t )  > p, for all 1 E Ci, j 5 IC, then 

# ( t )  + r f ( t )  > z;” 
=vi ( t )  < 0 

Hence we can conclude that 
l imsupminV~(t)  5 ps 

t+a, l€L” 

0 
Proof of Theorem IV.l The asymptotic evolution of the stochas- 
tic approximation algorithm can be shown to be identical to the 
evolution of the associated differential equation [ 111. Hence it is 
sufficient to show that the trajectories of the associated ODE yield 
the ma-min allocation. Note that by an inductive application of 
Lemma A.3, we can show that 

lim r,(t) = r: Vs E S 
t+m 

* lim C - f(v(t))  = 0 
t 4 M  

3 lim ~ ( t )  = v* because v* is unique 
t+w 

Note that the initial point can arbitrary as long as it is within the 
rectangle IIIE~ [0, Cr”“]. Hence we now apply Theorem 2.3.1 
in [ 111 to conclude that the sequence (k) from Algorithm IV. 1 
converges to r]* . 
0 
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