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Abstract 
Tra,ffic spurces that do not have intrinsic temporal characteristics are expected 

to be transported over ATM networks using the Available Bit Rate (ABR) service. 
These sources are amenable to reactive flow control and are expected to use band- 
width left over after servicing the guaranteed QoS services (CBR and VBR). Fair 
allocation of the available bandwidth to competing ABR connections is based on 
the concept of Max-Min fairness. The ABR service definition allows sources to 
specify a Minimum Cell Rate (MCR) that is acceptable to them. Most studies of 
Max-Min fair rate allocation assume zero MCRs. In this paper, we first develop a 
natural extension of the concept of Max-Min fair rate allocation to the case of ABR 
sessions with nonzero MCR values. Then we present a centralised algorithm and 
discuss the construction of distributed algorithms for obtaining the Max-Min allo- 
cation. We show that the Max-Min allocation can be obtained as the solution of a 
certain vector equation, and discuss how such a perspective can help in designing 
stochastic approximation type algorithms for obtaining the Max-Min allocation 
when the available capacity is randomly varying. 

I. INTRODUCTION 
Data traffic services (such as file transfer, image transfer, hy- 

permedia document access, etc.) are expected to be carried via 
the ABR (Available Bit Rate) service in ATM networks. Network 
bandwidth left over after handling the guaranteed quality of ser- 
vice (QoS) sources (CBR and VBR) will be shared by the ABR 
connections in an ATM network. Such bandwidth is not guaran- 
teed, and will be variable, hence the ABR sources will need to be 
controlled [ 6 ] .  Since the sources of traffic (such as those listed 
above) that will use the ABR service do not have intrinsic tempo- 
ral characteristics, they are particularly amenable to reactive flow 
control in the network. An ABR session when established, is al- 
lowed to specify a Peak Cell Rate (PCR), and a Minimum Cell 
Rate (MCR). The MCR may be zero. A session’s available rate 
may vary but must not reduce to below its MCR. 

Congestion control for the ABR service must yield fair alloca- 
tions of available bandwidth to contending sources in addition to 
congestion contol. The notion of fairness adopted is “Max-Min” 
fairness (see [4] for a textbook treatment). Rate allocations based 
on binary feedback based schemes [I41 [IO] are oscillatory and 
do not yield fairness. The theory of max-min fair allocation de- 
veloped so far assumes zero MCR for the sessions. Algorithms 
based on zero MCRs assumptions are available in [7] [12] [3]. 

In this paper we develop a natural extension for max-min fair 
allocation with zero MCR to the case with non-zero MCR. We 
note that Kolarov et a1 [ 111 have briefly mentioned, the idea of 
Max-Min fairness that we develop here, without any theoretical 
justification. Further, we present a centralised algorithm and dis- 
cuss distributed algorithms for computing the max-min fair allo- 
cation with non-zero MCR’s, for a given network topology and 
session configuration. We also indicate that the perspective pre- 
sented here is useful for the introduction of stochastic approxima- 
tion algorithms for the max-min fair allocation problem. 

Nortel Memorandum of Understanding (November 1995). 
This work was supported by a research grant from NORTEL, under the IISc- 

This paper is organised as follows: Section I-A sets down some 
of the notation that is used throughout the paper; other notation 
used locally is defined where it arises. In Section I1 we develop the 
theory for rate allocation with MCRL 0 and present a centralised 
algorithm. In Section 111 we motivate and discuss distributed al- 
gorithms for computing the Max-Min solution. We conclude in 
Section IV. 

A. The Model and Notation 

We assume that a session comprises a source and a destination 
node; cells from the source node traverse a fixed sequence of links 
to reach the destination node. Thus the network topology, the link 
capacities, the sessions and their routes are all given and static. 
The cell stream from each source is viewed as a fluid. Each source 
has an infinite backlog of fluid, and can transfer it to the network 
at any specified rate I Every link has a fixed capacity to be shared 
among the sessions that use that link. 
We first describe some generic notation 

elements in, the set A.  
If A is a set, then I A I denotes the size of, or the number of 

q5 denotes the empty set. 
If (cl, 2 2 ,  . . . , 2,) is areal valued vector, then (531,52,. . . , Zn)  

denotes the elements of the vector ordered in ascending order. 
The following is a list of specific symbols that we have used 
S the set of sessions 
L the set of links 
Cl the capacity of link 1 E G 
C denotes the ordered set (Cl, 1 E L) 
L, the set of links used by session s E S 
Sl the set of sessions through link 1 E C 
ri the rate of the ith session, 1 5 i <I S I; T 

denotes the rate vector 
p, the minimum cell rate for session s E S 
M the set {,us : s E S }  
For a rate vector r ,  and 1 E C denote the total flow through link 1 
by 

S E S I  

The 3-tuple (G, C, S, M )  characterises an instance of the band- 
width sharing problem. Thus we will say, for example, that the 
rate vector r is feasible for (L, C, S, M ) ,  or that T is the Max-Min 
fair rate vector for (L, C, S, M ) ,  etc. 

Note that a maximum transfer rate from a source can be easily incorporated by 
augmenting the network topology with a source access link with capacity equal to 
the source transfer rate limit. 
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11. MAX-MIN FAIR BANDWIDTH SHARING WITH NONZERO 
MCR 

In this section we devdlop the theory of Max-Min allocation for 
non-zero MCR. To motivate the Max-Min solution with nonzero 
MCR consider the fair allocation problem for N sessions with 
MCRs (pi  , i = 1, , . . , N ) ,  on a single link with capacity C (> 
ELl p i ) ,  To solve this problem we consider the following ap- 
proach. Define the function 

N 

i= l  
and solve for v* such that 

Let the allocationci for each session i, i = 1, 
$7') = c 

ri = max(pi, r ] * )  
N be given by 

Fig, 1. n o  depictions of the function ~ ( q ) ;  the vertical bars in (a) are. the MCR 
values arranged in ascending order; the break points; in the piecewise linear 
curvein (b) are theseMCR values; ~ ( 0 )  = ciIl p,:. 

N 

It is useful to picture the function y(q) as shown in Figure 1. 
In part (a) of the figure, the pi values are arranged in ascending 
order and shown as vertical bars of increasing height; the value 
of 7. is shown as a line cutting across these bars; for this value 
of 7 each session with pi 5 r ]  takes the value: r ] ,  and every other 
session takes the value p i ;  the total flow is ~ ( 7 ) .  With part (a) of 
the figure in mind, we plot the function y(r]) vs. r ]  in part (b); the 
function is piecewise linear and the slope of the function at an r ]  is 
the number of sessions with MCR less than r ] .  Observe that with r]  
as shown in part (a) of Figure 1, and ri = max(pi, r ] )  1 5 i 5 N ,  
r]  is the minimum flow over all the sessions. 'This minimum flow 
is maximised by setting r ]  = r]* . Observe that this allocation has 
the property that a session can increase its rate only at the expense 
of some other session. 

It is interesting to observe that the session rates ri , 1 5 i 5 N ,  
obtained above, solve the following least squares rate balancing 
Problem. 

N 2 

Minimise (Ti - g) 
i = l  

N 

i = l  
This again emphasises that our approach extends the approach 

for zero MCRs in a natural way. 
To make the above idea precise for a network of links and ses- 

sions with arbitrary paths we need the following definitions. The 
development of the theory here follows closely the development 
of of the theory of Max-Min allocation for zero MCRs presented 
in [4]. 

Definition II.1: We call a rate vector r feasible for the problem 
(C, C, S, M )  if 
(i) for all s E S, r, 2 p, 
(ii) fora111 E C, fi(r)  = CSEs, r, 5 Cl. 
Note that the set of feasible vectors is non-empty iff for all 1 E 

C, xaES, p, 5 Ci. We will assume that this is so, with strict 
inequality, in all the following discussions. 

Definition 11.2: A feasible rate vector r is Max-Min fair for 
(C, C, S, M )  if it is not possible to increase the rate of a session 
s, while maintaining feasibility, without reducing the rate of some 
session p with rp 5 r,. 

Defnition 11.3: Given a rate vector r ,  a link 1 is said to be a 
bottle-neck link for a session j if 

(i) link I is saturated, i.e., f i(r)  = Cl, and 
(ii) for all the sessions s E Si, such that r, > p,,  T,  5 rj ; i.e., 

every session in 1, that is not at its MCR, has flow no more than 
that of session j, or equivalently r, 5 max(p, , r j )  
Recalling the notation in Section I-A, we give the following defi- 
nition. 

Rn. Then y is defined as lexicographically larger than 2 (de- 
noted > l e + )  if 91 > ZI, or if 

The following theorem gives two equivalent characterisations 
of the Max-Min rate vector. 

Theorem 11.1: If r is a feasible rate vector, then the following 
statements are equivalent: (i) r is Max-Min fair. 
(ii) Every session s E S has a bottle-neck link. 
(iii) r is lexicographically the largest among all feasible rate vec- 
tors. 
Proof: See Appendix A. 
U 

DefnitionII.4: Letz = (z1 ,z2 , . . . , zn) ,y= (y l ,y2, . . ' ,yn)  E 

= & then & > &, etc. 

Theorem 11.1 states that the Max-Min vector is the lexico- 
graphic maximum in the feasible set of rate vectors. This implies 
that every rate in the Max-Min vector is greater than or equal to 
the maximum of the minimum rate in any feasible rate vector. To 
obtain the minimum rate in the Max-Min rate vector consider the 
following linear program. 

Define the I C 1 x I S I matrix A with 0-1 elements, whose 
element in row I and column s is 1 if the session s flows through 
link 1; otherwise that element is 0. Let C denote a column vector 
of link capacities with row indices corresponding to those of the 
matrix A .  Let p denote the row vector of MCR values with column 
indices corresponding to those of the matrix A .  Let a: denote the 
row vector of the amounts by which the flows in a feasible vector 
T are more than the corresponding MCR values. In terms of this 
notation, the required linear program can be written as 

max r ]  

A(ar+p)  < c 
c,7 1 0 

x,+;, L r ]  V s E S  

Consider increasing r]  in the above linear program while allo- 
cating to each session the rate as the maximum of 7 and the ses- 
sion's MCR. Increase r]  till the capacity of at least one link is fully 

2Note that such feasibility will be ensured by an admission control procedure. 
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utilised (call such a link as saturated). In other words, defining 

SESI 

solve ~ ( 7 1 )  = Cl 
for every 1 E C, to yield ql, 1 E C; pick the smallest of these 
q l , l  E C. The value 17 so obtained can be shown to be the so- 
lution of the above linear program. Notice that the saturated link 
(or argminlELql) will be the bottleneck link for all the sessions 
through it. Consider now the network with all saturated links re- 
moved and the bandwidth utilised by their sessions in the other 
links subtracted from the links’ capacities and form the same lin- 
ear program in the reduced network. Continue this till all sessions 
have at least one saturated link. Notice that the rate allocation of 
the sessions so obtained is such that every session has at least one 
bottleneck link and hence the allocation is Max-Min fair. 

A. A Centralised Algorithm 

We now present a formal algorithm for computing the Max-Min 
solution. Each link 1 solves a “single link allocation problem” 
(as described earlier) on the sessions through it. The algorithm 
operates by creating bottlenecks for a subset of the sessions at 
each iteration. It terminates when all sessions have at least one 
bottleneck link. The algorithm can be seen to be an extension of 
the one for Max-Min rate allocation with zero MCR [4]. 

Algorithm II.1: The iterations are indexed by k ,  k 2 1. At the 
end of the kth iteration, the following variables are defined 
S(k ) :  the set of unbottlenecked sessions 
C ( k ) :  the set of unsaturated links 
fl(r(k)): the total flow in link1 
Fl(k ) :  the total flow in 1 due to the bottlenecked sessions 
nl ( k ) :  the number of unbottlenecked sessions through 1 
7~ ( k ) :  result obtained by distributing the residual capacity of link 
1 (after removing flow due to bottlenecked sessions) among the un- 
bottlenecked sessions; for links with no unbottlenecked sessions, 
r/ l (k)  = q l (k  - 1). 

Initialisation: k = 0, S(0)  = S ,  C(0) = C, and Vl  E C, q ( 0 )  = 
I Sl I , n ( O )  = O , q ( O )  = O,Fl(O) = 0. WhileS(k) isnotempty, 
do 

1. k + k + l  
2 .  Calculate ~ ~ ( l c ) :  q l ( k )  = ql(k - 1) if 1 L(k - 1) , If 

1 E C ( k  ~ 1) and Sl n S(k - 1) # 4 ,  then compute q i ( k )  by 
solving 
Cl - Fl(k - 1) - C,~s,”S(k-l) max(v(k),PLs) = 0 

3. Set the virtual rate of each unbottlenecked session to the min- 
imum of ql ( I C )  along the session’s path, Le., 

minier., vi(k) .Y E S(k  - 1) { ?%(k  - 1) otherwise 
4. Calculate the rate of each session as the maximum of the 

rs(k) = 

MCR and the virtual rate 
r , ( k )  = max(P3, is(k)) 

f l( .(k))  = CSES, rs(k> 

C ( k )  = ( 1  : f l ( T ( k ) )  < Cl} 

5. Calculate the new total flow through each link 1 E C. 

6. Find the new set of unsaturated links. 

7. Find the new set of unbottlenecked sessions; these are the 
sessions all of whose links are in C ( k ) .  

S ( k )  = { s  : C, c C ( k ) }  
8. Find the flow in each link 1 E C due to the bottlenecked ses- 

sions. 

The parameter ql(lc) is called the link control parameter; if a 
session using link 1 is above its MCR then its rate must be less 
than or equal to q l ( k ) ;  considering this requirement for all the 
links in the path of a session, if the session s is above its MCR, its 
rate can be no more than the virtual rate ? , ( k ) .  

Theorem 11.2: If M denotes the number of iterations executed 
by Algorithm 11.1, then T,  ( M ) ,  Vs E S is the Max-Min alloca- 
tion. 
Proof: See Appendix B 

111. DISTRIBUTED ALGORITHMS 

Algorithm 11.1 is a centralised scheme. At each iteration in- 
formation about every link is required either to assert whether 
sessions have bottlenecks and/or for computing the link control 
parameters. Thus centralised algorithms are of little value in prac- 
tice. In this section we discuss distributed algorithms that com- 
pute the link control parameter (c.f., Section 11-A) at the links. 
We mention an extension of Charny’s Algorithm [7], which im- 
itates the centralised Algorithm 11.1 in a distributed manner and 
then discuss distributed algorithms that operate without informa- 
tion exchange between the links. 

A. Charny ’s Algorithm 

Note that a link can compute its own control parameter (c.f., 
Step 2 of Algorithm 11.1) once all sessions through it that have 
bottlenecks in other links can be determined and the rates they use 
are found (i.e., computing f i ( k  - 1) in Algorithm 11.1). Hence 
a message passing methodology is needed to make such infor- 
mation available at each link; then a distributed algorithm can be 
implemented. In [7 ] ,  Charny proposes a single bit based message 
passing scheme for this purpose. The work in [7] was done with 
the assumption of zero MCRs. We can use her message passing 
scheme in conjunction with the link control parameter computa- 
tion in step 2 of Algorithm 11.1 to give a distributed algorithm for 
Max-Min computation for the case where MCR’s are nonzero. 

B. Autonomous Distributed Algorithms 

We now consider algorithms that do not explicitly exchange in- 
formation between links. To motivate the construction of such 
algorithms consider Algorithm 11.1. If M is the number of iter- 
ations executed before termination, then the set G( M )  gives the 
set of links that are not bottlenecks for any of the sessions. Con- 
sider the link control values computed by Algorithm 11.1; if we 
retain the link control values computed for the links that are bot- 
tlenecks for some sessions, and increase the link control values of 
the “nonbottleneck” links, the rate allocation still remains Max- 
Min fair. Note that at each execution of Step 2 of Algorithm 11.1, 
the link control parameter is computed to maximise link utilisa- 
tion. The following theorem relates the two ideas of maximising 
link utilisation and obtaining the Max-Min allocation. 
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Theorem III.1: Given M as the number of iterations that are 
executed by Algorithm 11.1 to solve a given Max-Min problem 
(C, C, S, M ) .  Let C ( M )  be as given in Algorithm 11.1. Consider 
any vector (ql , 1 E C) such that 

Then the-allocation obtained as 
r, = max(p,, min q j )  

3 E f .  
is the Max-Min allocation. 
Proof: See Appendix C. 
0 

Considerthe case when there are no nonbottleneck links, i.e., 
C( M )  is empty and every link is a bottleneck for at least one ses- 
sion. Let q = ( 1 7 1 ,  1 E C) be the vector of link: control parameters 
and C =-(Cl, 1 E C) be the vector of link control parameters. 
Define a vector function f ( q )  = ( f i ( q ) ,  1 E L )  with - -  - 

then by Theorem IIIIi,-ihe Max-Min allocatiion can be obtained 
by solving 

For each value of - -  Q, fi ( q )  7s just the total flow in link 1. A dis- 

tributed algorithm can be viewed as one that solves the above vec- 
tor equation. One approach to deriving a distributed algorithm 
can be the following. Given a bottleneck link whose capacity 
is not fully utilised, we increase the link control parameter un- 
til the capacity is fully utilised. Similarly, given a link with total 
flow through it exceeding the link capacity, we decrease the link 
control parameter to maintain feasibility. One such additive in- 
crease/decrease algorithm was presented by Hayden in [9]. Some 
simple modifications to it were made by Mosely in [ 131 in order 
to prevent the link control parameters from increasing infinitely 
in non-bottleneck links. Hayden's Algorithm has been adapted to 
our framework in the following algorithm. 

f(g) = c 

Algorithm III.1: Initialisation: IC = 0, V l  E C Do forever 
1. ICtICSl 
2. For all 1 E C update the link control numbers. 

Cl - CSE& r s ( k  - 1) 
ql(IC) = maxi,(k - 1) + 

s €SI n I 

3. For each session s E S ,  update the virtua1l"session rates. 
+,(le) = minql(k) 

1 E f s  

4. Each session s E S calculates is actual allowed rate. 
0 r s ( k )  = max(+,(k), p , )  

Theorem 111.2: The rates .,(IC), s E S ,  Algorithm 111.1 con- 
verge to the Max-Min value. 

The proof of this algorithm with no MCR requirements was 
provided by Mosely in [ 131. We have proved 'fieorem 111.2 along 
the lines of Mosely's proof. The details [2 ]  are not provided due 
to lack of space. Another algorithm which uses a multiplicative 
increase/decrease scheme at the links has been discussed in [8]. 
Since these algorithms attempt to solve f(q)  =- C, unlike the one- 
bit feedback based increase/decrease algorithms [ 141 [ lo], they 

can be shown to yield Max-Min fair rates. We have proved con- 
vergence for a class of such synchronous algorithms [ 2 ] .  Note 
that for such algorithms the MCR's need not be known at the 
switches; thus time varying MCR's can be supported; this may 
be useful with sessions that do not behave as if they are infinitely 
back1 ogged . 

IV. CONCLUSION: TOWARDS STOCHASTIC ALGORITHMS 

In this paper we developed a theory for Max-Min fair band- 
width allocation for sessions with nonzero MCRs. The theory 
developed is a natural generalisation of the theory for Max-Min 
allocation of bandwidth for sessions without MCR requirements; 
the Max-Min fair rate vector obtained for the nonzero MCR case 
is also the lexicographic maximum of all the feasible rate vec- 
tors. We presented a centralised algorithm for the computation 
of the Max-Min fair rate vector. Finally we motivated a class of 
distributed algorithms by showing that the Max-Min vector is ob- 
tained by solving a vector equation. 

The theory of Max-Min fair allocation developed so far as- 
sumes that the capacity available for ABR sessions is constant. 
As indicated in the beginning of this paper, the ABR sessions are 
expected to utilise the bandwidth left over after servicing the guar- 
anteed QoS traffic such as CBR and VBR. The inherently bursty 
nature of VBR traffic implies that the left over bandwidth would 
be varying. In Section 111-B we showed that the Max-Min alloca- 
tion could be obtained by solving a vector equation. If we view 
the available capacity as a mean capacity corrupted by noise, then 
the Max-Min allocation problem can be viewed as the search for 
the root of a function with noisy observations. Such problems are 
effectively handled using stochastic approximation algorithms [5], 
and we are currently exploring the usefulness of these techniques 
in  the ABR flow control problem [ 2 ] .  

APPENDIX A 
Proof of Theorem 11.1: 

(i) (ii): Let r be max-min fair. Let 3s E S such that s does 
not have a bottle-neck link. Then, for each 1 E C, do one of the 
following 

(a) if C1 > f i ( r ) ,  then let 6l = Cl - f i ( r )  
(b) if Cl = f i ( r )  and 3k E Sl such that r k  2 ,u3 and rk > r,, 

then let 61 = rk - T ,  

(c) if Cl = fl(r) and 3k E Sl such that pk > r ,  and r k  > ,uk, 
then let 61 = rk - pk 
Finally, let 6 = minlELc, 61. Adding 6 to r,, and subtracting it 
from an appropriate rp with rp > r ,  if necessary to maintain fea- 
sibility, we can increase r ,  without affecting any rp with rp 5 r , .  
We have a contradiction. 
(ii) + (i): Every session s has a bottle-neck link, say 1,. If we 
want to increase T ,  , then we must decrease the rate of some other 
session in I , .  Every other session p in I , ,  however, either has 
rp 5 r,, or rp = ,up; reducing the rate of a session with rp = p p  
will violate feasibility. 

maintaining feasibility requires that some rp with rp 5 r ,  be 
decreased. The newly obtained sequence is lexicographically 
smaller. Hence the max-min fair vector is lexicographically the 
largest in the feasible set. 

( i )  =+ ( i i i ) :  If r is max-min fair, then increasing T ,  while 
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(iii) + (ii): Suppose there is a session s that has no bottleneck 
link, Then we can increase r ,  by an amount E > 0 without de- 
creasing any of the other flows j E S with rj < r,, while main- 
taining feasibility. The new flow is lexicographically larger than 
r ,  thus contradicting (iii). 
0 

APPENDIX B 

Lemma: Let M be the number of iterations executed by Algo- 
rithm 11.1. Let k E (1, , . . )  M}. Let l E C ( k  - l)\C(k), i.e., 
the link 1 is saturated at iteration k. The sequence of link control 
values q1 (i), i = 0, . . . IC is a nondecreasing sequence. 
Proof of the Lemma: Note that ql(1) 2 q i (0 )  since Cl > 0 for 
all 1 E C, hence the statement is true for k = 1. Now consider 
k > - 2 and 1 < i 5 k. q ( i  - 1) satisfies the equation 

Proof of Theorem 11.2: 

CL - f i ( i  - 2) - max(ps, q(i - 1)) = o (1) 
s €SI ns(i - 2) 

and q1 ( i )  satisfies the equation 

G - . ~ i  - 1) - max(ps,  ql( i ) )  = 0 (2) 
s€SlnS(i- i )  

Recall that S( i ) ,  i 2 0 is a strictly decreasing sequence of sets of 
sessions. Observe that f i  (i - 1) exceeds f i  (i - 2) by the total flow 
of sessions in link 1 that leave S(i  - 2) at the end of the (i - 1)th 
iteration, i.e., 

Fl(i - 1) = Fl(i - 2) + , P,(i - 1)) 

(3) 
Note that the sessions 5 E Sl fl (S( i  - 2)\S(i - 1)) are the ses- 
sions through link 1 that have one of their other links saturated in 
iteration i - 1. Using Equation (3), we can rewrite Equation (2) 
as follows 

c 
s€Sln(S(i-2)\s(i-l)) 

ca - Fl(i - 2) - 

- max(ps,qi(i))  = 0 (4) 

c m=(ps,  P,(i - 1)) 
,€SI n(s( i -z) \s( i -  1)) 

9 ES, ns(i -  1) 

From step 3 of Algorithm 11.1 we have 

i,(i - 1) 5 q l ( i  - 1) Vs E S1 n (s(i - 2)\S(i - I)) ( 5 )  
Hence Equation 4 holds only if 

771(i) L V l ( i  - 1) (6) 
This proves the lemma. 

Returning to the proof of the theorem, it is sufficient to show 
that each s E S has a bottleneck link. Consider s E S; there is 
a IC such that s E S(k  - l)\S(k), i.e., s has at least one of its 
links saturated at iteration I C ,  let 1, be one such link, then note that 
I ,  E C, n ( C ( k  - l)\L(k)). Now 

- 1) + c rq(k) + rs(k) = Cl# (7) 
PE (SI I )  \ t s l )nS(k-  1) 

Now Vp E Sls note that q E S(m, - l)\S(mq) for some mq E 
{ 1,.  . . , IC}. It follows that 

Tdk) = d m q )  = m = ( P q > g y ? l ( m q ) )  I maX(Pq,%,(mq)) 
( 8 )  

By the Lemma ql (m), m = 1, . . , , k is a nondecreasing sequence, 
hence we get 

(9) 
Recall that 71, (IC) satisfies 

Fl.(k - 1) + max(pq, 77l,(k)) = CL (10) 

d k )  I m=(Cls, vdmq)) -5 max(pu,, 77l,(k)) 

PE&. n S ( k -  1) 
From Equations (8) and (9) it follows that for Equation (10) to 
hold, it must be the case that 

7 8  (4 = max(/.s I 771, (W (1 1) 
Thus 71, (IC) 5 r,(k) and Vq E 

dW I max(pq, r s (k>)  (12) 
Hence by Definition 11.3, I ,  is a bottleneck link for s E S. 
Thus every session s € S has a bottleneck link. 
Note: In fact, Equation (9) must be an equality for all q E S18 n 
S(k  - 1); hence I ,  is a bottleneck linkfor all q E SI ,  n S(IC - 1). 
0 

we have 

APPENDIX C 
Proof of Theorem 111.1: It is sufficient to show that every ses- 

sion s E S has a bottleneck link. Consider any s E S .  Let 
1, E L,\C(M) be such that 

Hence, 

It follows that Vq E 81, 

Hence by Definition 11.3, I, is a bottleneck link for s E S. 

71, = ?in q j  
JELC. 

vs = ma+,, ql,) 

r g  5 max(pg, 9.) 5 max(Pq, rs) 
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