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IV. DISCRETE LTR VIA THE KALMAN FILTER DESIGN 

We now use the results of the previous section to establish a 

Lenzmn 1: In a SISO system. given X = p. then GI,  f~ = H (  : I -  

froof: Choose a balanced state space realization. Assume X = 
= (1. Then 

discrete time LQGLTR result through singular Kalman filtering. 

F)p’ .Uf ’  is equal to G1.v = - Z i ( : I  - F ) - ’ G .  

Theorem 2: In a SISO system. provided <let( H G )  # 0 and T‘( :) 
is minimum phase. then given p = 0 

froofi It is shown in [ 5 ]  that provided <let( H G )  # 0 and P( L) 
is minimum phase then 

Equation (30) is true Vp. Choose p = p * .  From Theorem 1 the left- 
hand side of (30), which is equal to P(z)Ckz(:), is the same if 
we interchange X and p .  That is if X = p’ and (1 = 0. From the 
previous lemma, the RHS of (30) is equivalent to &Q(:) if = 0. 
The theorem result follows. 0 

V. CONCLUSION 

We have demonstrated that in the special case of a SISO plant, a 
relationship exists between the discrete time LQ design and Kalman 
filter design. As a result of this, loop transfer recovery is possible 
through the Kalman filter design. 
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Optimal Control of Arrivals to Queues 
with Delayed Queue Length Information 

Joy Kuri and Anurag Kumar 

Abstruct-We consider discrete-time versions of two classical problems 
in the optimal control of admission to a queueing system: i) optimal rout- 
ing of arrivals to two parallel queues and ii) optimal acceptancdrejection 
of arrivals to a single queue. We extend the formulation of these problems 
to permit a k step delay in the observation of the queue lengths by the 
controller. For geometric inter-arrival times and geometric service times 
the problems are formulated as controlled Markov chains with expected 
total discounted cost as the minimization objective. 

For problem i )  we show that when k = 1, the optimal policy is to 
allocate an arrival to the queue with the smaller expected queue length 
(JSEQ: Join the Shortest Expected Queue). We also show that for this 
problem, for k 2 2, JSEQ is not optimal. 

For problem ii) we show that when k = 1, the optimal policy is a 
threshold policy. There are, however, two thresholds i n 0  2 111 1 > 0, such 
that J)>O is used when the previous action was to reject, and JT I  1 is used 
when the previous action was to accept. 

I. INTRODUCTION 

Problems in the control of queueing systems often arise in com- 
munication networks, computer systems, and manufacturing systems. 
Explicit structural results for optimal policies in such control prob- 
lems are usually very difficult to obtain and have only been derived 
for the simplest of problems (see, e.g., [16], [15], 131, (41, [lo]. and 
[12]). All of these formulations assume that at the decision epochs 
the instantaneous queue length information is available to the control 
algorithm. In practice, however, the controller may only be able to 
observe old queue lengths. For example, in a packet communication 
network or a distributed computer system. the source of traffic (that 
is to be controlled) and the sink of traffic (at which congestion is 
of concem) are connected by communication links, and consequently 
there are propagation delays. 

We consider discrete-time and delayed queue-length information 
versions of two classical problems for which explicit structural results 
have been obtained for the zero delay case in the above mentioned 
references. 

The first problem is that of optimally allocating arriving customers 
to one of two parallel queues so as to minimize the expected total 
discounted number in the system. For exponential service times 
the optimality of the join the shortest queue (JSQ) policy is the 
well-known result for this problem ([16], [15], (31). We consider 
a discrete-time version of this problem, with geometric inter-arrival 
times and geometric service times. Further, we assume that the queue 
lengths are observed only after a delay of k time steps, whereas, of 
course, all the previous control actions are known to the controller. 
We show that for k = 1, the optimal policy is for the controller to 
calculate the expected queue lengths conditioned on the most recently 
known queue lengths (i.e., for 1. = 1, the one-step old queue lengths) 
and the controls applied since then (i.e., for k = 1, the last control 
action), and then allocate an anival to the queue with the smaller 
expected length, i.e., the policy is now join the shortest expected 
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queue (JSEQ). We also prove that for k 2 2. JSEQ is no longer 
optimal by giving an example in which a different policy does strictly 
better (for a suitable value of the discount factor). 

The second problem is that of optimally accepting or rejecting 
customers amving to a single queue so as to minimize the expected 
total discounted cost. where there is a fixed cost per unit time for each 
queued customer and there is a reward for each accepted customer. 
For general i.i.d. amvals and exponential service times it has been 
shown that the optimal policy is of threshold type, i.e., there is 
an integer I I ~  such that arrivals are accepted so long as the queue 
length is less than t i t  and rejected otherwise. We consider a discrete- 
time version of this problem. with geometric inter-amval times and 
geometric service times. Further. we assume that the queue length 
is observed at the controller only after a delay of k units. We show 
that for I. = 1, the optimal policy is again of threshold type. There 
are two thresholds 1 1 1 0  2 I I I  1 > 0; when the previous action was to 
accept (respectively, reject) the policy is to accept an arrival if the 
queue length one step back was less than l i t 1  (respectively, 1110) .  

In each case the approach is to formulate the problem as a 
completely observed controlled Markov chain, whose state is the 
queue length(s) X. steps back. and the previous k control actions. In 
each problem, the optimal value function is shown to possess certain 
natural properties. These when used in the Dynamic Programming 
equation yield the desired structural properties (see [4]. [14], and [ 7 ] ) .  

The problem of control of discrete-time systems with delayed 
information has been considered before in the contexts of delayed 
information sharing patterns in decentralized control ([ 171, [13], [6]) 
and routing under imperfect information ([2]). Our problems can be 
cast into the framework of [13] if we consider two “controllers,” 
one of which only makes noiseless observations (the full history) 
and exercises no control, and the other only controls and has no 
observations of its own. The information is shared after a delay of k .  
But since our problems can be formulated as Completely Observed 
Controlled Markov Chains with the state being the queue length(s) k 
steps back, and the past 1. actions at the controller, the Conjecture in 
[13, Section I] holds true for every k in our problems. 

In [2], Beutler and Teneketzis develop a general approach for 
showing the optimality of switch-type policies for the routing problem 
under imperfect information. They provide conditions for the value 
function to possess the property of submodularity, which implies 
that a switching-type policy is optimal. The formulation in [2] is 
different from ours, however, in the following respects: a) arrivals 
are perfectly observed by the controller, b) it is assumed that a finite 
number of amvals occurs, and c) the feedback delay is random. With 
our approach, we are able to provide a complete characterization 
of the optimal policy that is of switching type, without recourse to 
submodularity. 

Results that are closely related to our results for the flow control 
problem presented in this correspondence have been arrived at 
independently by Altman and Nain [l] .  We note that a summary 
of our results reported here has already appeared in [8]. 

Our note is organized as follows. In Section I1 we present the 
results of the problem of optimal routing to parallel queues. In 
Section 111, the problem of optimal acceptance/rejection of arrivals is 
presented. We conclude in Section IV. 

11. OPTIMAL CUSTOMER ALLOCATION TO Two PARALLEL QUEUES 

In this section, we consider the classical problem of optimal 
customer allocation to two queues in parallel, with the additional 
feature that the queue lengths are available at the scheduler not 
instantaneousl!. but only after some delay. 

In our model, we assume that time t is discrete. Let ( ql  ( t ). q~ ( t  ) ) 
denote the discrete-time queue length process, where by “queue 
length’ we mean the total number in the queue, including the service 
position. At time t .  t E (0.1.2. .  . .} the controller must decide on 
a control action (I  ( t  ) E { 1.2) .  and is allowed only to observe the 
queue lengths until time t - I; and, of course, knows all control actions 
until time t - 1. In particular, we assume that at time zero the process 
has already been evolving since time - k  and the controller is given 
( q1 ( - k ) .  q~ ( - k )  ) and ( ( (-A*). ( I  ( - k  + 1). . . . . II ( - 1)) ;  this is the 
given initial condition. The problem is to choose { I I  (0) .  ( I  ( 1). . . . }  
so as to optimize a cost function. 

We remark here that the controller does not use any information 
about the arrival process. This models situations where the controller 
has access to the queue lengths (delayed) but cannot see the arrivals. 
For example, if the control action has to be computed at the queues 
and sent to the router, then a decision made by the controller impacts 
the queue lengths after a round-trip delay, and the arrival information 
during this period is unavailable to it. 

The amvals and departures occur as follows. An arrival occurs 
to the system with probability X at t = TI+. I I  2 - k ,  and a 
departure occurs from a nonempty queue with probability / I  at 
t = 1 1 - .  t i  2 - k  + 1. The control action at t = 1 1 .  1 1  2 - k .  decides 
to which queue an arrival at t i +  must be routed. If no customer 
amves at TI+  then the decision has no effect. 

Thus the scheduler, at time t ,  has the information 

{ { q J t  -l)};:;.i = 1.2)  

and 

We need a policy 7r for choosing { u ( O ) . t / ( l ) . r r ( Z ) . . . }  so as to 
minimize the cost function 

1 €:(“I [e . ~ “ ( x + q l ( ” ) + q r l z ( t I ) )  
, I  =o 

where 

s ( 0 )  = { { q t ( - k ) } .  i = 1.2.{c/(-k):“.l/(-l)}} 

and J E (0 .1 )  is a discount factor. It is clear that ( X + q l ( ~ )  + q 2 (  t i ) )  

is the expected holding cost of customers in the interval I t  E 
(0.1.2. .  . .} if the holding cost per customer per time step is 1. 

The problem posed above can be formulated as a partially observed 
controlled Markov chain (PO-CMC), and then converted into a 
completely observed controlled Markov chain (CO-CMC) with the 
state being the “information state” (see, for example, [ 5 ] ) .  It is, 
however, quite natural to formulate this problem directly as a CO- 
CMC, which we proceed to do here; the formulation as a PO-CMC 
and the conversion into the corresponding equivalent CO-CMC are 
not shown owing to lack of space (see [9]). We show the formulation 
for k = 1. This is for ease of notation and clarity. It should be clear 
what the formulation for k 2 2 is. 

We list the elements of the CO-CMC for k = 1 as follows 
a) State at time t i  

S ( T t )  = ( ( l , ( I i  - 1).y2(ti - l ) . U ( T t  - 1))  VI1 E.\’. 

So the state space is ,\- x .\- x {1.2}. 
b) Action at time rt 

U(??) E (1.2)  V?i E -\‘, 

So the action space is { 1.2}. 
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c )  Transition Probabilities: Let 

i = ( i I . i L .  r v i  

j = ( j l .  j , .  w j .  i l .  i l .  j l .  j ,  E .\-. 1 ' .  I C '  E { I . ? ) .  

Then 
Prob(s(i1 + 1 )  = j I . s ( n )  = i .  u ( n )  = d )  = I { l r ,  = d )  

x Prob(qI(i i)  = j i . y l ( u )  = j 2 1 y 1 ( r t  - 1) = i l .  

Y J ( / t  - 1) = / 2 . I / ( T l  - 1) = I , ) .  

We denote by P,. the .I-' x .Ip2 matrix with elements 

Prob(ql(i1) = j ~ . q i ( n )  = j 2 l y I ( r t  - 1) 

= i 1 . q 2 0 t  - 1) = i 2 . f / ( / /  - 1) = I , ) .  

Consider a function f: + R and think of it as a column 
vector on -\*'. whose (.rl. .rz)th element is f ( . r l . . r 2 ) .  Now for an 
.\*? x .\-2 matrix (say Q), denote by Qf the column vector on .IF2, 
whose (.1']..1'2)th element (i.e., (Qf)( . r l . . r2))  is the product of the 
(.I' . .1'2 )th row of Q and the column vector f. 

Define U :  .\e2 + R, with u( .rI . . r2)  = .r1 + .r2. Also define 
"arrival" and "departure" operators (L and d as follows 

nl( , r l . . r2)  = ( . r 1  + l . . r a ) .  

n2(,r1..r2) = (s1.sa + 1). 

h l ( , I ' l . X 2 )  = ( ( x 1  - l ) + . J 2 )  

etc. Then ( Phr j ( y l  . y~ ) is the expected total population in the two 
queues given that the queue lengths one step back were ( y l  . y . ~  ) and 
the previous control was 1 3 .  

Defining 

( P f l ) ( y )  = , 1 T r { d h ( y ) )  + d & ( y ) ) }  
+ / 1 2 a ( d l ( M y ) ) )  + F 2 d g )  

we see that 

(P, .o)(y)  = % P o ) ( y )  + WPo)(n, .y) .  

d) The one-step cost is defined to be 

C ( . S ( 7 1 ) . I I ( / / ) )  = E [ r r ( n )  + y 1 ( 1 1 )  + y n ( l I ) ~ s ( I l ) ]  

= A  + ( ~ u ( , , - l ) U ) ( Q 1 ( "  - l ) . Y 2 ( [ ?  - 1))  

where ( ( ( U )  E (0 .1)  indicates whether there was an arrival 
at time 11 or not (one if there was an arrival and zero if not). 
We note that c(  s (  1 1  ). 11 ( TI ) ) does not depend on U ( R ), since the 
arrival at 1 1 ,  if any, must be routed to one of the two queues. 

e) Performance Criterion: We use the discounted cost criterion 

1 J $ (  Ti. s (  0 )  ) = E,;") Jf' c( s (  12 ). 11 ( f 1  ) ) F , t = O  

where s ( 0 )  is the initial state, TT is the policy, and J E ( 0 . 1 )  
is the discount factor, and Et(o) denotes expectation under the 
law of the controlled process with policy TT and initial state 
S ( 0 ) .  

We observe that . J ' ( T . . S ( O ) )  exists, since c ( s ( n ) . u ( i i ) )  can grow 
at most linearly with / I  while the discount factor .?" decreases 
exponentially, and thus dominates. Therefore, applying the Bounded 
Convergence Theorem, we can take the expectation inside the sum- 
mation, and substituting for r(s( i t ) .  U (  n ) ) .  we find that 

J ' ( T . S ( O ) )  = E:(") , ~ " ( X + q , ( f I ) + y l ( i I ) )  . [i' n = O  1 
Thus the performance criterion is nothing but the expected total 
discounted population in the two queues; this is the same as the 

A. O p t i m l i 8  of JSEQ f o r  One-Step Delay 

to be chosen from this epoch onwards. Define, for t f  E { 1.2}  

~ " ~ ( s ( i ~ ) . ~ / ( n ) )  . 

Let the initial state be s ( 0 )  = ( . I . I .  .I,?. t l ) ;  the control actions are 

[i' , d  =I1 1 1-*( . r l . . /~2 . t l )  = inin ET,I ,~ (,, 

For ease of notation and readability, we shall write l - * ( . r ~  . .1 '2 .  i f )  as 
1 >* (.I' I . .r2 ). Then the dynamic programming equations are 

I 7 : ( . r 1 . . r 2 )  = iiiin{<,((.rl..r2. I ) .  1) + , j (P1lr ; ) (xi . . r2) .  

f . ( ( . I ' l . , I . 2 .  1 ) . 2 )  + j ( P 1 l > * ) ( , I ' I . J 2 ) }  

+ ,j illill{ (PI I-,+ ( . r I  . .re ). (PI 1 >* ) ( X I .  .r2 ) }. ( I )  

= A  + ( r l f f ) ( . r l . . l ' 2 j  

Similarly 

1 ; * ( . r 1 . . r 2 )  = A  + (P2f f ) ( . l~I . . I 'J)  

+ j iiiiii{ (PJI-; ) ( . r , l .  .1'2 ). ( Pll >* ) ( . r l .  .I'% ) } .  ( 2 )  

Formally, the function 1 - *  ( ~ 1 .  ~ 2 .  I / )  can be viewed as the unique 
fixed point of the dynamic programming operator T (defined below). 
Let S := . \ -x- \ *  x { 1 . 2 ) :  S is the state space of the problem. Define 
the norm of a real-valued function I '  defined on S as 

where 1 1  . 112 is the l 2  norm, V is the max operator, and I' > 0 is 
an integer (see [ 111 and [9, the Appendix] for details). Consider the 
space of real-valued functions 

V = { I S :  S 4 R such that 1 1 1 1 1 1  < x) 

metrized by the metric / I (  r .  ( 1 3 )  := - 1 1 . 1 1  for I , .  K E V .  Thus 
V is the space of real-valued functions on S that increase at most 
polynomially in the 12 norm of ( .I'  1 . .r2. c l )  E S. It can be seen without 
difficulty that the optimal value function in our problem belongs to 
the space V .  Define the operator T that picks a function f E V and 
transforms it to another function Tf as follows 

(Tf ) I ( . I ' I  . ./'2 ) = X + ( PI o ) ( ~ 1  . .('? ) 

+ 1 iiiiii{ (PI f l  ) (  ~ 1 .  .I"L ). (PI f2 ) ( . r1 .  .r2 ) )  

( T f ) 2  ( . I ' I .  X.L ) = X + ( P ~ m ) ( . r  I .  ~ 1 )  

+ I l l i l l {  ( P,fl ) (  .rI . ,rz ). ( P2f2 ) (  , r 1 .  .1'2 j } .  

It can be shown (see [9, the Appendix] for details) that ( V .  ( I )  is a 
complete metric space, that Tf E V and moreover, the operator T 
has a unique fixed point in V .  Noting that (1 )  and (2) can be written 
as 1 -*  = TI - * ,  it is clear that 1 - *  is the fixed point of 7. 

We shall show that the optimal value function 1 ;; ( X I .  .1'2 ) ). ( I  E 
{ 1.2}. has the following properties: 

PI )  l;*(o,.r) 2 l ;*(.r) . i . j  E {1.2}. i.e., 17:(.) and I>*( . )  are 
coordinate-wise increasing. 

P2) 1 ;* (a) = 1 F (x'). which is a consequence of the symmetry 
of the system ( i f s  = ( x I . . I . ~ ) .  then c' = (.r1..1'1). 

P3) Vs with ,r 1 < . t 'Z .  1 -: (a) 5 1 ;* ( L).  P3) says that if the initial 
state is more "unbalanced' then the cost associated with i t  
is more. If .I' I < .r2 then the initial state ( ~ 1 .  .ra. 2 )  is more 
unbalanced than ( X I .  ,1 '2 .  1 ) in the sense that if we start with 
( X I .  . r ~ .  2 ) .  it is more likely that one server will starve while 
the other has a queue of customers waiting for it. 

P4) Vs with .r1 5 .r2.T;*(hl(n2(s))) 2 l ; * ( L ) . i . j  E (1 .2) .  
P4) also says that the cost associated with a more unbalanced . .  

criterion presented in Section 11. state is more. 
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The above properties are established in the following lemmas and 
theorems. We remark here that the difficult part is to obtain a closed 
set of properties (e.g., Pl)-P4) above): the proof that the optimal 
value function has these properties is a matter of writing down the 
expressions and checking through various cases. In the proofs of the 
results that follow, this theme occurs repeatedly; we shall not give 
the details for want of space-see [9] for details. 

Lemma 11-A.1: Let 1'1: , f O 2  + R.il2: ,f*2 -+ R be two functions. 
If i , l ( . r )  and Y~(s) satisfy the relations in Pl)-P4), then ( P t , l ) ( L )  
and ( Pt,z ) (2) also satisfy the same relations. 

Proof: Several cases arise that need to be routinely checked. 
0 

Lemma 11-A.2: If 1 '  E V has PI)-P4), then Tt,  E V has Pl)-P4); 
i.e., the dynamic programming operator T preserves Pl)-P4). 

Proof: The fact that T I '  E V is proved in [9, Appendix]. To see 
that T I S  has Pl)-P4), we write down the expressions for Tu and use 

0 

Proof: We first observe that the function r(s) = 0 . v ~  E S 
has properties Pl)-P4) trivially. Next, consider the set of functions 
H = { i s  E V :  t '  has Pl)-P4)}. Using the fact that convergence under 
p implies pointwise convergence (see [9, Appendix] for details), it 
can be proved that H is a closed set. Now the claim follows from 
Lemma 11-A.2, and the facts that 1 -*  ( .) is a fixed point of T and H 
is a closed set. 0 

The following lemma helps to characterize the optimal policy: 
LemmaII-A.4: Let e 1 ( s )  = ,r1 and e g ( s )  = X I .  For O <  A <  1 

Lemma 11-A.1 (details in [9]). 
Theorem 11-A.3: I - *  (.1.1. .rl.  d )  has properties Pl)-P4). 

and 0 < ci < 1 

< ,r2 e (Pl?l)(.r)< ( P l P 2 ) ( S )  

.r1 2 .rl @ ( P 1 r l ) ( x ) > ( P , e z ) ( s )  

and similarly 

.rl 5 .r2 e ( P l e l ) ( s )  < ( P ~ P ~ ) ( L )  

s 1  > .r2 t) ( A e 1 ) ( s )  > ( P 2 c 2 ) ( s ) .  

(Remark: Note that, for example, (PI e1 )(x) is the expected queue 
length in queue 1 given that the state one step back was .I: and the 
previous control was one). 

Proof: This is a matter of checking the expressions. 0 
Let s (  r t )  = (s. I )  where 1 = 1 or 2. Define the join the shortest 

expected queue (JSEQ) policy as that which chooses U (  n )  = 1 if 
(P re l ) ( , r )  < ( P , e , ) ( s ) ,  and i i ( t i )  = 2, otherwise. The name follows, 
because 

E[y1( 11 )I . \(  ) I  I ]  = (P ,  e1 )(SI. E[q2 ( / I  I.\( I t  ,I = ( P, er  )(SI. 

Theorem 11-A.5: For unit delay, i.e., k = 1, the JSEQ policy is 
optimal. 

Proof: Suppose s( n )  = (s. 1) and we find 

Then Lemma 11-AA implies . r ~  < ~ 2 .  Further, P3) shows that 
1;*(s) 5 I;(.). Now consider (1) and ( 2 ) .  Expanding the terms 
within illin{. 1. and using Lemma 11-A.1, it can be seen that the first 
term is 5 the second term. This proves that the optimal decision is I, 
which is what the JSEQ policy indicates. Other cases can be shown 
similarly. 0 

B. Nonoptimaliiy of JSEQ f o r  2 2 Steps Delay 

for dela! b. = 1. ceazez to remain so for I; 2 2.  
In this section, we show that the JSEQ policy which was optimal 

We recall the cost criterion 
r x  1 

where g " ( n )  = ET(,,)(ql(n) + q r ( n ) ) ,  with s(O), the initial informa- 
tion state being suppressed in the notation. Observe that g"(0) does 
not depend on the policy 7 i .  

Let A. D1. and D2 be mutually independent Bemoulli random 
variables, with A = 1 w.p. A, and 0, otherwise, and for 2 = 1.2, D ,  = 
1 w.p. ~ i ,  and 0, otherwise. Let 7i1 be a policy which chooses action 
1 at t = 0. Then 

g" ' (1)  = E , ( o ) [ ( y l ( O )  +..I - D1)+ + ( q z ( 0 )  - Dz)+] .  

Sirmlarly, let 7 i 2  be a policy which chooses action 2 at t = 0. Then 

g " * ( l )  = E,(,,[(ql(O) - D l ) + +  (y r (0 )  + -4 - &)+I .  

Lemma 11-B.1: -4. D1. D l .  ( q l ( O ) . y l ( O ) )  are mutually indepen- 
dent; A. D l .  Dr are Bemoulll with parameters A. p.  p .  respectively. 
Then 

Proof: Let 

and 

Then 

.L E ((11 (0) > 0. QL(0) > 01 
A - ( 4 - D i  )+ 

( A  - D2)' - ( A  - Dl)+ 

E {qi ( 0 )  = 0. q z ( 0 )  > 0) 
Z r - Z l =  ( d - D 2 ) + - - 4  d E { q l ( 0 ) > 0 . ~ 2 ( 0 ) = 0 )  

I O  d E (41 (0) = Yl(0) = O}. 

Thus Zr - Z1 takes values in { -1.0.11. and we have 

g"' (1) - g r l  (1) = E,(o) [Z2 - 2 1 1  

= A/ i [P(q l (O)  = Ols(0)) - P(YZ(0) = OlS(0))l 

from which the result follows. 0 
Counterexample: Let k = 2 .  The state of the CMC at t = 0 is 

given by s ( 0 )  = ( ( q l ( - 2 ) . q r ( - 2 ) ) . u ( - 2 ) , u ( - 1 ) ) .  Let s(0) = 
((3.2).2.2).X = 0.6.p = 0.9. Calculating, we find E[ql 
( O ) l s ( O ) ]  < E[qr(O)Js(O)] .  Hence, the JSEQ policy would choose 
action 1 at time 0. But, observe that Prob(ql(0) = Ols(0)) = 0 as 
there were three customers in queue 1 at t = -2, and only two 
departures can occur till t = 0, i.e., at t = - 1-and t = 0-whereas 
Prob(qr(0) = Ols(0)) > 0. 

Let the policy that chooses the more probably empty queue at each 
epoch be denoted by MPE. From Lemma 11-B.l, it can be seen that 
gJ5EQ( 1) > g"p"(l). The following result shows that this extra cost 
paid by the JSEQ policy at step 1 cannot be recovered in the future 
for some j E (0.1).  

Proposition 11-B.2: There exists 3 E (0.1) such that 

-Y- m 
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Proof: This follows from the observation that there exists , j  

such that 

-. 
j t ~ - 1 ~ , \ l I ' ~ : ( / / )  <!,.w(l) - , q ' l l ' t . ( l )  

I ,  =.! 

since the left-hand side goes to zero as ,1 goes to zero, while the 
right-hand side is a positive constant. Multiplying by this particular 
I we have 

cannot know the arrival pattern at the point in time when it has to 
make the decision. 

Arrivals and departures occur as follows. An arrival occurs to 
the system with probability X at t = i f+ .  it  2 - k .  The arrival is 
accepted if I / (  t i )  = 1, otherwise it is rejected. A departure occurs 
from a nonempty queue with probability 11 at t = / I - ,  / I  2 - k  + 1. 
The controller, at time t ,  has the information { { q ( t  - /)}::; and 
{ u ( t  -[)};::}. Weneedapol icy ii forchoosing { 1 / ( 0 ) . 1 / ( 1 ) : . . }  
so as to minimize the cost function 

z 

, Y { / ~ l l ' ~ ; ( i f )  < , j ( g J < t Q ( l )  - p + ( l ) ) .  
,,=2 

Transposing and adding yJ';"'l(0) = q\""(O) to both sides, the 
result follows. U 

Thus we have a counterexample which shows that the JSEQ policy 
is not optimal for k = 2 .  It is clear that similar examples can be 
given for k > 2 as well. 

111. OFTIMAL CUSTOMER ACCEFTANCEIREJECTION 
AT A SINGLE QUEUE 

In this section, we consider a model motivated by packet-switched 
data communication networks. A packet transmitter and a receiver in 
such a network are located some distance apart. The receiver controls 
the flow of packets from the transmitter by sending stadstop signals. 

We assume that: 
Time is slotted. 
The round-trip propagation delay is k slots, where k is an 
integer. 
At the beginning of each slot, the receiver sends the transmitter 
one of two control signals: zero (do not send) and one (send 
one packet). 
At the transmitter, a packet is generated in each slot with 
probability A. If the transmitter has a permit to send, the gener- 
ated packet is transmitted; otherwise, the packet is immediately 
dropped. There is no queueing at the transmitter, and credits 
are not accumulated. 
The service time S of a packet is geometric ( p )  

The receiver gets a reward of 1 for each packet accepted and 
pays a penalty of 0 < b < 1 per queued packet per slot. 

Observe that the decision computed by the receiver impacts it after 
a delay of k slots. Equivalently, the decision at any epoch is based on 
receiver queue-length information that is k slots old. The objective 
is to look for control strategies for which the cost at the receiver is 
minimized in some sense. 

It is clear that the above model yields an extension of the classical 
problem of optimal acceptancehejection of arrivals to a queue (see, 
for example, [12]), with the additional feature that the controller is 
only permitted to observe queue-length information delayed by k 
steps. Proceeding formally, let y ( t )  denote the queue length process. 
At time t .  t E (0 .1.2. '  . .}. the controller computes a control value 
( I  ( t ) E { 0. l}. and is allowed only to observe the queue lengths until 
time t - k ,  and all controls until time t - 1. In particular, at time zero, 
the controller knows y ( - k )  and { t i ( - k ) . u ( - k +  1) . - . . .  c r ( - l ) ) .  
The problem is for the controller to choose { (1 (0).  II ( 1 ). . . .} to 
optimize a cost function. 

As mentioned earlier, a decision computed by the receiver affects 
it after a delay of k slots. Observe that the arrival information during 
this period cannot be used by the control algorithm. since the receiver 

where 

.s( 0 )  = { { q (  - k  ) }. { f f  ( - 6 , ) .  . ' ' . If ( - 1 ,}) 

and bq(  i f  ) - X(  1 - b )  if ( i t  ) is the expected cost in the interval T I  if 
the holding cost per customer per time step is b ,  and the reward for 
customer acceptance is 1. 

As in Section 11, we formulate the problem as a CO-CMC for 
I ;  = 1. The elements of the CO-CMC are as follows: 

a) State at time I )  

. s ( i t )  = ((I(" - l ) . l / ( / /  - l)) . /f  E" \ - ,  

So the state space is -1- x (0.1).  
b) Action at time i t :  f i ( i t )  E {O. 1) .  So the action space is (0. l}. 
c) Transition Probabilities: Let 

= (y1. r ) . /  = ( / I .  :).y1./1 E .I*./.. z E { K l } .  

Then 

P r o b ( s ( i f + l )  = / l . s ( / t ) = g . ~ l ( i t )  = b )  
- - I { :  = h } P ( q ( u )  = / l l q ( i t  - 1) = Y I . i f ( f f  - 1)  = 1.) 

We denote by P, the .\- x .\* matrix with elements 

Prob(q(rt)  = / ~ l s ( i t )  = ( y 1 . r ) ) .  

Define two column vectors on .\- as follows: bo = h ( O . l .  2.3. . . .) '  
where ( . . . ) '  denotes transpose, and 0 ,  = ho - A (  1 - h)L ,  where 1 
is the column vector of all 1's. 

d) One-step expected cost: c( s( t i  ) .  ti ( i t  ) ). 
Let s ( i 1 )  = ( x . 1 . ) .  For i i ( t t )  = 0, we define c ( ( . r . v ) . O )  = 

( P ,  bo ) ( .r  ) where we have adopted the same notation as in Section 
11. This quantity gives the product of the waiting cost per queued 
customer per slot and the expected number of customers at I t ,  given 
( J .  r ) .  

For u ( ~ )  = 1, we define 

c( ( . r .  1 . ) .  1 ) = (P ,  b l  ) ( x )  

= (P,hc,)(.r) - X ( l  - b ) .  

Note that for I t (  t i )  = 1, the cost is less than that for U (  r i )  = 0 ,  as 
one customer has been accepted. 

e) Performance Criterion: We use the discounted cost criterion 

1 .J ' ( ir. s( 0)  ) = ET( o )  , j'' c( s ( I I  ) . ( it  ) ) [e ,< =I1 

which can be seen to be the same as 

1 .J"(ir.s(O)) = ET((,) [g . j " ( b y ( i r )  - X ( l  - l i ) u ( ~ f ) )  
,z :(I 

the cost criterion given earlier. We observe that J . ' (  ii. s( 0 ) )  
exists since ( b y ( / / )  - X ( l  - b ) u ( i i ) )  can increase at most 
linearly, while the discount factor ,j'' decreases exponentially 
and thus dominates. 
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A. Opririmlih of n Ttt.o-Threshold Policx f o r  6.  = 1 

Let the initial state be s i  0 1 = (.I ‘. r 1 .  Define 

r x  1 

The dynamic programming equations (DPE) are 

and similarly 

The state space for this problem is -1- x (0. l}. As in the routing 
problem, it is possible to define a space of functions V ,  a metric p, 
and an operator T such that 17* = T17*. 

We shall show that the optimal value function I-* has the following 
properties: 

PI) For i = 0 .1  and V.r E . I - . l ;* (n( . r ) )  2 l:*(.r), i.e., l y ( . )  

P2) V.r E -I-. [1;*(.r) - Ty(,r)] 0. i.e., the optimal cost for the 
and 1 -: ( . )  are increasing with . I , .  

initial state (.r. 1) is more than that for (s.0). 
P3) v.1, E .I- 

[l;’(.(.r)) - r ;*(o( . r ) ) ]  > [l;’(.r) - l ; ;( .r)]  

i.e., (l.:(.r) - l y ( . r ) )  is increasing with .r. 
P4) V.r E -I-. [l y ( ,r + 1 ) - 1 ;* ( .r)]  > 0, i.e., the optimal cost for 

the initial state (.r + 1. 0)  is more than that for (.r. 1). 
P5) v.r E .I- - {O} 

[l;;(n(x)) - I;*(.r)] 2 [Ib*(.r) - 1 7 , * ( h ( . r ) ) ]  

i.e., (T;*(.r + 1) - ly ( . r ) )  is increasing with .r. 
Lemma 111-A. I: If (‘0 ( . I , )  and 1 ’ 1  (.r ) satisfy the relations in 

a) ( P ,  v J ) ( . r )  is increasing with .r. 
b) (P!  ( 1 ’ 1  - i ’o))( . r )  is increasing with .r. 
c) (P1rt)(.r) L (PorO(.r). 
d) (P I ( I ’ I  - t ’ n ) ) ( d . )  2 ( P n ( l s i  - t3n))( . r ) .  

e) (Pn(,{)( ,Y + 1)  2 ( P I I ’ ~ ) ( . ~ ) .  
f) ( P o ( ~ , I  - t , o ) ) ( , r +  1) > (PI(P’I - l w ) ) ( . r ) .  
g) ((9 - Po) (m) ) ( . r  + 1) > ((Pl - P O ) ( i , I  ) ) ( . r ) .  
h) ( p O ~ ’ 0 ) ( . ~ + 2 ) - ( P o ~ ~ 1 ) ( . ~ + l i  > ( P 1 ~ l o ) ( . r + l ) - ( P i t ~ i  )(x). 

Pl)-P5), then V.r E -1.. i .  j . r  E (0. l}: 

Proof: Consider the rows of the matrix P,.  r E (0.1). Each 
row represents the probability mass function of a random variable 
taking values in ,I,. From the structure of the matrix it is clear that 
in P, , row ( , r  + 1 ) is stochastically greater than row x.  .r E ,I-. 
Similarly, considering PO and P I ,  it can be seen that row ( . I ’  + 1) of 
RI is stochastically greater than row .r of Pl. ,r E .I-. Now claims 
a)-h) above can be established using the well-known result: if S 
and 1-  are random variables, then S t I- for all nondecreasing 
functions f. E[f ( -Y) ]  2 E [ f ( I ‘ ) ] .  where stands for stochastic 

Lemma Ill-A.2: Let c’[ l ( . r ) .  t’1 ( . r )  be two real-valued functions on 
.I- having properties P3) and P5). Then t ’ n ( , r ) .  1 ’ 1  ( . I . )  are convex 
functions. 

Proof  Thic follow on applying properties P?) and P5). C? 

ordering. 0 

Lemma 111-A.3: If 1’ has properties Pl)-P5), then Ti’ has Pl)-P5); 

Proof: This involves writing the required expressions and 
i.e., the dynamic programming operator preserves Pl)-P5). 

checking. U 
Theorem 111-A.4: 17* ( . )  has Pl)-P5). 

Proof: The proof uses the same arguments as in Theorem II- 
A.3. U 

Theorem 111-AS: For a delay of one slot, the optimal policy has 
the following threshold structure: there exist m 0 . 7 7 1  1 E .I-. 7n o 2 
inl > 0 such that 

if u ( n  - 1) = 0 then 

u ( n )  = 1. if y(n - 1) < I H O  i 0. if y ( n  - 1) 2 m o  

and, if u(71 - 1) = 1 then 

1. if y (  1 1  - 1) < r n  I { 0. if y(n - 1) 2 m1. 
u ( 1 1 )  = 

Further, rrio 2 m 1 . 
P r o o j  This is immediate from Theorem 111-AA, Lemma 111-A. 1 

part b), and the dynamic programming equations (3) and (4). That 
0 i n 0  2 nil follows from Lemma 111-A.1 part d). 

IV. FINAL REMARKS 

We have provided explicit structural results for discrete-time in- 
finite horizon discounted cost versions of two classical problems in 
the control of queues, with the additional feature that queue-length 
information is delayed by one time step. For the problem of customer 
allocation to two parallel queues, we have shown that the JSEQ 
policy, that is optimal for one-step delay, is not optimal for delay 
> 2. 

In each case the approach is via a formulation as a multidi- 
mensional CO-CMC. The well-known technique of establishing the 
necessary properties of the value functions is used. Even for k = 1 a 
large number of properties needs to be discovered and then tediously 
verified. For larger k this approach quickly becomes very unwieldy, 
and only partial results have been obtained. Further, it can be shown 
that for both the problems, for k = 1, there exist average cost optimal 
policies that have the same structure as the discounted cost optimal 
policies that we have presented in this note (see [9]). 
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A New Proof of the Discrete-Time 
LQG Optimal Control Theorems 

Mark H. A. Davis and Mihail Zervos 

Abstruct- We present a unifying new proof for the three discrete- 
time linear quadratic Gaussian problems (deterministic, stochastic full 
information, and stochastic partial information) based on pathwise (deter- 
ministic) optimization. The essential difference between the control aspect 
of the three cases is that the controls should Lie in different classes of 
“admissible controls,” and we address them as constrained optimization 
problems using appropriate Lagrange multiplier terms. 

I. THE LQG PROBLEMS 
The LQG (linear quadratic Gaussian) optimal control theorems are 

among the central results of linear system theory. They concem the 
stochastic system model 

. I ’ A + I  = -4.l‘L + + ( ‘ A  ( 1 )  
(2 )  yh = H.rk + 11’1, 

for k = 0. . . . . - 1 where J l . .  y k .  11 I denote the state, observation, 
and control vectors at time k ,  with dimensions 1 1 .  p .  l i t ,  respectively. 
The noise sequence z :  = ( I  z. U,: ) is Gaussian white noise, i.e., 
. - ( -0 .  . . . z \ - 1 ) is a sequence of zero-mean jointly Gaussian 
random vectors with 

. _  

where C-. I-. I T -  are given matrices with It7 strictly positive definite. 
The initial state .ro is jointly Gaussian with, and independent of, 2, 
with given mean  IO and covariance matrix PO. All these random 
variables are defined on some probability space (R.S. P ) .  The 
optimal control problem is to determine a control process 11 = 
( 110.  . . . . (1 \ ~I ) in some admissible class of control processes to 
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minimize the cost 

L ( i /  ) = E ( . I . ;  ( 2 . r ~  + 2.r :  T I /  A + U Rlr k ) + . I . (  C) \ .I’ \ 

(3) 

where the matrices (2. R,  and (2.\ are symmetric nonnegative definite 
with R strictly positive definite. The classes of admissible control 
processes are subsets of the most general class [.I which contains all 
measurable, L’-bounded control processes, i.e., all control processes 
1 1  such that I I A  is measurable and El I / A I ’  < x for all X. (note that 
the L’ boundedness does not restrict the generality in any sense 
because a control which is not L’-bounded has infinite cost). As is 
well known, the optimal control is linear feedback of the current state 
or state estimate; a precise formulation is given below. 

Standard textbook accounts include h t r o m  [ I  J, Bagchi [ 2 ] ,  Davis 
and Vinter [ 5 ] ,  and Kwakemaak and Sivan [6]. In these books the full 
information case is treated by stochastic dynamic programming. On 
the other hand, using the interpretation of the output of the Kalman 
filter as the conditional expectation of the state given the observations 
whenever an admissible control is used (i.e., some variant of Theorem 
1 below), the partial information problem is transformed into a full 
information one. Astrom [ l ]  also gives a “common” proof to the 
three problems by using a “completion of the squares” argument. 
This method (which assumes the Riccati equation) verifies the result 
but provides little insight. 

In this paper we consider the pathwise minimization of a cost 
which differs from the standard one given by (3) in  that an extra 
linear functional of the control signal (the Lagrange multiplier term) 
is added to it. The optimal control thus obtained lies in general in 
the class 24.  If according to the LQG case considered, however, 
the Lagrange multiplier term is chosen so that both the optimal 
control is admissible and the Lagrange multiplier vanishes for any 
admissible control, then clearly this optimal control coincides with the 
optimal control of the corresponding LQG problem. Also note that the 
Lagrange multiplier term gives the “price” for perturbations outside 
the class of admissible controls. Related work has been done by Davis 
[3], [4] where the continuous-time full information LQG problem is 
treated. In this approach there is no stochastic optimization: all the 
optimization is handled by the deterministic result of Theorem 2, and 
the stochastic aspects are entirely concemed with the choice of the 
appropriate Lagrange multiplier. 

i .:I’ 

There are three standard cases of the-LQG problem. 
Case 1 (Deterministic): Here I -  = Po = 0, so that I ’ L  = 0 and 

,ro = ~ I I O  as . ,  whereas the current state of the system is observed 
exactly. In this case observations ( 2 )  are irrelevant, and the admissible 
controls is the class 1.41 of all sequences 11 = ( 0 0 .  . . . . v - 1 )  of 
vectors in IR”‘. The optimal control sequence 1 1 ’  is given by 

I / :  = -JfA,rk (4) 

where 

\[A = (-);:I (T+ B‘SA+[.4).  ( 5 )  

(6) 

and s . y . 5 ~ ~ 1  . . . .  . SO is the solution of the Riccati difference 
equation 

c-)~. = R + B’ sA B 

Sk = A /  SL+l.4 + Q - -11; (-)k.+l -\Ik. s\ = Q.v. (7 )  

To be precise, the optimal control 1 1 ’  is given by I / :  = - - \ I k . r i . ,  

where .rl is the solution of (1 )  with I I A  replaced by --\Ik.r~ and 
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