
On a Distributed Stochastic Approximation Approach for
Max-Min Fair Rate Control of Flows in Packet Networks ∗

Santosh P. Abraham†and Anurag Kumar
Dept. of Electrical Communication Engg.

Indian Institute of Science, Bangalore 560 012, INDIA
e-mail: sabraham@qualcomm.com, anurag@ece.iisc.ernet.in

December 13, 2004

Abstract

We consider a distributed stochastic approximation algorithm that computes max-min fair rate
allocations to several elastic flows sharing a network (an elastic flow is one that can adapt its sending
rate to the rate that the network can provide it). The flows are assumed to traverse a fixed sequence
of links in the network. The available capacities at the network links are modeled as stochastic
processes. Each session can request a minimum rate guarantee, hence we work with a notion of
max-min fairness with minimum rates. A major part of this paper is the proof that the rate allocation
computed by the stochastic approximation iterations converges to max-min rate.

1 Introduction

This paper is about a distributed flow control algorithm for the following scenario. Several elastic ses-
sions s (∈ S) share a network comprising links l (∈ L) with stochastic available capacities. Elastic
sessions essentially comprise file transfers which can adapt their sending rates to the rate that the net-
work can provide them (unlike, for example, real-time voice transfers). Each session follows a fixed
route, and may share the links on that route with other sessions. The problem is to compute the rates
(rs, s ∈ S) at which the sessions can transmit, so as to achieve a fair sharing of the available bandwidth.
We constrain the form of the algorithm to capture the following requirements.

• Should be based on distributed and asynchronous computations at the various nodes: The fair
shares to be allocated to the sessions depend on the network topology, the link capacities and the
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routes taken by the sessions. In practice, no central entity knows the actual routes taken by the
sessions since routes are themselves discovered in a distributed manner. Thus, a central entity
cannot compute the fair rate allocations. Hence, of necessity, the computation of the fair rates
has to be performed in a distributed (and asynchronous) manner. In practice, we cannot assume
a globally synchronising clock at which the nodes carry out their computations.

• Should be able to work in the face of communication delays between the nodes: Owing to the
finite speed of propagation of signals in the network links, there are delays in control information
flow between the network nodes, and between the network nodes and the session sources.

• Should be computationally simple: A network node in a high speed network would carry hun-
dreds to thousands of sessions. An algorithm that does not require per-session state to be main-
tained, and per session computations to be done, would certainly be preferable.

In addition, the rates allocated to the sessions are constrained to remain above a certain minimum value
for each session (µs, s ∈ S).

The fair rate allocation we consider is max-min fairness (MMF). The max-min fair paradigm
captures the dual goals of “equitable” sharing and maximal utilisation. In a max-min fair allocation
no session is allowed to increase its rate if this increase will require another current session with a
smaller or equal rate to further reduce its rate. In communication networks max-min fair allocation was
proposed in the context of speech transmission with variable rate coding. A good textbook treatment
is available in [8]. In order to accommodate the minimum rate requirements of the sessions, we use a
generalized notion of max-min fairness which preserves the “lexicographical maximum” property of
max-min fairness (see [1] for details).

The design of distributed algorithms for max-min fair rate allocation has received much attention
in existing literature. Distributed max-min fair sharing algorithms were discussed in earlier literature
in the context of speech transmission with variable rate coding (Hayden [13], Mosely [26]). Hayden’s
algorithm consisted of a simple additive successive approximation update at each node. Mosely [26]
extended Hayden’s algorithm to accommodate asynchronous updates and network delays. A similar
class of algorithms (ERICA [15], UT [11]) have been proposed in more recent literature in the con-
text of the Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks; these
approaches use multiplicative successive approximation updates at each node.

In other literature [10, 16, 28] several authors have presented methods for implementing a central-
ized max-min fair sharing algorithm [8] in a distributed manner. Another approach has been the use of
control theoretic methods. The pioneering paper in this direction is by Benmohamed and Meerkov [6].
Kolarov and Ramamurthy [19] extended the idea of Benmohamed et al. [6] by using dual controllers
in order to provide good steady state and good transient performance. In [7], Benmohamed and Wang
extend the control theoretic formulation of [6] to the case where per-flow queueing is available and
apply the control method to each flow’s queue.

However, in all the above literature, changes in the capacity available to the elastic sessions
is assumed to be constant over long time scales. However, in multimedia networks where the total
capacity is shared among applications that have short time scale variations in transmission rates (such as
encoded video), the available capacity for elastic traffic is subject to such rapid fluctuation. Our model
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departs from the traditional approaches in that we have incorporated these short time scale variations
owing to the variations of the link capacity utilisation by the higher priority (real-time) sessions. We
do this by modelling the available capacity at each link as a random process. However, this processes
at the various links are assumed to be stationary and ergodic. The desired max-min fair allocation of
rates to sessions is calculated with respect to some statistic of the capacity process at each link; e.g., a
fraction of the mean.

Our presentation in this paper is divided into three steps. We begin by reviewing an extension of
the conventional max-min fair notion (see [8] and [12]) to accommodate minimum rate requirements.
This extension to max-min fair allocation was also independently proposed in the ABR context by
[19] and [14]. We then motivate and propose the stochastic approximation based distributed algorithm.
The remaining paper is devoted to a proof that the rate allocations computed by the algorithm indeed
converge to their respective max-min fair values. The proof involves two major steps. The first step
is to show that the stochastic approximation iterations converge to the solution of a certain differential
equation; this can be shown via standard arguments, and we only sketch the approach. The second
step is to show that the solution of this differential equation corresponds to the desired max-min fair
solution. This proof is presented in detail and forms the main contribution of this paper.

In this paper we limit ourselves to the presentation of the theoretical aspects of the algorithm. In a
companion paper [5] (and in other references therein) we have studied certain implementation aspects
of the algorithm, and have used simulations to study how the algorithms performs on an example
network.

This paper is organised as follows. In Section 1.1 we set down some notation that will be used
throughout the paper. In Section 2 we review the theory of max-min fair allocation with non zero
minimum rate requirements. In Section 3, we motivate the stochastic approximation approach. In
Sections 4 and 5, we present the stochastic approximation algorithm and prove the convergence of the
computed rates via an ODE approach. We close with some final remarks in Section 6. The proofs of
some Lemmas have been relegated to the Appendix.

1.1 The Network Model and Notation

In this section we present the notation used

• If A is a set, then | A | denotes the size of, or the number of elements in A. For sets A and B,
A\B denotes A ∩ Bc. φ denotes the empty set.

• If (x1, x2, . . . , xn) is a real valued vector, then (x̃1, x̃2, . . . , x̃n) denotes the elements of the vector
ordered in ascending order.

The following is a list of specific symbols that we have used

S the set of sessions

L the set of links
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Cl(t) the stationary and ergodic stochastic process of the capacity of the link l ∈ L

Cl a statistic of the process Cl(t), l ∈ L; for example, a scaled mean, e.g., Cl = 0.95E[Cl(t)]. More
sophisticated statistics can be used; for example the Effective Service Capacity which is derived
from a target tail behaviour of the link buffer (see [5]). The max-min fair allocation is sought
with respect to this statistic at each link.

C denotes the ordered set (Cl, l ∈ L)

Ls the set of links used by session s ∈ S

Sl the set of sessions through link l ∈ L

nl the number of sessions through link l ∈ L

ri the rate of the ith session, 1 ≤ i ≤| S |; r = (r1, r2, . . . , r|S|) denotes the rate vector

µs the minimum rate for session s ∈ S

M the set {µs : s ∈ S}

For a rate vector r, and l ∈ L, we denote the total flow through link l by

fl(r) =
∑

s∈Sl

rs

Note that the 4-tuple (L, C,S,M) characterises an instance of the bandwidth sharing problem. Thus
we will say, for example, that the rate vector r is feasible for (L, C,S,M), or that r is the max-min fair
rate vector for (L, C,S,M), etc.

2 Max-Min Fair Bandwidth Sharing with Nonzero MCRs- A Brief
Review

In this section we present a review of the theory of max-min allocation for the case where sessions
have non-zero minimum rate requirements. We adopt the generalisation of the notion of MMF rate
allocation that is defined in [12].

Definition 2.1 We call a rate vector r feasible for the problem (L, C,S,M) if

for all s ∈ S, rs ≥ µs, and for all l ∈ L, fl(r) =
∑

s∈Sl

rs ≤ Cl.

Note that the set of feasible vectors is non-empty iff ∀l ∈ L
∑

s∈Sl

µs ≤ Cl

We will assume that this is so, with strict inequality, in all the following discussions. Note that such
feasibility will be ensured by an admission control procedure for connections using the best effort
service.
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Definition 2.2 A feasible rate vector r is max-min fair for (L, C,S,M) if it is not possible to increase
the rate of a session s, while maintaining feasibility, without reducing the rate of some session p with
rp ≤ rs.

Definition 2.3 Given a rate vector r, a link l is said to be a bottle-neck link for a session j if

(i) link l is saturated, i.e., fl(r) = Cl, and

(ii) for all the sessions s ∈ Sl, such that rs > µs, rs ≤ rj; i.e., every session in l, that is not at its
MCR, has flow no more than that of session j, or equivalently

rs ≤ max(µs, rj)

The following theorem gives two equivalent characterisations of the max-min rate vector.

Theorem 2.1 If r is a feasible rate vector, then the following statements are equivalent:

(i) r is max-min fair.
(ii) Every session s ∈ S has a bottle-neck link.

For a proof see [1]. We note here that with max-min fair flow rates while every session has a bottleneck
link, not every link is a bottleneck for some session.

2.1 Max-Min Fair Allocation as the Solution of a Vector Equation

We now show that the max-min fair rates of a problem (L, C,S,M) can be obtained from a solution of a
certain vector equation. This perspective motivates our approach to the design of distributed algorithms
for computing the max-min fair share. We associate with each link l ∈ L a number ηl which we call the
link control parameter (LCP). The rate rs of any session s through link l, is bounded by max(µs, ηl).
Obtaining the max-min fair rate vector can then be equivalently stated as a problem of obtaining all
the LCP’s. We now show that a desired (not necessarily unique) vector of link control parameters is a
solution of a certain vector equation.

Theorem 2.2 For the max-min fair bandwidth sharing problem (L, C,S,M), if a set of LCP’s (ηl, l ∈
L) and set of links L̃ satisfy

min
j∈Ls

ηj = min
j∈Ls\L̃

ηj for all s ∈ S
∑

s∈Sl

max(µs,min
j∈Ls

ηj) = Cl for all l ∈ L\L̃

then the rate vector (rs, s ∈ S) defined as

rs = max(µs,min
j∈Ls

ηj)

is max-min fair
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Proof: From a centralized algorithm (see [1]) it is clear that such a vector (ηl, l ∈ L) exists. By
Theorem 2.1 it is sufficient to show that with rs, s ∈ S as defined in the theorem, every session s ∈ S
has a bottleneck link. Consider any s ∈ S. Let ls ∈ Ls\L̃

1 be such that

ηls = min
j∈Ls

ηj

The link ls is saturated, by hypothesis (ii) of the theorem. Also

rs = max(µs, ηls)

It follows that, ∀q ∈ Sls ,

rq = max(µq,min
j∈Lq

ηj) ≤ max(µq, ηls) ≤ max(µq, rs)

Hence by Definition 2.3, ls is a bottleneck link for s ∈ S.
2

Consider the case in which L̃ is empty, i.e., every link is a bottleneck for at least one session. Define
a vector function f(η) = (fl(η), l ∈ L) with fl(η) =

∑

s∈Sl
max(µs,minj∈Ls

ηj) ∀l ∈ L. For each
value of η, fl(η) is just the total flow in link l. Then by Theorem 2.2, the max-min allocation can be
obtained by solving

f(η) = C (1)

For each value of η, fl(η) is just the total flow in link l. In this study we restrict ourselves to networks
where the solution to equation 1 is unique.

3 Motivating the Use of Stochastic Approximation

It is clear from the discussion in Section 2 that the max-min fair solution is a global solution across a
network. Hence, computing the max-min fair solution requires information of all links and sessions in
the network. An algorithm that requires complete information of the network is clearly a centralized al-
gorithm (see Section 5.1), and would not be of much value for implementation. However, Theorem 2.2
can be used to motivate a distributed framework in which instances of the distributed algorithm run
independently at each link, using only information local to the link, such as link capacity and total flow
through the link.

Note, from Section 2.1, that the solution of a vector equation framework essentially expresses
two requirements:

(i) Given the LCP’s, ηl, l ∈ L, the rate of a session is computed by rs = max(µs,minj∈Ls
ηj)

(ii) The LCP’s are to be chosen so that the total rate into a link (which is a bottleneck for some
session) is equal to the available capacity of the link.

1Ls\L̃ is not empty because every session has at least one bottleneck link.
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We assume that the best-effort service control mechanism in the network includes special control
packets corresponding to each session (an example is the Resource Management (RM) cells in ATM
networks). These control packets have data fields that can be used for conveying information between
the end-points and the network. Control packets are emitted by the source of each session, can be
examined and modified by the switches, and then returned back to the source by being “turned around”
by the destination end-point of the session.

The first requirement mentioned above is then easily achieved in the following way: when emit-
ting a control packet, a source places a large value in the appropriate field (e.g., the maximum rate at
which the source wishes to emit); as the control packet travels along the route of the session, at each
link the minimum of the value in the field and the links’s LCP is taken and placed back in the field.
When the packet reaches the destination end-point the rate field contains the value minj∈Ls

ηj (for the
case of session s).

The second requirement is achieved by each link iteratively adjusting its LCP based on a com-
parison of the total rate into the link and the link capacity. Theorem 2.2 can be used to motivate a
stochastic approximation approach as follows.

Let us first consider a single link with N sessions and constant capacity C. The max-min fair
allocation is obtained by solving the following equation for η

C −
N
∑

s=1

max(µs, η) = 0

Since C >
∑N

s=1 µs, the above equation has a unique solution η∗. The session rates are then given by:
for 1 ≤ s ≤ N ,

rs = max(µs, η
∗)

An iteration proposed by Hayden in [13] for solving this problem is

η(k + 1) = η(k) +
1

N

(

C −
N
∑

s=1

max(µs, η(k))

)

and it is easily shown that η(k)→ η∗.

In a more general network, the above algorithm can be independently implemented at every link.
Thus we would have at a link l

ηl(k + 1) = ηl(k) +
1

Nl



Cl −
∑

s∈Sl

rs(k)



 (2)

The session rates rs(k) in the above distributed solution can be shown to converge as long as

rs(k) = max(µs min
j∈Ls

ηl(k))

i.e., the sources update their rates in lock step with the links. Simply applying the above algorithm to a
real world network would not yield the desired results due to the following reasons:
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1. Stochastic Available Capacity: Until now we have assumed that the available capacity (for elas-
tic sessions) at link l is a fixed number Cl, and that we seek the MMF rate vector for this problem.
As discussed in the Introduction, however, the point of departure of our work is that available ca-
pacity at each link is not a fixed number but is random, since the bandwidth requirement of the
stream sessions at each link is random. Hence Cl needs to be some statistic of the random avail-
able capacity. A naive choice for Cl would be the mean of the stochastic available capacity. It
is clear from elementary queueing theory that when the total input rate for a stochastic server is
equal to the mean of the stochastic service rate, then queue lengths increase to infinity. A simple
alternative would be to choose Cl to be a fraction (say 0.95) of the mean. The choice of such
a scaling factor is not clear as the queue length process depends on the higher moments of the
stochastic service process. Another approach is to choose Cl to be the total input rate that ensures
that queue lengths are constrained. We have proposed a large deviations theory based formulation
for obtaining such a value in [5] and have called this the Equivalent Service Capacity (ESC).

2. Asynchronous Updates: It is clear that in a pactical network it would not be possible to synchro-
nise the computations at the nodes. Also, sessions have different (and possibly random) round
trip times, so it would not be possible to guarantee that sessions update their rates in lock step
with LCP calculation. Even if we had a fixed link capacities, a naive application of Hayden al-
gorithm without accounting for the asynchrony in the network would lead to non-convergent and
potentially unstable iterations.

Note that if we view
(

Cl −
∑

s∈Sl
rs(k)

)

as a cost function that we seek to minimise at each link
using the distributed algorithm, then in a practical network the above cost function takes the form

Cl + ωl(k)−
∑

s∈Sl

max(µs,min
j∈Ls

ηj(k − τ
s
lj(k))))

whre the parameter τ s
lj(k) is the random delay that a session experiences in obtaining the LCP

information from a link and ωl(k) denote the random variations in the available link capacity. We
are thus faced with the problem of designing a distributed algorithm where the ”cost function”
in the individual iterations are computed based on random quantities such as the random link
rates. We propose the use of a stochastic approximation algorithm based on a Robbins-Munro
type iteration[21]. Based on recent work by Borkar [9], we note that this above approach also
effectively addresses the problem of random delays in updating the session rates. The main idea
is to use the simple the iteration given in 2 with a decreasing gain instead of the fixed gain of
1/nl.

Relationship to the control of elastic traffic in the Internet: While the original motivation for the
work presented in this paper was the ABR service in ATM networks, there are interesting relationships
with recent research on TCP (Transmission Control Protocol) controlled bandwidth sharing in the In-
ternet. In an internet, bandwidth sharing is achieved by TCP’s end-to-end adaptive window mechanism.
Recent research has focussed on formulating the fair bandwidth sharing problem as one of maximising
the total session utility (each session’s utility is a function of rate provided to the session) subject to net-
work capacity constraints on the session rates. It has been argued in [18] and in [23] that TCP achieves
“proportional” fairness. In some simple situations (simple topologies or a single bottleneck for each
route) proportional fairness is equivalent to max-min fairness. Further, TCP can be viewed as a whole
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class of adaptive window based algorithms, and the bandwidth sharing that is achieved depends on the
network feedback and source adaptation; see [25]. With this point of view, it can be seen that with
appropriate feedback from routers, TCP can actually achieve max-min fairness. New versions of TCP
permit routers to mark a special bit in each passing packet in the forward path, and these bits are then
fed back to the session sources by their corresponding sinks. Thus a session’s source can determine the
probability of bit marking in the forward path of the session. Now suppose that the link computations
in the network proceed exactly as proposed in our paper. Each link computes its LCP ηl, and marks
packets passing through it with probability e−αηl , for some α > 0. For large α it follows that the total
marking probability along route s is approximately e−α minl∈Ls ηl (see also [24]). Thus, knowing α, each
source on route s effectively learns minl∈Ls

ηl; it can then measure the round trip time along the path
and adjust its window accordingly (see also [17]).

In this context, the relationsip between our algorithm and the one in [24] is also interesting. In
[24] the solution of the dual of the utility maximisation problem reduces to the problem of matching
the flows into a link to the link’s available capacity, just as in our solution of the max-min fair sharing
problem. If this leads to the saturation of a link then that link’s congestion price (the dual variable; see
[24]) is positive, else the congestion price is 0. It follows from the discussion in the previous paragraph,
that e−αηl can be viewed as a congestion “price”, which is zero for an unsaturated link, where ηl can
be taken to be∞. In [24] a constant gain algorithm is proposed, whereas in our present paper and in
[5] we study a decreasing gain algorithm. The decreasing gain algorithms have the added advantage of
being able to provide provable convergence even with asynchronous updates and arbitrary delays. To
take care of large changes in the available capacities we have proposed a gain resetting approach in [3].

4 Asynchronous Distributed Stochastic Approximation Algorithms

In this section we shall present the distributed stochastic approximation algorithm and analytically
prove that the session rates obtained converge to the max-min fair value. The algorithm considered
has the same flavor as Hayden’s algorithm, i.e., an additive increment/decrement is performed at each
iteration, albeit with decreasing gain. However, to precisely define the algorithm so that the asyn-
chronous operation is correctly captured and the frame work corresponds rigorously to [9] we develop
the following notation and state some required assumptions.

4.1 Some Key Assumptions

To capture the effect of asynchrony between nodes we assume the existence of a global clock. At each
tick of the global clock, one of the links is selected and its link control parameter is updated. The link
selection process is random and denoted by the stochastic process ψ(k) ∈ L, k = 1, . . . ,∞. Note that
the existence of a global clock is an artifice introduced for the convenience in indexing the updates at
each node. No relation between the ticks of this global clock and wall clock time is assumed except for
causality, i.e. increasing order of global clock ticks index events that occurred in non decreasing order
of wall clock time.
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Assumption 4.1 The sampling process ψk is assumed to have the following property

lim
n→∞

1

n

n
∑

i=0

I{ψi = l} ≥ ∆ for some ∆ > 0

At a link l, the rate of a session s, just prior to update k + 1, (denoted by rsl(k)) is given by

rsl(k) = max(µs,min
j∈Ls

ηj(k − τ
s
lj(k)))

The delay in feedback is accounted for by the parameter τ s
lj(k),i.e., k − τ s

lj(k) gives the clock tick at
which the LCP of link j used to compute rsl(k) was computed. Let the rate at the session source at
clock tick k be given by

rs(k) = max(µs,min
j∈Ls

ηj(k − τ
s
j (k)))

k − τ s
j (k) gives the clock tick at which the LCP of link j used to compute rs(k) was computed.

Since the “global-clock” is an indexing artifice, note that the case of links updating simultane-
ously in wall clock time in the real network is easily taken care of by considering the updates to take
place at different “global clock” ticks.

Assumption 4.2 There exists D < ∞ such that for all s ∈ S, for all l, j ∈ Ls, and for all k =
1, . . . ,∞, τ s

lj(k) ∈ {0, 1, . . . , D − 1}.

The capacity of link l at clock tick k + 1 is denoted by Cl(k).

Assumption 4.3 Cl(k) can be written as

Cl(k) = Cl + ω(k) + β(k)

where Cl is a constant and
lim
k→∞

β(k) = 0

Let Fk denote the following σ-field.

Fk = σ{η(m) m ≤ k, τ s
lj(m)m < k, Cl(m) m < k ψm, m ≤ k}

We assume that ω(k) is bounded and
E(ω(k) | Fk) = 0

The sequence ω(k) captures the random variations in the capacity. The term β(k) has been introduced
to keep the discussion general enough to handle the case where a converging estimate of the capacity
is used, e.g., a long term average of the instantaneous measurements may be used. The sequence β(k)
can also be stochastic.

Along the lines of [9], with each link l ∈ L, we associate a sequence of gains a(l, i), l ∈ L, i =
0, 1, . . . ,∞ with the following properties.
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Assumption 4.4
∞
∑

i=0

a(l, i) =∞

Assumption 4.5
∞
∑

i=0

a2(l, i) <∞

Assumption 4.6 For 0 < x ≤ 1

lim
n→∞

∑xn
k=0 a(j, k)

∑n
k=0 a(j, k)

= 1 ∀l ∈ L

Assumption 4.7

lim
n→∞

∑n
k=0 a(i, k)

∑n
k=0 a(j, k)

= aij

At each link l, update we use the next member of the gain sequence a(l, i). Hence if link l is updated
at tick k + 1, the gain parameter used ( denoted by a(l, k)) is given by

a(l, k) = a(l,
k
∑

i=0

I{ψi = l})

Note that
∑k

i=0 I{ψi = l} is the number of updates at link l that have taken place up to and including
the tick k + 1.

4.2 Link Control Parameter Update Expression

The link parameter update expressions at each link is as follows (let [x]ba = min(b,max(x, a))).

ηl(k + 1) =



ηl(k) + a(l, k)



Cl(k)−
∑

s∈Sl

max(µs,min
j∈Ls

ηj(k − τ
s
lj(k)))



 I{ψk = l}





Cmax
l

0

(3)

We now state the key result of this paper. However, in order to complete the rigorous proof of
convergence for the seesion rates we need the following assumption on the sessions and network

Assumption 4.8 The vector of LCPs η∗ for which the max-min fair rate is obtained is unique, i.e., there
exists exactly one η∗ = (η∗l , l ∈ L) such that

r∗s = minl∈Ls
η∗l
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Theorem 4.1 Given Assumptions 4.1 4.2 4.3 4.4 4.5 4.7 and 4.8, the sequence of session rates com-
puted by update Equation 3 converges to the max-min fair rates, i.e.,

lim
k→∞

rs(k) = r∗s

1. As in the case of proofs of stochastic approximation algorithms [21], the first part of the proof is to
show that the asymptotic evolution of the sequence of link control parameters ηl(k) is equivalent
to the solution of a certain ordinary differential equation (ODE). We denote the solution of this
ODE by ηl(t) (by an abuse of notation) 2. The detailed proof of the existence of the ODE and
the equivalence of the evolution of the ODE and the algorithm iterations uses standard technical
arguments available in the literature [22] [9]. We will only motivate and display the form of the
differential equation below; details of this part of the proof are available in [4]. The Assumptions
4.1 - 4.7 can also be used to show that the asymptotic evolution is not affected by the asynchrony
and delays in the updates; see [9] for a detailed proof. The essential idea is the following. By
Assumption 4.2 the oldest iterate used in a given iteration is no more thanD steps old. The “gain”
in the stochastic approximation iteration can be viewed as a time increment over which the ODE
is being integrated. Since the gains (integration step sizes) are decreasing, and the oldest iterate
being used in an iterate is at most D steps old, the iterates are using previous values that less and
less older in time. Hence with decreasing gains the update delays cease to matter.

2. The second part consists of showing that the differential equation has a steady state solution, and
the rates corresponding to the steady state solution of the differential equation are the max-min
rates. This part of the proof is specific to the MMF problem with minimum rate guarantees. The
proof is interesting as it depends on the way the centralized MMF computation evolves. We will
present the details of this proof in this paper.

We now motivate the form of the ODE. Assume a completely synchronous framework. There are
L links whose LCPs are updated at the instants v1 = v2 = · · · = vL < vL+1 = vL+2 = · · · = v2L < · · ·.
Let η(k) denote the link control parameter vector, and let fl(η(k)) denote the total flow through link l,
i.e.,

fl(η(k)) =
∑

s∈Ls

max(µs,min
j∈Ls

ηj(k))

Let, for 1 ≤ l ≤ L, k ≥ 1, the stochastic approximation gains be given by a(l, k) = 1
k
. Then the

synchronous update at link l would be written as follows. Suppose the mth update of ηl takes place at
vk. Then

ηl(k) =
[

ηl(k − 1) +
1

m
(Ĉl(k − 1) + ωl(k − 1)− fl(η(k − 1))

]Cmax
l

0

ηl(k + 1) = ηl(k)

· · · = · · ·

ηl(k + (L− 1)) = ηl(k + (L− 2))

2Throughout this paper use ηl(.) with the arguement u,v,t to denote the solution of the ODE and ηl(.) with argument
k,l,m,n for the discrete iterations.
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¿From the above steps we obtain

ηl(k+(L−1))−ηl(k−1) =
[

ηl(k − 1) +
1

m
(Ĉl(k − 1) + ωl(k − 1)− fl(η(k − 1)))

]Cmax
l

0
−ηl(k−1)

Viewing the decreasing gains a(l, k) as steps in “time”, the rate of change of ηl(k) can be written as

ηl(k + (L− 1))− ηl(k − 1)
L
m

=

[

ηl(k − 1) + 1
m

(Ĉl(k − 1) + ωl(k − 1)− fl(η(k − 1)))
]Cmax

l

0
− ηl(k − 1)

L
m

=
1
L
m

(

[

ηl(k − 1) +
L

m

1

L
(Cl + βl(k − 1) + ωl(k − 1)− fl(η(k − 1)))

]Cmax
l

0
− ηl(k − 1)

)

It can be shown that as k →∞ , the sequences ωl(k) and βl(k) have diminishing effect on the sequence
ηl(k). It can also be shown that the propagation delays and the asynchrony have a diminishing effect
(see [9]). It can then be shown to follow that as k increases to infinity, the limiting behaviour of the
sequence is given by the following set of differential equations (see also [21] and [22]). For l ∈ L

•
ηl (t) = lim

∆→0

[

ηl(t) + ∆ 1
L
(Cl − fl(η(t))

]Cmax
l

0
− ηl(t)

∆
(4)

To formally state the differential equation, in general, we need to define the following parameters
γ∗l , l ∈ L. With reference to the parameters aij, i, j ∈ L, defined in Assumption 4.7, for l ∈ L, define

γ∗l =
1

∑

j∈L ajl

Notice that for the simple case discussed above, ajl = 1, ∀j, l, and hence γ∗l = 1
L

.

Finally, the differential equation can be shown to be of the following form. For each l ∈ L

•
ηl (t) = lim

∆↓0

[ηl(t) + ∆γ∗l (Cl − fl(η(t)))]
Cmax

l

0 − ηl(t)

∆
∀l ∈ L (5)

In the next section we shall prove that the session rates obtained from the differential Equation 5
are the desired max-min fair rates for the bandwidth sharing problem.

5 Steady State Solution of the Differential Equation

Let the η∗ = (η∗l , l ∈ L) denotes the unique (by Assumption 4.8 ) link control parameter vector that
correspond to r∗; i.e.,

max(µs,min
j∈Ls

η∗j ) = r∗s

13



The main result we shall prove in this section is that the differential Equation 5 has a steady state
solution, and the session rates obtained from this steady state solution are max-min fair. We state the
result precisely in the following theorem.

Theorem 5.1 Consider the differential Equation 5. Let the rate allocation to a session s ∈ S be given
by rs(t) = max(µs,minl∈Ls

ηl(t)). Then the following hold. For all s ∈ S,

lim
t→∞

rs(t) = r∗s

and, for all l ∈ L,
lim
t→∞

ηl(t) = η∗l

In order to prove Theorem 5.1 we require a special partition of the set of sessions S. The details
of this partition are given in the following subsection.

5.1 A Partition on the Set of Sessions

We first present a centralized algorithm for computing the max-min allocation. The centralized algo-
rithm yields a certain partition on the set of links and sessions. We deduce an alternate set of partitions
required for the proof of Theorem 5.1 from the partition obtained by the centralized algorithm. For a
proof that the rate allocation yielded by the centralized algorithm is the max-min solution see [1].

Algorithm 5.1

The iterations are indexed by k, k ≥ 1. At the end of the kth iteration, the following variables are
defined

r(k): rate vector after kth iteration

S(k): the set of unbottlenecked sessions

L(k): the set of unsaturated links

fl(r(k)): the total flow in link l when r(k) is the rate vector

Fl(k): the total flow in link l due to the bottlenecked sessions

nl(k): the number of unbottlenecked sessions through link l, (i.e., nl(k) =| Sl ∩ S(k) |)

ηl(k): result obtained by distributing the residual capacity of link l (after removing flow due to bot-
tlenecked sessions) among the unbottlenecked sessions on that link; for links with no unbottle-
necked sessions, ηl(k) = ηl(k − 1).
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Initialisation:
k = 0,S(0) = S,L(0) = L, and ∀l ∈ L, nl(0) =| Sl |, γl(0) = 0, ηl(0) = 0, Fl(0) = 0.

While S(k) is not empty, do steps 1 to 7

1. k ← k + 1

2. Calculate ηl(k)

if l ∈ L(k − 1) and Sl ∩ S(k − 1) 6= φ, then compute ηl(k) by solving

Cl − Fl(k − 1)−
∑

s∈Sl∩S(k−1)

max(ηl(k), µs) = 0

Otherwise
ηl(k) = ηl(k − 1)

3. Compute the rate of each unbottlenecked session s ∈ S(k − 1)

rs(k) = max(µs, min
l∈L(k−1)

ηl(k))

For the sessions s ∈ S\S(k − 1), i.e., the bottlenecked sessions

rs(k) = rs(k − 1)

4. Calculate the new total flow through each link l ∈ L.

fl(η(k)) =
∑

s∈Sl

max(µs, , min
l∈L(k−1)

ηl(k)) =
∑

s∈Sl

rs(k)

5. Find the new set of unsaturated links.

L(k) = {l : fl(r(k)) < Cl}

6. Find the new set of unbottlenecked sessions; these are the sessions all of whose links are in L(k).

S(k) = {s : Ls ⊆ L(k)}

7. Find the flow in each link l ∈ L due to the bottlenecked sessions.

Fl(k) =
∑

s∈Sl\S(k)

rs(k)

2

For the centralized Algorithm 5.1, let M be the number of iterations until the termination of the
algorithm, i.e., when every session has at least one bottleneck link. The following sequence of sets are
obtained from the execution of the algorithm.
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S(k): the set of sessions that are not bottlenecked at any link after iteration k = 0, 1, . . . ,M . Note
that S(0) = S and S(M) = φ and S(0) ⊃ S(1) . . . ⊃ S(M).

L(k): the set of links that are not bottlenecks to any session for any links just after iteration k =
0, 1, . . . ,M . Note that L(0) = L and L(M) is the set of all links that are not bottlenecks for any
session; further L(0) ⊃ L(1) . . . ⊃ L(M).

In the execution of the centralized algorithm, at every iteration one or more links become bottlenecks
for the sessions through them. We now consider the link control parameters computed at the links when
they become bottlenecks. Let p0 = 0, pM+1 =∞ and for k = 1, . . . ,M , let pk denote the minimum of
the link control parameters computed at iteration k of the centralized algorithm. Note that every link at
which pk is computed at the kth iteration becomes a bottleneck link at the kth iteration. pk is obtained
as follows. For every link l ∈ L(k − 1), at the kth iteration we solve for xl such that

Cl − Fl(k − 1)−
∑

s∈Sl∩S(k−1)

max(xl, µs) = 0

Recall that Fl(k− 1) is the flow of all the sessions that have been bottlenecked at iterations prior to the
kth iteration of the centralized algorithm (Fl(0) = 0). Compute pk by

pk = min
l∈L(k−1)

xl

Define the following sequence of subsets of L and S

Lk: the set of links at which pk is the obtained value of ηl(k) at the kth iteration of the centralized
algorithm, i.e.,

Lk = {l : ηl(k) = min
j∈L(k−1)

ηj(k) = pk}

Note that every link in Lk becomes a bottleneck link at the kth iteration and thus

Lk = L(k − 1)\L(k)

Sk: the set of sessions that are bottlenecked at the kth iteration.

It is important to note that for all s ∈ Sk, if µs ≤ pk, then rs = pk, otherwise rs = µs.

Using the notation developed above for the centralized algorithm, we define the following alternate
partition. The proof of convergence that follows uses an induction argument on this partition.

Ŝi = {s ∈ S : pi ≤ r∗s < pi+1}

ŜM+1 = {s ∈ S : µs > pM}

We also define, for m ≥ 0,

Ŝ(m) = S \ ∪m
i=1Ŝ

i
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Figure 1: The relationship between the partition of sets obtained from the centralized algorithm and
the alternate partition. Each vertical bar corresponds to a session. The sessions are ordered from left to
right according to the sequence in which they get bottlenecked. The height of each session’s bar is its
max-min fair rate. In the alternate partition, the sessions are partitioned according their max-min fair
rates; a session belongs to the “highest” interval Ŝk in which its max-min fair rate lies. The sets S(k)
and Ŝ(k) are also shown.

Ŝl(m) = Sl \ ∪
m
i=1Ŝ

i

It is clear, from the italicised comment following the definition of Sk, that without MCR require-
ments (i.e., µs = 0, ∀s), Ŝi = Si, i = 1, . . . ,M . In general, the relationship between the partition
Ŝi, i = 1, . . . ,M and the partition S i, i = 1, . . . ,M is depicted in Figure 1. The “non-hat” parti-
tion is according to the sequence in which sessions gets bottlenecked during the centralized algorithm,
whereas the “hat” partition is based upon an ordering of the max-min fair rates. Notice that a session
that is bottlenecked at iteration 1, but at its MCR> p2, does not belong to Ŝ1; for example, in the figure,
the third session from the left got bottlenecked at step 1 of the centralized algorithm but this session is
in Ŝ2.

5.1.1 Proving Theorem 5.1

The proof will follow by induction on the session partition Ŝi. We begin by stating two lemmas, namely
Lemmas 5.1 and 5.2. Lemma 5.1 is about the steady state solution of the differential equation when the
network consists of a single link only. Lemma 5.2 is a general result on the ordering of the solutions
of differential equations. These two lemmas will be used in Lemma 5.3 to show that the link control
parameters are asymptotically lower bounded. The lower bounding subsequently leads to one step of
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the induction, i.e., the rates of the sessions in a given partition Ŝi converge to the max-min fair value if
the rates of the sessions in the partitions Ŝj, j < i, converge to the max-min fair value. The proof will
follow by an inductive application of Lemma 5.3.

Lemma 5.1 Consider a single link network with link capacity C, and let U denote the set of sessions.
Given the (one dimensional) differential equation

•
x (t) = lim

∆↓0

[x(t) + ∆(C −
∑

s∈U max(µs, x(t)) + ε(t))]C
max

0 − x(t)

∆

with ε(t) continuous and
lim
t→∞

ε(t) = 0

Let the initial condition x(t0) ∈ [0, Cmax]. Then

lim
t→∞

x(t) = x∗

where x∗ solves
C −

∑

s∈U

max(µs, x
∗) = 0

Proof: See the Appendix.

Lemma 5.2 Let x(t), y(t) ∈ <n. Consider the two differential equations
•
x (t) = g1(x(t), t) (6)
•
y (t) = g2(y(t), t) (7)

The functions g1 and g2 are continuous in both arguments. For 1 ≤ l ≤ n, g2l(y(t), t) denotes the lth
component of g2(y(t), t). In addition, the following hold.

(i) g2l(y(t), t) = g2l(yl(t), t), i.e., the lth component g2l(y(t), t) depends only on the lth component
of y(t)

(ii) g2(·, ·) is nondecreasing in its first argument.

(iii) For all u ∈ <n, g1(u, t) ≥ g2(u, t).

Under the above conditions, if x(t0) = y(t0), then for all t ∈ (t0,∞) x(t) ≥ y(t).

Proof: See the Appendix.

Lemma 5.3 Consider i, 1 < i ≤M . If for all s ∈ Ŝj , j < i,

lim
t→∞

rs(t) = r∗s

then for all s ∈ Ŝi,
lim
t→∞

rs(t) = r∗s
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Proof: The proof of Lemma 5.3 is divided into three parts. In Part 1 we consider the links l ∈ L(i−1).
For all links in l ∈ L(i − 1), we construct an auxiliary differential equation whose solution is a lower
bound to ηl(t). The solutions of the auxiliary differential equation for l ∈ Li converge to pi. In Part 2
we consider the following subset of Ŝi.

S̃i = {s : s ∈ S i, r∗s = pi} ⊂ Ŝi

S̃i is the set of all sessions that get bottlenecked at the ith iteration of the centralized algorithm with
max-min fair rate pi. The bottleneck links of the sessions in S̃i are in Li. We show that given the
lower bounding argument on the link control parameters, the rate of the sessions s ∈ S̃i converge to the
max-min fair share. We then show that the rates of the rest of the sessions in Ŝi, i.e., s ∈ Ŝi\S̃i also
converge to their max-min fair share.

Part 1: Consider the set L(i− 1). For each l ∈ L(i− 1), define the following.

εil(t) =
∑

s∈Sl\Ŝl(i−1)

(r∗s − rs(t)) (8)

Note that Sl \ Ŝl(i − 1) = Sl ∩
(

∪i−1
j=1Ŝ

j
)

. Thus εil(t) is the “error” in the flow of sessions that are
assumed, by the hypothesis, to have flows that converge. Further define

Ĉi
l = Cl −

∑

s∈Sl\Ŝl(i−1)

r∗s (9)

Ĉi
l is the capacity of link l remaining after removing the max-min flows of all sessions whose flows are

assumed to converge. Define

f i
l (η(t)) =

∑

s∈Ŝl(i−1)

rs(t) =
∑

s∈Ŝl(i−1)

max(µs,min
j∈Ls

ηj(t)) (10)

f i
l (η(t)) is the sum of the flows in link l of all sessions whose flows have not been assumed to converge

in the hypothesis of this theorem. With the definitions in Equations (8), (9) and (10), for each l ∈
L(i− 1) we can rewrite the differential equation (4) as

•
ηl (t) = lim

∆↓0+

[

ηl(t) + ∆γ∗(Ĉi
l − f

i
l (η(t)) + εil(t))

]Cmax
l

0
− ηl(t))

∆
(11)

Let ηi(t) = (ηl(t), l ∈ L(i− 1)). To obtain a lower bound on ηi(t), we consider the auxiliary differen-
tial equation

•
xl (t) = lim

∆↓0+

[

xl(t) + ∆γ∗
(

Ĉi
l −

∑

s∈Ŝl(i−1) max(µs, xl(t)) + εil(t))
)]Cmax

l

0
− xl(t)

∆
(12)

and let xi(t) = (xl(t), l ∈ L(i−1)). Observe that this ODE (12) corresponds to a single link problem in
which the link capacity is obtained by subtracting the flows of all the sessions whose rates are assumed

19



to have converged and whose session set includes only those sessions whose flows are not yet known
to converge. It is thus a candidate for the application of Lemma 5.1. Also observe that

Ĉi
l −

∑

s∈Ŝl(i−1)

max(µs, ul(t)) ≤ Ĉi
l −

∑

s∈Ŝl(i−1)

max(µs,min
j∈Ls

uj(t))

Hence for a link l, given identical initial conditions for Equations (11) and (12), the conditions of
Lemma 5.2 are satisfied with g1(·, ·) corresponding to Equation (11) and g2(·, ·) corresponding to Equa-
tion (12) and we have, for all t,

ηl(t) ≥ xl(t) ∀t (13)

Recall that L(i− 1) = Li ∪L(i). Using Lemma 5.1, note that xl(t) converges for all l ∈ L(i− 1), and
also

lim
t→∞

xl(t) = pi ∀l ∈ Li (14)

Let
lim
t→∞

xl(t) = ql > pi ∀l ∈ L(i) (15)

¿From Equations (13), (14), and (15) we can conclude that

lim inf
t→∞

ηl(t) ≥ pi ∀l ∈ L(i− 1) (16)

and hence

lim inf
t→∞

rs(t) ≥ max(µs, p
i) ∀s ∈ S(i− 1) (17)

Part 2: Now consider u ∈ S̃i. This is the set of all sessions that get bottlenecked at the ith iteration of
the centralized algorithm and have a max-min value of pi. Hence r∗u = pi (≥ µu). By Equation (17)

lim inf
t→∞

ru(t) ≥ pi (18)

We now show that given an arbitrary ε > 0, for large enough t, ru(t) < pi + ε, i.e., lim supt→∞ ru(t) ≤
pi Let n > maxl∈L | Sl |, choose ψ > 0 such that

ψ < min

(

min
l∈Ls

Cmax
l − pi

2n
, min
l∈L(i−1)\Li

ql − p
i

2n

)

(19)

Note that

pi + nψ < ql − nψ ∀l ∈ L(i− 1) \ Li

pi + nψ < Cmax
l − nψ ∀l ∈ Li

u

Choose ξ1 > 0 and ξ2 > 0 such that

(n− 1)ξ1 + ξ2 < nψ
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Given (16) note that we can choose T large enough so that for all t > T , we have

ηl(t) > pi − ξ1 ∀l ∈ L
i

ηl(t) > ql − nψ ∀l ∈ L(i− 1) \ Li

| εil(t) | < ξ2

If there exists some t1 > T such that ru(t) ≥ pi + nψ, then for all l ∈ Lu ∩ L
i we have

Ĉi
l − f

i
l (η(t1)) + εil(t1) < Ĉi

l − (pi + nψ)−
∑

s∈Ŝl(i−1)\{u}

max(µs, p
i − ξ1) + ξ2

< Ĉi
l − (pi + nψ)−

∑

s∈Ŝl(i−1)\{u}

max(µs, p
i) + (n− 1)ξ1 + ξ2

< 0

Hence note that
•
ηl (t1) < 0 for all l ∈ Lu∩L

i. Thus ru(t) will continue to decrease till ru(t) < pi+nψ.
Now consider t2 > T such that ru(t) < pi + nψ. It can now be shown (using an argument similar to
the argument in Lemma 5.1) that, ∀ t > t2, ru(t) < pi + nψ. Since ψ is positive and can be arbitrarily
small, we have shown that for all sessions u ∈ S̃i:

lim sup
t→∞

ru(t) ≤ pi (20)

Now using Equation (18) and ( 20) we conclude that

lim
t→∞

ru(t) = pi (21)

Part 3: Now consider those sessions with u ∈ Ŝi\S̃i These sessions can have bottlenecks at multiple
levels. The potential bottle neck links lie in links in L1, . . . ,Li. Since the session rate is at least its
MCR, note that

lim inf
k→∞

rs(k) ≥ µs (22)

Hence for these sessions it is sufficient to show that

lim sup
k→∞

rs(k) ≤ µs (23)

Let
L̃s = Ls ∩ ∪

i
j=1L

j

L̃s contains all the potential bottlenecks for the session s. In Case 1, note that we considered Ls ∩ L
i,

since all the bottlenecks for the sessions considered lay in there. Now we use L̃s instead of Ls ∩L
i. In

Case 1, we also required for every link in l ∈ L(i) that lim inf t→∞ ηl(t) > pi. Similarly for the present
case we require to show that for every l ∈ Ls∩L(i), lim inft→∞ ηl(t) ≥ µs, this is where the following
lemma is required.

Lemma 5.4 Consider l ∈ L(m), let s ∈ Sl ∩ S
j, j < m + 1, and pm < µs < pm+1. Assume for all

u ∈ Sl with r∗u < µs, ru(k)→ r∗u, then

lim inf
t→∞

ηl(t) > µs
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Proof: The argument required is similar to that in Part 1 of the above proof and is given in the Appendix.

Continuing the Proof of Lemma 5.3: Now we shall show that for u ∈ Ŝi\S̃i, given an arbitrary
ε > 0, for large enough t, ru(t) < µu + ε.

Let u1, u2, be an ordering of Ŝi\S̃i in ascending order of MCRs, i.e. µu1
≤ µu2

. . . . Let
rum

(t)→ r∗um
= µ∗

um
for m = 1, . . . , j − 1. Then for all l ∈ L(i), using Lemma 5.4, we have

ql = lim inf
t→∞

ηl(t) > µuj

Choose ψ such that
lim inf

t→∞
ηl(t) > µuj

+ (n+ 1)ψ

Consider l ∈ L̃s, for s ∈ Sl, and s 6= uj, choose T large enough so that for t > T , we have

rs(t) > r∗s − ψ

Note that this is possible due to the hypothesis of the lemma, Part 1, and the fact that every session rate
is at least its MCR. Hence for all l ∈ Ls,

Cl −
∑

s∈Sl

rs(t) = Cl − ruj
(k)−

∑

s∈Sl,s6=uj

ru(k) < Cl − (µsj
+ (n+ 1)ψ)−

∑

s∈Sl,s6=uj

(r∗s − ψ) < −ψ

Hence there exists some ε > 0 such that for all l ∈ L̃s

•
ηl (t) < ε. Thus ruj

(t) will continue to decrease
till ruj

(t) < µuj
+ nψ. Now consider t2 > T such that ruj

(t) < µuj
+ nψ. It can now be shown (using

an argument similar to the argument in Lemma 5.1) that, ∀ t > t2, ruj
(t) < µuj

+ nψ. Since ψ is
positive and can be arbitrarily small, we have shown that for uj. sessions u ∈ S̃i:

lim sup
t→∞

ruj
(t) ≤ µuj

Now apply the above argument inductively on u1, u2, .... to conclude that

lim sup
t→∞

ru(t) ≤ µu ∀u ∈ Ŝ
i\S̃i

2

Proof of Theorem 5.1: Note that by an inductive application of Lemma 5.3 we can show that

lim
t→∞

rs(t) = r∗s ∀s ∈ S (24)

By Assumption 4.8 and Equation 24 .
lim
t→∞

ηl(t) = η∗l

Proof of Theorem 4.1: The sequence ηl(k), l ∈ L, generated by the update Equation 3 asymptotically
imitates the evolution of the differential Equation 5. By Theorem 5.1, we note that the steady state solu-
tion of Equation 5 yields the max-min fair rate. Hence the update Equation 3 yields a rate sequence that
converges to the max-min fair rate. 2
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6 Final Remarks

In this paper we have presented an asynchronous distributed algorithm for max-min fair bandwidth
allocation to elastic sessions in a packet network. The algorithm is robust to short term variations in the
available capacity. We have use a distributed stochastic approximation iteration. The main contribution
of this paper was to show that the limit mean ODE for the stochastic approximation iteration has the
max-min fair solution as its stable point. The algorithm involves an extremely simple iterative step and
does not require explicit inter-node communication. Also, the algorithm does not require any per flow
rate computation, since the LCP computation is common to all sessions in a link.

The simple form of the iteration at each node ensures that the proposed algorithm would be very
simple to implement. However, the decreasing gains of the stochastic approximation algorithm cause
poor adaptation to sudden long term changes in available capacity, for example due to the entry and
exit of real-time sessions (such as voice and video calls). When such changes occur, the gain of the
algorithm should be reset to a large value. A few simple techniques for detecting such changes have
been proposed and studied via simulations in [5].

An important issue to note is that the convergence of the algorithm is dependent, in part, on
the bounded delay between the calculation of a link control parameter at a link and its effect at the
source. In a practical implementation, a node in which the available capacity has dropped suddenly (in
its random evolution) may experience a surge in the queue length of packets and may lead to dropped
packets. In such cases a mere count of arriving packets at a node may not be an accurate measure of
the sending rate of the sources. To ameliorate this problem there are several solutions.

1. Using a conservative estimate of the available link capacity can reduce the possibility of large
queue build ups. A straight forward choice would be some fraction of the mean of the link
capacity process. Another choice of the link capacity would the effective service capacity (ESC)
discussed in [5] where the capacity is calculated (based on large deviation theory) such that the
buffer length remains below a given target queue with very high probability. In addition all
sources could be required to start at a very low rate. This would reduce the possibility of large
queue build ups during the progress of the algorithm.

2. In the context of ATM networks with ABR traffic, the RM cells may be forwarded through nodes
with a higher priority than the undelying data. Since the RM cells are introduced at the source
at fixed packet count intervals, the rate of arrival of the RM cells can be used to determine the
rate of data sources. Also the ATM RM cells themselves contain the source sending rates and the
rates may be read of the RM cells

3. Similarly, if the packets of a flow contain sequence numbers and the packet sizes are fixed, then
the sequence numbers may be used to determine the sending rate of the source.

A large number of decreasing gain sequences would satisfy the requirements of the formulation.
However, note that the choice of the decrease step for the gain in the stochastic approximation algorithm
would significantly impact the transient performance of the algorithm. Further study into the choice of
the gain decrease method needs to be carried out. Investigation into the use of measurable processes
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such as the queue length and aggregated input flow rate in determining the gain could yield sequences
that improve the convergence rate of the algorithm.
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Appendix

Proof of Lemma 5.1: Note that due to truncation and x(t0) ∈ [0, Cmax], x(t) ∈ [0, Cmax] for all t. If x∗

is unique, we have x∗ > mins∈U µs. Choose ε1 and ε2 such that (i) 0 < ε1 < ε2, (ii) ε2 < x∗−mins∈U µs.
Let T be large enough so that, for all t ≥ T , | ε(t) |< ε1. Now let 0 < x(t) < x∗ − ε2 then

C −
∑

s∈U

max(µs, x(t)) + ε(t) > C −
∑

s∈U

max(µs, x
∗) + ε2 − ε1 > 0

Hence
•
x (t) > 0 and x(t) increases till x(t) ≥ x∗ − ε2. Now if for t2 > T , x(t) ≥ x∗ − ε2 and for

some t3 > t2, x(t2) < x∗ − ε2, then consider t4 = sup{t2 < t < t3 : x(t) ≥ x∗ − ε2}. Note that due
to continuity of x(t), x(t4) = x∗ − ε2. But then

•
x (t4) > 0, which means that there is a δ > 0 such that

for t ∈ (t4, t4 + δ), we have x(t) > x∗ − ε2. This contradicts the definition t4. Hence x(t) continues to
remain above x∗ − ε2.

Arguing similarly, we can show that, given any arbitrarily small ε, for sufficiently large t, we have,
x(t) < x∗ + ε.

Now consider the case of non-unique x∗, then any x∗ ≤ mins∈U µs, will solve the Equation (5.1).
Then argue similarly to show that for any given ε > 0, for t large enough,
x(t) < mins∈U µs + ε. Hence the proof.
2

Proof of Lemma 5.2 With x(t0) = y(t0), suppose that there exists t1 > t0 such that

x(t1) 6≥ y(t1) (25)

This implies that there exists l such that

xl(t1) < yl(t1) (26)

Let t2 = sup{t0 < t < t1 : xl(t) ≥ yl(t)}. Then by the continuity of xl(t) and yl(t), we have

xl(t2) = yl(t2) (27)

Let

z(t) = x(t)− y(t) (28)

⇒
•
z (t) =

•
x (t)−

•
y (t) = g1(x(t), t)− g2(y(t), t) (29)

Now
zl(t1) < 0 and zl(t2) = 0 (30)

Use the mean value theorem and the fact that zl(t) is continuously differentiable to conclude that there
exists t3 ∈ (t2, t1) where

•
zl (t3) =

zl(t1)

(t1 − t2)
< 0 (31)

⇒ g1l(x(t3), t3) < g2l(y(t3), t3) (32)

26



Hence
g2l(xl(t3)) = g2l(x(t3)) ≤ g1l(x(t3), t3) < g2l(y(t3), t3) = g2l(yl(t3), t3) (33)

Where have used the three given properties (i), (ii) and (iii) for g1(·, ·) and g2(·, ·). Note that

xl(t3) < yl(t3) (34)
⇒ g2l(xl(t3), t3) ≥ g2l(yl(t3), t3) (35)

which contradicts Equation 33.
2

Proof of Lemma 5.4: First note that for l ∈ L(m) and µs < pm+1, if x is such that
∑

u∈Sl,r
∗
u<µs

r∗u +
∑

u∈Sl,r
∗
u≥µs

max(µs, x) ≥ Cl (36)

then x > µs. We shall show that lim infk→∞ ηl(t) has this property. Let

εl(t) =
∑

u∈Sl,r
∗
u<µs

r∗u

Ĉl = Cl −
∑

u∈Sl

r∗u

For link l the differential equation can be written as

•
ηl (t) = lim

∆↓0+

[

ηl(t) + ∆γ∗(Ĉl −
∑

u∈Sl,r
∗
u≥µs

max(µs,minj∈Lu
ηj(t)) + εl(t))

]Cmax
l

0
− ηl(t))

∆
(37)

To obtain a lower bound on ηl(t), we consider the auxiliary differential equation

•
xl (t) = lim

∆↓0+

[

xl(t) + ∆γ∗
(

Ĉl −
∑

u∈Sl,r
∗
u≥µs

max(µs, xl(t)) + εl(t))
)]Cmax

l

0
− xl(t)

∆
(38)

Also observe that

Ĉl −
∑

u∈Sl,r
∗
u≥µs

max(µs, yl(t)) ≤ Ĉl −
∑

u∈Sl,r
∗
u≥µs

max(µs,min
j∈Ls

yj(t))

Hence for link l, given identical initial conditions for Equations (37) and (38), the conditions of
Lemma 5.2 are satisfied with g1(·, ·) corresponding to Equation (11) and g2(·, ·) corresponding to Equa-
tion (12) and we have

ηl(t) ≥ xl(t) ∀t (39)

Now using Lemma 5.1 note that xl(t) converges and by Equation 36

lim
t→∞

xl(t) > µs

Hence

lim inf
t→∞

ηl(t) ≥ lim
t→∞

xl(t) > µs 2

2
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