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Abstract 
t 

On-line estimation of performance measures, such as the utiliza- 
tion of a digital communication link, is useful in the monitoring 
and management of packet data networks. In this paper, we de- 
fine a notion of link utilization when the packet arrival process 
at the link is nonstationary. We develop a scheme for accurate 
monitoring of the link utilization, using the easily available SNMP 
variables. Simulation results and on-line measurement results on 
a link carrying live traffic in a wide area data network are pro- 
vided. 

1 Introduction 
Most network management systems for packet switched data 
networks are based on information provided by SNMP (Sim- 
ple Network Management Protocol) [4], a popular protocol 
for gathering traffic measurements from network elements 
(routers, bridges, hosts, etc.,) and exercising elementary con- 
trol actions. SNMP provides raw information in the form of 
simple counters or status variables. In our research, our aim 
has been to turn the raw data provided by SNMP into useful 
information about the data network (see [3]). 

In this paper we report the results of our efforts to develop 
algorithms for estimating the utilization of a digital commu- 
nication link in a wide area packet switching data network. 
We use some of the SNMP variables to estimate the link uti- 
lization when the traffic carried by the link is nonstationary. 
We first point out the problem with the usual sliding window 
based measurement; then we propose, analyse and evaluate 
an adaptive window based technique. 

2 Definition of Link Utilization 
The packets arriving at a link for transmission can be viewed 
as “customers” arriving to a queue. At any time, the link 
(i.e., the server of this queue) is either busy or idle. The link 
occupancy thus forms a (0, l} valued process; a sample path 
is shown in Figure 1. Let us denote the queue length process 
by {X(U) ,U  2 0); i.e., X ( u )  is the queue length at time U .  
The server occupancy process is given by { I{x (~)>o) ,u  2 
0}, where 11,) is the indicator of the set {.}. The long run 
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Figure 1: Server occupancy. 

average occupancy (or utilization) p of the link is given by, 

This long run utilization is useful only if the queue oper- 
ates in a “stationary” environment. In practice, the rate of 
the arrival process is time varyin for example, the server 
utilization could be as high as 90 v o for some time, while a 
bandwidth “hogging” application like file transfer is on, and 
go down to a low value after it finishes. Clearly, the long run 
utilization gives the wrong picture in this case. This moti- 
vates us to seek a definition of utilization for a link with a 
time-varying packet arrival rate. Such a notion of utilization 
would be useful in adaptive traffic control algorithms. 

To establish such a definition, we assume that the arrival 
process has a finite number of states, in each of which it has 
a well defined long-run average rate. A M M P P  (Markov 
Modulated Poisson Process) [l] is an example of such a pro- 
cess, in which arrivals occur as a Poisson process whose rate 
is governed by a finite state, continuous time Markov chain. 
Definition: We define the utilization p ( t )  at time t as the 
dong run average utilization of the server if the arrival process 
were to stay in the state it is in at time t .  

In this paper, we are interested in obtaining a good es- 
timate b(t)  of p(t) .  We wish to obtain this estimate using 
easily available information, like SNMP variables. Note that 
more detailed information (such as packet arrival epochs and 
packet lengths) is usually not available. 

3 Link Model 
Throughout this paper, for the purpose of analyzing the 

estimation schemes we develop, we assume the arrival process 
to be a two state M M P P ,  whose modulating Markov chain 
has the transition rate diagram shown in Figure 2. When the 
arrival process is in state i E (0, l}, the packet arrival process 
is Poisson with rate X i ,  with XO < XI. If we denote the 
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Figure 2: Arrival process for the simulation model. 

fraction of time spent in state 1 by 4, then 4 = e. When 
the arrival process is in state i E (0, l}, we denote the link 
utilization by pi. We assume that the packet transmission 
times are exponentially distributed with mean i. Clearly, 
pi = 2. The "Poisson and exponential" assumptions are 
only to facilitate some analysis, and are not necessary for 
the development of the estimation schemes. Observe that in 
our model, p( t )  = pi where i E ( 0 , l )  depending on the state 
of the Markov chain at time t .  

In the following sections, we develop schemes for estimat- 
ing p ( t ) .  To be able to analyze the performance of these 
schemes, we define a performance metric called the mean 
error. If we let E denote the mean error, we define, 

1 f t  
. I  

E = lim - E[Ijj(u) -p(u) I ]du 
t+m t Jo 

where b(t)  is the estimate at time t ,  and p( t )  is the actual 
utilization of the link at time t .  

4 Sliding Window Scheme 
With a fixed size window of W, seconds, we can estimate 
p ( t )  at time t as the average occupancy of the link in the 
previous W, seconds. Throughout this paper, we let pw(t)  
denote the estimate 

Hence the sliding window estimate is Fws ( t ) .  Choosing small 
values for W, would lead to noisy measurements. From Fig- 
ure 1, we can see that choosing a very small value for W, 
would give us mostly '1's and '0's. Choosing large values for 
W, would result in averaging over long periods. Most of the 
time, W, would straddle periods in which the arrival process 
is in different states and hence measure a wrong value of uti- 
lization. A natural question to ask is whether there is an 
optimal value of W, that minimizes the measurement error. 

To answer this question, we simulate an M M P P I M I l  
queue. In the simulation the window slides in small discrete 
steps, yielding /?ws ( t i ) ,  i 2 1. An estimate of the mean error 
is given by, 

* ,  
i= l  

where, N is the number of time steps, b(ti) is the estimate 
at t i ,  and p ( t i )  E {pO,pi},po < p 1 ,  depending on the state 
of the system at that t i .  We simulate our model for different 
values of q5 and 61. We choose the value of & to be 5000 x i 
and 500 x f ,  where is the mean packet transmission time. 

0.2, I 
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Figure 3: Mean error vs. sliding window size, with 1 0 1  = 
5000 x i, po = 0.2 and p1 = 0.7, for different values of 4. 
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Figure 4: Mean error vs. window size, with & = 500 x 1, P 

po = 0.2 and p1 = 0.7, for different values of 4. 

We let po = 0.2 and p1 = 0.7. Figure 3 shows the mean 
error vs. sliding window size for & = 5000 x and different 
values of 4. The window sizes are normalized with respect 
to the mean service time of packets on the link. 

As we had expected, for a fixed value of q5 the mean error 
is large for a small window size. The mean error reduces 
with increasing window size, reaches a minimum and starts 
increasing on further increasing the window size. This is be- 
cause, when the window size is large, most of the time the 
window would straddle periods in which the arrival process 
is in different states. We see, from Figure 3, that choos- 
ing a value of about 700 x for W, would give us a good 
performance for the entire range of 4, 

Figure 4 shows the mean error vs. sliding window size for 
I = 500 x i and different values of 4 with po = 0.2 and p1 = 
0.7. From this figure we see that choosing a value between 
100 x $ and 150 x $ for W, would yield good performance 
for the entire range of q 5 .  

Thus we see that it is not possible to find a value for W, 
that would do uniformly well for all values of L. In the next 

that overcomes this problem. 

01  

section we propose and develop an adaptive 
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Figure 5: Mean error vs. 9, with & = 5000 x $, po = 0.1 
and p1 = 0.9, for different values of wd. 

Figure 6: Mean error vs, 9, with & = 500 x b,  po = 0.1 and 
p1 = 0.9, for different values of wd;(?j = 0.25). 

5 Adaptive Window Scheme 
When the entire measurement window lies within the same 
state, we get a more accurate measurement for a larger win- 
dow, and hence the window can be allowed to grow. Thus, 
instead of using a fixed size window for measurement, we 
use a window that varies in size adaptively. We define a 
minimum size for the measurement window, and start with 
a window of this minimum size. With time, we let the mea- 
surement window grow as long as we “guess” that the traffic 
is in the same state. When we “sense” that the traffic has 
moved to another state, we shrink this window to the min- 
imum size and start all over again. We call this variable 
size window an (‘adaptive window”, and represent it by W,. 
To be able to adaptively vary the measurement window, we 
should be able to detect the epochs when the traffic moves 
from one state to another so that we can shrink W, and let 
it grow again. 

In the adaptive window scheme, to be able to detect the 
change in state, we use a second time window which we call 
the detection window, which we denote by wd. wd is a fixed 
size window and is basically a sliding window as described in 
the previous section. At any time t ,  we will represent the av- 
erage occupancy over window W, as j3we ( t )  and the average 
occupancy over window wd as pw,(t) .  We use a detection 
mechanism which declares a change when the measurements 
over the two windows differ significantly, i.e., we declare a 
change when, 

lpwa (‘) - bwd ( t > l  > 7 

Where q is a threshold. It remains to  choose appropriate val- 
ues for wd and Q. We study the performance of this adaptive 
window scheme by using simulations. We also study the per- 
formance of the detection scheme and obtain good values of wd and q. 

5.1 Choosing Wd 
We simulate the M M P P / M / l  queue to study the adaptive 
window scheme. Here we assume po = 0.1 and p1 = 0.9. We 
make measurements at  discrete time intervals (every 5 x $) 
and obtain the mean measurement error as the average of 
these measurement errors. We use the expression given in 
Section 4.1 (with p(ti) = $wa ( t i ) )  to  obtain an estimate for 
the mean error. 

Figure 5 shows the values for mean error plotted against 
different values of 4, with & = 5000 x 1, po = 0.1 and 
p1 = 0.9. The different curves correspond to different values 
of wd. We have assumed a value of 0.25 for the threshold q 
for the simulation. Window sizes are normalized with respect 
to mean service time. 

From Figure 5,  we observe that for small values of wd the 
errors are high. As we increase the value of wd the errors 
reduce. After a certain point, further increasing wd results 
in increasing the errors. This behavior is expected. For small 
values of wd, p r o b a b i l i t y  of f a l s e  a l a r m ,  i.e., the probability of 
declaring a change in state when there is actually no change, 
is high. False alarms result in shrinking the adaptive window 
unnecessarily. This leads to larger errors. For large values 
of wd, t h e  d e t e c t i o n  d e l a y ,  i.e., the time taken to  detect the 
change after it occurs is high. This causes more errors be- 
cause we make errors in our occupancy measurement before 
we detect the change. 

Figure 6 shows the values for mean error plotted against 
different values of 9 with = 5 0 0 ~  $, po = 0.1 and p1 = 0.9. 
We see that the behavior is the same as before. 

From Figures 5 and 6 ,  we infer that a detection window 
wd of size about 75 x $ will work well for both cases. 

!J 

5.2 Choosing 7 

We analyze the performance of our detection mechanism us- 
ing a simulation model. The model is a single server queue. 
At time 0 arrivals start with a rate XO. After a random time 
T ,  the state of the arrival process changes and the arrivals 
occur at a rate XI. We assume the arrivals to be Poisson, and 
the service times to be exponentially distributed with param- 
eter p. We use the detection window wd and try to detect the 
change in state. We study the performance measures: prob- 
ability of false alarm and detection delay. The window wd 
slides in discrete steps of 5 x i. The change time T is a mul- 
tiple of this time step, and is assumed to be distributed geo- 
metrically. Let S be the random variable denoting the time 
until a change is declared, i.e., S = inf {t  : Ibwd(t) - pol > q }  
where po = $. The following performance measures are de- 
fined. 

The probability of false alarm, Pj ,  is the probability of 
declaring a change in state when there is actually no change. 
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Figure 7: Probability of detection p d  vs. probability of false 
alarm Pj ,  for a transition from po = 0.1 to p1 = 0.9, with 
mean time to change 50 x i, for different values of Wd. 11 is 
decreasing to the right along each curve. 

Thus, 

After the detection window moves into the changed state, 
it will eventually “detect” the change. We would like to 
detect the change at least before the detection window moves 
fully into the changed state. Thus “detection” is defined as 
the event of the change being detected before the detection 
window fully moves into the changed state. The probability 
of detection, Pd, is given by, 

Pj = P ( S  < T )  

Pd = P(T  5 s 5 T +  Wd) 

When a change is detected, we would like to obtain the 
average time it takes to detect a change after it occurs. The 
mean detection delay, 6 ,  is defined as the expected delay in 
detection given that the change is detected. It follows that, 

6 = E [ S -  TIT 5 s 5 T +  Wd] 

The conditioning S 2 T is necessary, otherwise a large prob- 
ability of false alarm can also lead to a small mean detection 
delay. 

We choose a value for wd, simulate the model for different 
values of q, and obtain the values of P f ,  Pd and 6 corre- 
sponding to the different values of q. Figure 7 shows Pd vs. 
Pj curves for the case when po = 0.1 and p1 = 0.9 with 
mean time before transition being 50 x units. The dif- 
ferent curves correspond to different detection window sizes, 
and each point along a curve corresponds to a different 11. 
Figure 8 shows the mean detection delay 6 vs. probability of 
false alarm P j ,  for different values of Wd. Table 1 shows the 
numerical values for Wd = 75 x k. We observe from Table 
1 that for threshold q = 0.25, the false alarm probability is 
0.001, the probability of detection is 0.9772 and the mean 
detection delay is about 35 x i. 

We have also obtained pd vs. Pi curves, and mean detec- 
tion delay 6 YS. probability of false alarm Pj curves, for the 
case when po = 0.9 and p1 = 0.1, with the other parame- 
ters remaining the same as before. Owing to lack of space 
we do not show these curves here. We have observed from 
these results that, for po = 0.9 and p1 = 0.1, Wd = 7sL and P 

011 0’2 0’3 0 ’ 4  0 : 5  
I 

probabiliiy of kalse a l a r m ’ i p q )  o ’ 7  

Figure 8: Mean detection delay 6 vs. probability of false 
alarm P f ,  for a transition from PO = 0.1 to p1 = 0.9, with 
mean time to  change 50 x i, for different values of wd. 9 is 
decreasing to  the right along each curve. 
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0.05 
0.1 
0.2 

0.25 
0.3 
0.4 
0.5 

Pr 
0.5325 
0.0933 
0.0062 
0.0010 
0.0001 
0.0000 
0.0000 

p d  
1.0000 
0.9964 
0.9876 
0.9772 
0.9629 
0.9177 
0.8029 

b 
12.2365 
21.0220 
30.7330 
35.4215 
40.2375 
48.6295 
55.9060 

Table 1: Values for P j ,  Pd and 6 (in terms of the number 
of mean service times) obtained using the simulation model 
when po = 0.1 and p1 = 0.9 with Wd = 75 x $ for different 
values of 11. 

= 0.25 correspond to a false alarm probability of 0.053, 
detection probability 0.9784, and a mean detection delay of 
about 32 x i. 

From the above simulation results, we conclude that the 
detection window size Wd = 75 x and threshold 17 = 0.25 
yield a good performance for the detection scheme. We also 
found that the values chosen are good when the mean time 
before change is assumed to  be 500 x $ and 5000 x $. 

6 Experimental Comparison of the 
Schemes 

The quantity pw(t) can be estimated using SNMP variables. 
Define ( & ) ~ ( t )  to be the occupancy estimate on the link 
between nodes i and j, in the direction i + j. If we denote 
by N j j ( t ) ,  the number of bytes transmitted on the link i 4 j 
in the interval [ O , t ] ,  we have, 

N i j ( t )  - Ni j ( t  - W )  
w x c  (Fi j>w(t)  = 

where C is the capacity of the link in byteslsec.  
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Figure 9: Link utilization as a function of time measured us- 
ing the sliding window scheme with W, = 25 seconds, W, = 5 
seconds, and using the adaptive window scheme with Wd = 5 
seconds and threshold 17 = 0.25 . 

We monitor the utilization on a 64Kbps link connecting 
the ERNET’ node at Indian Institute of Science, Bangalore, 
to the ERNET node in the Air India building in Bombay. 
Figure 9 shows one set of results. Three file transfers of sizes 
1.7Mbytes, 981ibytes, and 0.5Mbytes approximately were 
carried out one after the other. The first file transfer started 
at around 125 seconds (after the start of the experiment) 
and finished at 365 seconds. The second one started at  395 
seconds and finished at 405 seconds. The third one started 
at 565 seconds and finished at 640 seconds. The top part of 
the figure shows the utilization measured using the sliding 
window scheme with W, = 25 seconds. We observe that we 
are not able to follow the changes in traffic closely. We see 
that the second file transfer goes almost undetected. The 
middle part of the figure shows the utilization monitored us- 
ing a sliding window of size W, = 5 seconds. Though we 
are able to detect the changes quickly, the measurement is 
quite noisy and we often make errors ranging from 10% to 
20%. These errors will cause the performance measure (i.e., 
the mean error that we have defined) of this simple detec- 
tion scheme to be quite poor. We then show the utilization 
measured using the adaptive window scheme with a detec- 
tion window size wd = 5 seconds and threshold 7 = 0.25. 
We observe that we are able to track the changes closely and 
measure the link utilization accurately. 

Similar curves are presented in Figure 10. Three file trans- 
fers were carried out in succession. We see that the adaptive 
window scheme is the most effective; the dips in throughput 
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Figure 10: Link utilization as a function of time measured us- 
ing the sliding window scheme with W, = 25 seconds, W, = 5 
seconds, and using the adaptive window scheme with wd = 5 
seconds and threshold q = 0.25 . 

during a file transfer are probably due to TCP dropping its 
window and going through a slow restart following a packet 
loss [a] 

7 Conclusion 
We have defined a notion of link utilization for a digital trans- 
mission link carrying time varying packet traffic. We have 
demonstrated the inadequacy of the simple sliding window 
scheme for estimating this utilization, and have developed 
an adaptive window scheme. The performance of this new 
scheme has been optimized on a simulation model, and we 
have shown that the scheme works well on “live” network 
traffic. 
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