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Abstract

In this paper we study message flow processes in dis-

tributed simulators of open queueing networks. We de-

velop and study queueing models for distributed simu-

lators with maximum lookahead sequencing. We char-

acterize the “external)’ arrival process, and the message

feedback process in the simulator of a simple queueing

network with feedback. We show that a certain “nat-

ural” modelling construct for the arrival process is ex-

actly correct, whereas an “obvious” model for the feed-

back process is wrong; we then show how to develop the

correct model. Our analysis throws light on the stabil-

ity of distributed simulators of queueing networks with

feedback. We show how the stability of such simulators

depends on the parameters of the queueing network.

1 Introduction

In a distributed discrete-event simulation (DDES), each

process can be viewed sa receiving time-stamped mes-

sages over several sequential channels; i.e., on each chan-

nel the messages arrive in time-stamp order. The aggre-

gate message stream arriving at the process is, however,

not in time-stamp order. The purpose of the synchro-
nization mechanism (optimistic [3] [2], conservative [7],

or variations of these) is to produce a message stream

that is in time-stamp order, for further processing by the

event processor. Obviously, the complication in the se-

quencing procedure arises when a channel is empty, for

then the sequencer does not know what to do with the

messages in the non-empty channels. Suppose, however,

the sequencer is told the time-stamp of the next mes-

sage to arrive in all the empty channels. This is all the

information the sequencer needs to sequence the mes-

sages that can be sequenced at this time (no additional

information about future arrivals will help). Such infor-

mation if available at each channel is called maximum

lookahead [4], and is, in general, not practically obtain-

able. Maximum lookahead is, of course, an upper bound

to sny practical lookahead, and is hence expected to

yield an upper bound on simulator performance. With

this in mind, in this paper we study distributed simul~

tors with maximum lookahead sequencing.

In this paper we are interested in message flow pro-

cesses in distributed simulators of open queueing net-

works. Our objective is two fold. The simulation makea

progress when event processors correctly process event

message-s; thus the rate of flow of correctly processed

messages is indicative of the performance of the dis-

tributed simulator (e.g., speed-up). Further, the study

of message flow processes yields an understanding of

issues such as stability and boundedness of message

queues. Note that it has been shown in [4] that in dis-

tributed simulation of feedforward networks the message

queues are unstable. Our emphssis in this paper is on

the second objective. The first objective is dealt with

in a companion paper [5].

Our approach is via queueing models of distributed

simulators with maximum lookahead. The “customers”

in these queueing models are the event messages and the

servers are the event processors. Obviously the through-

put of correct messages in such a queueing model re-

lates to the rate of progress of the simulation. Owing
to the synchronization problem, these queueing models

have features that do not appear in the usual queueing

models in the literature. In this paper we develop and

study such queueing models for distributed simulators

of queueing networks with feedback. Maximum lookw

head simulators are found to be the simplest to model.

We show that a certain “natural” modelling construct

for arrival processes in the simulator is, in fact, exactly

correct, whereas an “obvious” model for the feedback
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Figure 1: A Queueing Network with Feedback

processes is wrong; we Bhow how to develop the exact
feedback model. Our analysis in this paper throws light
on the stability of distributed simulators of queueing
networks with feedback. We show how the performance
of simulators of queueing networks with feedback de-
pends on the psmrneters of the queueing network.

The paper is organized as follows. In Section 2, we

consider a queueing model with two queues with feed-
back. We develop the queueing model of a simulator in

which each queue is simulated by a procexw on separate

processors. External arrivals into each queue are shown

to result in arrivals of batch event messages into each

process. In Section 3, we characterize these “external”

batch arrival processes in the simulator of the queue-

ing network. Section 4 is devoted to characterizing the

masage feedback process. We show the incorrectness

of the Bernoulli feedback model, and demonstrate the

exact feedback model for a limiting case of the original

2 queue model. Finally, in Section 5 we develop an ex-

act model for the feedback process in a more general

case. Analysis of this model suggests how the stabil-

ity of the message queuea depends on the parameters of

the original queueing network. Section 6 has the con-

clusions. Appendix contains the details of some mathe-

matical derivations,

2 Development

Model of the

of the Queueing

Simulator

In this section, we consider a queueing network with two

queues and feedback. We begin to develop the model

of the distributed simulator of the queueing network.

Some nonstandard modelling constructs arise, which we

proceed to develop in subsequent sections.

As usual, we call the simulation processes running on

the simulator processors as logical processes (LPs) and

the queueing (sub) networks they simulate as physical

processes (PPs). If the queueing network is mapped

onto m logical processes (each on a separate processor)

these are denoted LPI, LP2,. , ., LP~.

2.1 A Queueing Network with Feedback

I ------------------....................... t

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

Figure 2: Simulator of the Queueing Network with Feed-

back

Consider a network with two queues and a feedback

shown in Figure 1. The distributed simulator for this

network is shown in Figure 2. The simulation of each

queue is assigned to a separate LP. Denote by Pi,
i = 1,2, the service (exponential) rate of queue i in

the queueing network with feedback. Al is the external

arrival (Poisson) rate of customers to Queue 1 in the

queueing network. vi, i E {1,2} is the service (expo-

nential) rate of the event processor queue in LPi. The

event sequencer (ES) has two message queues ESQ 1 and

ESQ2. Queue ESQ2 is fed by LP2. Note that since

Queue 1 in the PP has external arrivals generated within

LPI, the corresponding event sequencer queue (ESQ1)

will always have a backlog of messages.

Denote by Yi the throughput of queue i (i = 1,2)

in the queueing network, and by ri the throughput of

LPi (i = 1,2) in the simulator. We sssume that the

queues of the queueing network (PP) are stable. Thus,

72=~</J2,71 =+</@

In this problem, owing to the feedback loop, the con-

servative event sequencer will deadlock; a deadlock oc-

curing each time queues LP2, ESQ2, and the event pro-

cessor of LPI in the simulator are empty. With a max-

imum lookahead sequencer, however, it is clear that in

this situation the lookahead in queue ESQ2 is ahead

with probability (w.p.) 1, of the time-stamp of the first

message in queue ESQ1, and hence this message can be

allowed to enter and the simulator progresses. This can

be argued ss follows. Suppose that the first message in

queue ESQ1 is fed back, then the maximum lookahead

in queue ESQ2 will be equal to the sum of three terms:

the time-stamp of the first message in queue ESQ1, a

sample of an exponential random variable with rate pl,

and, a sample of an exponential random variable with

rate p2. Note that an exponentially distributed random

variable (corresponding to the service time) is zero w.p.

O, thus the lookahead in queue ESQ2 is ahead (w.p. 1)

of the time-stamp of the first message in queue ESQ1. If
the first message in queue ESQ1 is not fed back, emen-

tially the same arguments hold as above along with the

fact that the time-stamps of messages in queue ESQ1
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Figure 3: Equivalent Queueing Model of the Simulator

in Figure 2

are monotonically increasing. Thus the simulator with

maximum lookahead sequencing does not deadlock. Note

also that with maximum lookahead sequencing all event

messages are correctly processed exactly once.

We study the distributed simulator of Figure 2 with

the msximum lookahead algorithm, Whenever a mes-

sage leaves queue ESQ2 of the simulator, the time-

stamp of the next message to arrive at queue ESQ2

is provided to the sequencer (i.e., maximum lookahead

operates), and all messages from queue ESQ1 with time-

stamp less than this lookahead time are moved to the

event processor, Therefore, after each departure from

queue ESQ2, a batch of messages arrive at the event

processor in LPI. This batch consists of the message

that leaves queue ESQ2 plus some arrival messages from

queue ESQ1. It is essy to show [6] that the mean batch

sizeisl+~= ~. In the queueing, model of Figure 1,

if we have no feedback, the resulting network is a feed-

forward network. It can be proved [4] that in the dis-

tributed simulator of a feedforward network, if the time-

stamp processes are Poisson, then the batches departing

from the event sequencer are geometrically distributed.

No such claim can be immediately made about the batch

size distribution in simulators of networks with feedback

(W in Figure 1). In Section 3, we will investigate the

distribution of the batch size in this model.

2.2 Queueing Model of the Distributed

Simulator

A queueing model of the distributed simulator is shown

in Figure 3. In this model no event sequencer is shown;

instead, a departure from LP2 brings a batch of mes-

sagea to the event processor of LPI. The mean batch

size is given by ~. As in the queueing model in the

simulator, a fraction (1 – p) of the events processed by

LPI depart from the system, and the rest are fed back.
Note that this is not to claim that the feedback process is

Bernoulli, i.e., independent and identically distributed
(i.i.d.) feedbacks with probability (w.p.) p.

Our aim is to analyse the event message processes
in this queueing model. We would like to obtain the

simulator throughput, by which we mean the rate at

which processed events leave the simulator after event

processing at LPI. We may be interested in the sys-

tem sojourn time of customers entering Queue 1 in the

queueing network model. Each departure from the sim-

ulator will yield a sample of sojourn time, and hence

simulator throughput is a meaningful quantity,

Before steady-state throughput can be determined,

however, stability of the message queues needs to be

established. Analysis of the queueing model in Figure 3

can only proceed after we characterize the batch arrival

process at LPI and the feedback process from LPI to

LP2. This we now proceed to do in Sections 3 and 4.

3 Characterization of the “Ex-

ternal” Arrival Process in the

Simulator

In the model in Figure 1, denote by pi, i = 1,2, the

server utilization factor of queue i. Then, pl = PI ~~~P)

and p2 = ‘lP For notational convenience (1 – p) is
/.J2(l-P) “

written as ~ in the analysis.

Now observe that the external arrival batchea that

srrive following a departure from LP2 into LPI (see

Figure 3) are just the batches of external arrivals be-

tween successive departurea from Queue 2 to Queue 1

in Figure 1.

We prove that the batches of customers arriving be-
tween departures from Queue 2 to Queue 1 in Figure 1

are i.i.d. and geometrically distributed with mean equal
~ $

3.1 Analysis for the Two Queue Model

Consider a departure from Queue 2 to Queue 1 (Fig-

ure 1) in the stationary regime. Let the number of cus-

tomers in queue i, i = 1,2, just afier this departure be

denoted by Xi. By the Arrival Theorem [8] we know

that

P(X1 = kl, X2 = kz) =P:’-l(l ‘PI) P;2(1 -P2),

Let

Y; = the number of customers in queue i, i = 1,2,

just after the next departure from Queue 2 to
Queue 1

A = the number of external arrivals to Queue 1

until the next departure from Queue 2 to Queue 1

are interested in calculating the joint generatingWe

function
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from other
nodes

Figure 4: A Node in a Jackson Network

= ~ ~P(x, =k1,x2=k2).
kl=l k!=o

(WE w~w~zAIXl = kl, X2 = kz
)

It is easily shown that [6]

J(wl, W2, z) =
(1 :pz)

j(wl , W2) (1)

‘;-l(l - p,)pj+l -where, jj(wl, W2) := ~~=1 ~fi=o PI

p2)w:: w;:.

Observe from Equation 1 that J(WI, WZ, z) factors

into two generating functions, one in z and the other

in (w1, WZ). It follows that after a stationary depar-

ture (YI, Yz) and A are independent. Further P(A =

)
k = (l–p)kp for k ~ O, and P(YI = t?I, Y2 = 42) =

pl’-l(l –PI) p$(l - pz) for 11 ~ 1,12, >0, Since the

number of external arrivals until the next departure af-

ter the one which left behind (Yl, Yz) depends only on

(Yl, Y2), it follows that the numbers of external arrivals

between successive departures from Queue 2 to Queue

1 form an i.i.d. sequence with a geometric distribution.

It follows that in the queueing model of the maximum

lookahead simulator, shown in Figure 3, each euent ar-

riving from LP2 to LPI b immediately followed by a geo-

metrically distributed number of external arrival events.

The successive such batches are i. i. d..

3.2 A Generalization Using Time Re-

versal Arguments

In this section, we extend the results of ~he lsst section.

For a Jackson Network [8], we prove that the sequence of

number of external arrivals at a node between successive

arrivals from other nodes is a geometrically distributed

i,i.d. process.

Consider a typical node of a stationary Jackson Net-
work. This is shown in Figure 4. J is the external

arrival rate of customers to the node. Customers arrive
at this node from various other nodes also. Now con-

sider the reversal of the stationary Jackson Network. In

the reversed network, a transition from state j to state

/’L
d

departures
from system

Figure 5: Reversal

hExter 1
amv s

of the Node in Figure 4

-
2/2 - I/l

Figure 6: Queueing Model for the Simulator in Figure

2 ~howing Batch A~rivals into LPI.

i corresponds to the transition from state i to state j

in the original network. The reversal of the node in

the stationary Jackson Network in Figure 4 is shown in

Figure 5. In the reversed network, the customers that

leave the system correspond to the external arrivals in

the original network. Therefore, we need to find the

distribution of the customers that leave along link L in

the reversed node.

We denote by ~, the probability of a customer leav-

ing the node in the reversed network. Then, between

two departures that join any of the other nodes (along

~’ in Figure 5), the number of departures that leave

on link L is geometrically distributed, and is equal to n
with probability I#n(1 – ~), Further the sequence of the

number of such departurea along 1, between successive

departures along Z’ is i.i.d. But the reversal of this pro-

cess is precisely the number of external arrivals between

successive arrivals from other nodes.

Thus, we have shown that at any node in a station-

ary Jackson Net work, the number of external arrivals

between two arrivals from other nodes is geometrically

distributed, and the sequence of such numbers is i.i.d.

It follows that in the model of a distributed simulator

of a Jackson Network, in the stationary regime, the suc-

cessive external arrival batches triggered by a departure

from one queue to another are i.i.d and geometrically

distributed. Note that an LP simulates a single Queue.

4 Characterization of Message

Feedback Process

From the snalysis in Section 3, we conclude that the

model for the maximum lookahead simulator in Figure 2
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Figure 7: Limit of the Queueing Network in Figure 1

when pz h OQ, and PI = p,

I 1

t.

Figure 8: Limit of the Simulator in Figure 2 with V2 ~

co, and V1 = v.

will have the form shown in Figure 6 where the (1 –

P) next to the arrow entering LPI denotes that each
departure message that moves from LP2 to LPI actually

brings in a batch of k ~ 1 customers with probability

(1 – p)k-lp, snd the successive such batches are i,i.d,

In Figure 7 is shown the limit of the queueing model
of Figure 1 aa pz a cm, and in Figure 8 is shown the

limit of the simulator of Figure 2 as vz ~ m. Note that

we have replaced the symbols pl by ~ and VI by v. The

queueing model for Figure 8 with maximum lookahead

will have the form shown in Figure 9.

Due to the difficulty in characterizing the message

feedback process from queue 1 to queue 2 in the model

shown in Figure 6, we initially study the simpler model

in Figure 9.

Observe that each message departure from the event

processor corresponds to the departure of a customer

from Queue 1 in the PP of Figure 7. If the customer is

fed back in the original queueing network then the cor-

responding message is fed back in the simulator, other-

wise the message corresponds to a customer leaving the

system. Thus a fraction p of the message departures

from the event processor are fed back (and subsequently

carry with them i.i.d. geometrically distributed batches

of external arrival messages into the event processor).

L-T] d+
(1 -p) v

Figure 9: Partially Developed Model for the Simulator

in Figure 8

phi

@

hz

1 2.

P
phl + @

Figure 10: Transition Probability Diagram of the Mes-

sage Queue Length Process in the Event Processor in

Figure 8, using the Bernoulli Feedback Model

It remains to characterize the process by which mes-

sages are selected for feedback. We first show that the

Bernoulli feedback model is wrong. We do this by as-

suming the Bernoulli feedback model and then analysing

the resulting Markov chain of messages queued in the

event processor; this Markov chain is found to be not

positive recurrent, This is in disagreement with simu-
lations, however, since we observe that, in simulations,

message queue lengths remain stable, Also the Bernoulli

feedback model predicts instability in cases where sta-

bility of the model is obvious(we shall demonstrate the

source of the problem in section 4.2).

4.1 Incorrectness of the Bernoulli Feed-

back Model

With the Bernoulli feedback assumption, the i.i.d. ge-

ometric batch feedback model (Figure 9), and expo-

nential event processing times, it is clear that X(t),

the number of messages in the event processor at time

i!, is a Continuous Time Markov Chain whose transi-

tions occur at the epochs of a Poisson process of rate

v. Hence we can just aa well study {Xn } the queue

length process embedded at these Poisson epochs, Fur-

ther, nothing is lost in assuming v = 1. Letting, for

k ~ 1, hk = (1 – p)k-lp, the transition probability di~

gram of {X~ } is depicted in Figure 10. For notational

convenience (1 – p) is written as ~ in this figure and

subsequent analysis.

Observe that when maximum lookahead synchroniz~
tion is used, the simulation will never deadlock. Hence

when just 1 message is present in the event processor

and this message leaves, owing to the available maxi-

mum lookahead, the next arrival message can be gener-

ated and inserted into the event processor, thus avoiding

deadlock. The Markov chain transition diagram in Fig-

ure 10 depicts this self transition from 1 to 1,

Thus, we obtain the transition probability matrix P,

which has the well known structure of the embedded
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Markov chain in an M/G/l queue:

[

l–p(l–hl) ph2, ph3 . . . phi . . .

P= P phl ph2 . . . phi-l . . .

0 P Phl ... phi-z .“” 1
This is clearly an irreducible and aperiodic Markov

chain. To study its positive recurrence, we attempt to

find asolutionforr= = 1. Alittlealge-‘P> ~i~s ‘%
bra shows that any solution to r = ~P will be of the

form ??t = piT1 for i z 2. Thus, ~ic~ ~i = 1 cannot be

satisfied and the Markov chain is not positive recurrent.

Therefore the message queue is unstable

In addition, it can be 8hown by standard analysis that

all the states of the Markov chain are recurrent. This

implies that the Markov chain is null recurrent.

This analysis shows that the Bernoulli feedback model

yields unstable message queues in the simulator of Fig-

ure 8, However, no instability is seen from a simulation

study of the simulator.

We now refine the queueing model of the simulator

in order to capture the stability of the event processor

queue. This is done in the next subsection.

4.2 Refinement of the Queueing Model

of the Simulator

We first demonstrate the source of the problem by

studying the simulator in Figure 8 with infinite service

rate in the PP of Figure 7, i.e., K = 00 but finite service

rate v in the simulation. Consider now a feedback epoch

r in the PP. In the simulator (Figure 8) the correspond-

ing feedback message is immediately followed by a geo-

metrically distributed batch of messages corresponding

to external arrivals until the nezt ~eedback. In the PP

this (next) feedback must come from among the queued

messages at the epoch r+ or the external arrival mes-

sages until the next feedback. Since the service time

in the PP is infinite, however, each arrival always sees

an empty PP queue, and hence the next feedback after

r must be due to the last arrival that arrives between

the two feedbacks. Thus, in the simulator model, the

feedback probability of the last arrival in the batch is 1

and for others it is zero, and not p for every message as

asserted by the Bernoulli feedback model. Observe that

the mean number of customers that will be fed back

from each arriving batch (including the feedback that

preceded the batch) is 1 in both models.

Then for p = co we get the following CTMC model.

When there are n > 1 messages in the event processor

queue, messages depart after i.i.d. exponential(v) ser-
vice until 1 message is left. This message must be fed

back after its service. There is thus always at least one

message in the event processor queue. Again embedding

1 1 1 1

Figure 11: ‘llansition Probability Diagram of the Mes-

sage Queue Length Process in the Event Processor in

Figure 8, with p = 00, using the Correct Feedback

Model

at service completion epochs (which form a Poisson pro-

cess of rate v) we get a Markov chain with the transition

probability diagram shown in Figure 11; hk, k ~ 1 is as

defined in Section 4.1. In this Markov chain the mean
time to return to state 1 is ~~1 ihi < CQ. We conclude

that the simulator is stable. Note that we have the ex-

zwt model for the simulator when p = co and event

processor service timm are i.i.d. exponential(v).

We conclude that the feedback processes in the dis-

tributed simulator model need to be modelled carefully,

otherwise erroneous conclusions arise, Further for the

simple queueing model and its distributed simulator

studied above, the stability of the simulator message

queues is independent of u, the processor speed. Also

observe that, whereas in a serial simulation of the model

of Figure 7 there will be at most 2 pending events, the

number of unprocessed messages in the event processor

in the distributed simulator is unbounded, m is clear

from the Markov chain model (Figure 11).

5 Queueing Network with Two

Queues and Feedback: Revis-

ited

A little thought shows that in the simple model of Fig-

ure 7 and the model of its maximum lookahead simula-

tor in Figure 8, there is a close correspondence between

customer queues in the PP and message queues in the

LP. Hence stability of the PP implying stability of the

LP is hardly surprising. A similar result is not at all

obvious, in general, for the PP in Figure 1 and its simu-

lator model of Figure 6, If V2 is, for example, very large

(say co) then the message queue in LPI of the simula-

tor model in Figure 6 can grow to very large values, and
will have little correspondence to the queue lengths in

Queue 1 of the PP. We therefore turn now to the more

difficult problem of analysing the feedback process in
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Figure 6 and a study of the stability of the consequent

queueing model.

We consider the situation in which PI and pz in Fig-

ure 1 are finite, but in Figure 6 (the simulator model)

V2 = co, while VI <00. In this situation each feedback

from LP1 (Figure 6) instantaneously enters LPI again,

bringing with it a batch of arrivals. Thus the LP model

is as in Figure 9, except that feedback events have their

time-stamps incremented owing to the nonzero service

time in Queue 2 of the PP. We change our point of view

slightly by associating with each departure from LP2 to

LPI those arrivals that immediately precede this depar-

ture (i.e., this departure was the lookahead event, based

on which the batch of arrivals was “taken in”). Observe

that, with maximum lookahead, LPI will never become

empty, so we consider an arrival from LP2 and its asso-

ciated arrival batch as one customer with exponential

service time distribution with rate VIP; this is an ex-

actly correct model which follows from the results in

Section 3.

Now let {X., n > O} be the queue length process in

the event processor in LP1, embedded at batch service

completion epochs, i.e., at Poisson epochs with rate Vlp.

Each batch of events, upon being serviced, yields events

that get fed back into LPI. The feedback events corre-

spond to those customers who come in the batch in the

PP but get fed back to Queue 2 after service at Queue 1.

Let this sequence of feedback batches in the PP be

{F~}; for a stationary and ergodic PP, the sequence

{F~} is also stationary and ergodic. Then clearly (recall

/2 = w), for X. > 1, X.+l = max(Xn – 1 + F., 1), It

is well known ([1], [8]) that {Xn } converges in distribu-

tion to a proper random variable if, with probability 1,

lim n-m ~ ~=1 Fta = E(F) <1. In A~pendix, it is
established that E(F) < 1 if pl < 1 and p2 < 1 in the

PP.

Now let T1, 72,... be the epochs of service completions

at LP1 with V2 < co. Observe that for any V2 t (O, co],

the nth service completion at LPI corresponds to the

same event in the PP. If (X!:), X$:)) is the state of

the system with V2 < co at the epochs r. then it can

be shown by induction on n that X!:) + X\~) = X.,

Intuitively, the only way the customers can leave the

system (with or without V2 < co) is at a service com-
pletion at LPI. Also the only way the customers enter

LP2 is when there is a service completion at LPI, i.e.,

at service completion at LP2 (with V2 < oo) the total

number in the system is invariant.

For other transitions between ~. and ~.+l (these

correspond to jumps from LP2 to LPI) we have the

number in the system equal to X.. Thus, letting

n=o, l , . . . index all the jumps in the uniformized chain,

if (X~2), X:l)) is the state of the system (V2 < oo)

Figure 12: Queueing Model for the Simulator in Figure

2, obtained from Figure 6, by Dilating the Service Time

at LPI.

then {X#) + X!) } also converges in distribution to the

proper random variable.

Thus we find that the simulator is stable if the or;g-

inal queueing model is stable. The processing ratea in

the simulator do not play a role in the stability of the

simulator. Of course, the rate of simulation progress is

more if the simulator processes are faster.

6 Conclusions

In this paper we have developed models for message

flows in distributed simulators of queueing networks

with maximum lookahead sequencing, with a view to-

wards stability analysis of event processor queues.

We characterized the “external” arrival processes in

the simulator of an open Jackson Network, and proved

that the batches of customers arriving between depar-

ture from one queue to another are i.i.d. and geomet-

rically distributed.

We demonstrated the difficulty in characterizing the

message feedback processes in the simulator model. We

showed that the Bernoulli feedback model is wrong, and

developed the feedback process model for a two queue

example.

Analysis of the resulting models showed that the sta-

bility of message queues in the simulator depends on

the stability of the queueing model being simulate~ thus

faster processors in the distributed simulators do not

yield a stable simulation of an unstable queueing model.

This is quite in contrast with serial simulation; observe

that serial simulation of an unstable M/M/l queue re-

quires an event list with at most 2 pending events,

This paper is just an initial effort on what is obviously

a hard problem. Further work should help to show how

the throughput of the simulator depends on parameters
of the queueing model and the processing speeds in the

simulator.

Appendix: Proof that E(F) <1

Let I’ denote a customer (recall that each such customer

models a batch of events) that has just finished service

at LP1 in the simulator model of Figure 12 (obtained
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from Figure 6 by dilating the service time at LPI). To

determine E(F), i.e., the expected number of customers

that are fed back when r finishes service, we look at the

original queueing network (in Figure 1). Recall that I’

corresponds to a customer C that jumps from Queue 2

to Queue 1 in the PP (the queueing network). When

the customer C’ is in the midst of jumping from Queue

2 to Queue 1 in the PP, it sees some number nz in

Queue 2 and some number nl in Queue 1 in the PP.

Observe that all the external arrivals that are implicitly

associated with 17 in the simulator model have already

entered Queue 1 of the PP before the epoch at which

C jumps from Queue 2 to Queue 1 Let the number

of these external arrivals associated with C be given

by A. If nl ~ A, itmeans that all the A arrivals are

candidates for feedback to Queue 2 in the PP. In this

situation, the expected number of feedbacks that are

put in LP2, upon the service completion of I’ in LPI, is

Ap. (Note that since V2 = cm, all the feedbacks to LP2

arrive instantaneously to LPI). Now consider the case
when nl < A; without further analysis, we can only

infer that the expected number of arrivals in A that are

fed back to Queue 2 is at least nip. We show below

that the expected number of feedbacks to Queue 2 is

nlp + min(A –
()

nl, n2)p1, where pl := ~ . Note

that C can be fed back with probability p.

When nl < A then consider the queueing system in

Figure 1 at the instant when C makes a transition from

Queue 2 to Queue 1 in “forward” time. Now we look

at “reversed” time. In the reversal d? the system, C

jumps from Queue 1 to Queue 2 and 14 is the number

of external departures from Queue 1 ihat follow C but

precede the next jump from Queue 1 to Queue 2. Fur-

ther F is the number of these departures that resulted

from customers that came to Queue 1 from Queue 2.

When nl < A then we know that E(F) ~ nip, Given

that Queue 2 is nonempty, the probability that an ar-

()
rival to Queue 1 came from Queue 2 is pl = ~ .

Obviously, no more than min(A – nl, nz) can come from

Queue 2 in the reversed network. It can be easily shown

that the expected additional number that came from

Queue 2 is (min(A – nl, nz))pl.

Thus we can write E(F) as follows, (p := 1 -p)

{

m

E(F) = ~ .(7LI , .2) ~dwcp

w ,n2 k=o

q+%l

+ ~ (nlP+ (k – nl)Pl)FkP

k=n~+l

}

+ ~ (mP+wl)Fk%J +,
k=rb~+rq+l

where, for pl < 1 and p2 < 1, by Arrival theorem [8],

()x(nl, nz) = (1 – pl)p~l(l – pz)p~z, and pl := --& ,

The explanation of the above expression is the follow-

ing. We first wndition on what C sees in Queue 1 and

Queue 2 in the PP when it is making a jump from Queue

2 to Queue 1. Then we condition on the number A in the

arrival batch that precedes it. The first term in the curly
brackets in the expression above corresponds to the case

when nl ~ A; the second term corresponds to the case

when nl < A but nz ~ (A — nl); and the third term

corresponds to the case when nl < A, n2 < A – nl, The

last term (p) in the expression for E(F) corresponds to

the fact that the customer C corresponding to the batch

1“ that haa just finished service at LPI can also be fed

back with probability p.

Finally, note that E(F) – 1 simplifies to

(1 - p,)p
{-1+ P2(1-PIP-PP1)}

(1 -pp~)(l -pp,)

which is < 0 when pl < 1 and pz < 1.
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