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Distributed Optimal Self-Organisation in
Ad Hoc Wireless Sensor Networks

Aditya Karnik and Anurag Kumar

Abstract— The work in this paper is motivated by the idea
of using randomly deployed wireless networks of miniature
smart sensors to serve as distributed instrumentation. In such
applications, often the objective of the sensor network is to
repeatedly compute and, if required, deliver to an observer
some result based on the values measured at the sensors. We
argue that in such applications it is important for the sensors
to self-organise in a way that optimises network throughput.
We identify and discuss two main problems of optimal self-
organisation: (i) building an optimal topology, and (ii) tuning
network access parameters, such as the transmission attempt
rate. We consider a simple random access model for sensor
networks and formulate these problems as optimisation problems.
We then present centralized as well as distributed algorithms for
solving them. Results show that the performance improvement is
substantial and implementation of such optimal self-organisation
techniques may be worth the additional complexity.

I. I NTRODUCTION

Equipped with a microprocessor, memory, radio and a
battery, miniature sensing devices now combine the functions
of sensing, computing, and wireless communication intosmart
sensors. A smart sensor may have only modest computing
power but the ability to communicate will allow a group of
sensors to organise themselves into a network and collabo-
rate to execute tasks more complex than just sensing and
forwarding the information, for example, on-line distributed
processing of the sensed data. By processing information
collaboratively within the network, smart sensors will not only
be able to monitor the physical environment but manipulate it
as well ([1], [2]). Thus the smart sensing technology portends
the new dimension ofembedded computing and controlinto
distributed instrumentation ([3]). The decisive factor, however,
is the rate at which sensors can collaboratively process data,
since the physical process being monitored will have certain
processing requirements, and unlike conventional distributed
processing machines, which have high speed communication
buses between a pair of processors, a sensor network has low
speed wireless links, lacks centralised control, is ad hoc in
nature and energy constrained. It is, therefore, imperative that
sensors not only self-organise but do so optimally, in the sense
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of maximising computing rate, for given task objectives and
constraints.

The computing rate of a given task, however, cannot be
directly optimised except in simple cases. First because finding
a functional form for it is a formidable task since it depends
on, among other things, the way the computation is “arranged”
using a distributed algorithm. Secondly, even if such a form
is known optimising it would be a centralised problem since
individual sensors will hardly have any notion of the global
computing rate. Therefore, the optimisation problem must be
based only on objectives local to the sensors. Note that, a
global computation proceeds in steps comprising of certain
local computations at each sensor. Thus, the faster the sensors
complete their share of local computations the higher will
the global computation rate be. A simple class of distributed
computing algorithms will require each sensor to periodically
exchange the measurements and/or partial results of local
computation with the other sensors. The more frequently
exchanges of results among neighbouring sensors can occur,
the more rapidly will the overall computation converge. The
more rapid the progress of the computation the faster the
variations of a spatio-temporal process that can be tracked.
Thus, sensors must organise themselves in such a way as to
optimise their communication throughput. They can do so by
forming an optimal network topology and tuning to optimal
transmission attempt rates since these are the crucial factors
that determine the throughput. It is in these two aspects that
we investigate optimal self-organisation of sensor networks.

Our objective in this paper is to analytically formulate the
notion of optimal network organisation, investigate distributed
algorithms leading to it and study the achievable performance
gains. To this end, we propose an analytical model for sensor
networks involved in processing data continuously or over
long, possibly critical, active periods. We formulate the optimi-
sation problems of self-organisation in our model and present
distributed algorithms for solving them. Our results show
that the performance improvements are substantial, therefore,
implementation of such self-organisation techniques is worth
the additional complexity. In this respect, our work should be
seen as a step towards eventually understanding algorithms for
self-optimizing sensor networks.

The paper is organised as follows. In Section II we review
the previous work in the area. Section III discusses our
model of sensor networks. In Section IV we formulate the
problem of optimal self-organisation. The problem of optimal
network topology is discussed in Section V and tuning to an
optimal channel access rate in Section VI. Section VII follows
with discussion and we conclude in Section VIII. Proofs are
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sketched in Section IX.

II. RELATED WORK

In recent years, literature on sensor networks has grown
tremendously. Self-organisation of sensor networks, in partic-
ular, has received wide attention. Its various aspects, namely
topology discovery and control, scheduling, localisation and
energy efficiency have been addressed in the previous papers,
their main focus being the protocol design. For example,
topology formation and scheduling for ad hoc networks have
been discussed in [4], [5]; note that the generation of sched-
ules is an impractical task for large random networks. A
survey on topology control in sensor network is presented
in [6]. [7] presents a message efficient clustering algorithm
for sensor networks. [8] describes various self-organising
procedures. Specific protocols are discussed in [9]. [10] reports
experimental performance studies of a protocol for formation
of a connected topology of sensor networks. Localisation
aspects have been addressed in [11], [12]. [13] discusses a
protocol which allows nodes to build transmission schedules
to conserve energy. Impact of energy conservation techniques
(sleep/active schedules) on the performance of sensors (in
terms of delivery delay) has been studied in [14].

Our work differs from the previous work in the following
aspects. In contrast to typical data aggregation applications,
we consider applications where sensors are engaged in “in-
network” computing. Such applications would typically de-
mand certain performance (computing rate or delay) from
the network; hence we viewperformance optimisation as
the objective for self-organisationand our algorithms are
motivated by this goal. The current literature, on the other
hand, has largely overlooked this issue of optimality of the
performance of the resulting network organisation. We believe
that our analytical approach and formulations are the first of
their kind in this area. We also substantiate our results by
simulations.

III. A M ODEL FORSENSORNETWORKS

In many applications the sensors will monitor (and possi-
bly manipulate) the environmentautonomously by in-network
computing. For ease of implementation and robustness the
computational algorithms will be based on strictly local inter-
actions among sensors (e.g., [12], [15]). Our work focuses on
this paradigm. We, therefore, model only the local computing
and communication since a sink and, therefore, directed traffic
flows are not prerequisites in this set-up. This, however, does
not exclude all together the applications in which computa-
tional results need to be delivered to a sink. For example,
delivering the maximum of sensed values to the sink can be
seen as a computation in itself and is, thus, addressed by our
model ([21]). In other scenarios the computational results may
percolate to the sink rather than through explicit flows; for
example, in gossip based computation the sink can actually
be part of the network participating in the local exchanges.
We consider a random access communication model. We
believe that an elaborate MAC may not be suitable due to
control data overheads and moreover, it is not clear how
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Fig. 1. A traffic model for sensors carrying out measurements and distributed
computation.

much improvement a scheme like RTS-CTS will lead to in
dense networks. In addition distributed TDMA scheduling
has certain limitations, such as scalability, fault tolerance,
inflexibility to traffic conditions, dependency on simplistic
interference models, etc. ([16]). Therefore, random access is an
attractive MAC for large ad hoc sensor networks. We assume
slot synchronization among sensors. Time synchronization is
vital for some sensing tasks ([17]); hence our slotted time
assumption may not be very restrictive. Moreover, even in the
absence of time synchronization, slot synchronization can be
achieved by distributed algorithms ([18]). The following are
the elements of our model.
Deployment: We assume that a large number (denoted by
N ) of static sensor nodes are placed (possibly randomly) in
a region. The sensors are engaged in a generic sensing-and-
computing task such as monitoring the level of some chemical
contaminant.
Communication: All sensors transmit on a common carrier
frequency using omni-directional antennas and a fixed (com-
mon) transmit power. A sensor cannot transmit and receive
simultaneously. We consider only the path loss with exponent
η. Letting d0 denote the near field crossover distance, the
power received at a distancer from a transmitter,Ps(r) =
(r/d0)−η if r > d0 andPs(r) = 1 if r ≤ d0. We say that a
transmission can be “decoded” when its signal to interference
ratio (SIR) exceeds a given thresholdβ (based on the BER
requirement). Transmission range (denoted byR0) is defined
as the maximum distance at which a receiver can decode a
transmitter in the absence of any co-channel interference. Thus
for a transmission to be decoded a receiver not only needs to
be withinR0 from a transmitter but the SIR needs to be above
β as well. Time is slotted and channel access is random, i.e.,
in each slot, sensori decides to transmit with probabilityαi

and decides to receive with probability(1 − αi) independent
of anything else;αi is called theattempt probabilityof sensor
i.
Computation: We assume that processing in the network is
either continuous or over long activity periods after durations
of dormancy ([20]); “continuous” does not mean that all the
sensors are always ON (see Section VII for further discussion).
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Figure 1 shows a traffic model for a fragment of a sensor
network engaged in distributed computation. A local algorithm
running on each sensor uses the local measurements and up-
dates from the other sensors to perform certain computations.
The nodes within the transmission range of a sensor with
whom it communicates the local data (raw measurements,
computational results) are designated as itsneighbours. The
local data to be sent to the neighbours are queued up in a
packet queue. The algorithm is such that sensors communicate
randomly with each other. In particular we assume that if
a sensor decides to transmit, the destination of the head-of-
the-line packet is equally likely to be any of the neighbours.
A transmission is successful when the sensor to which it is
addressed is in the receive mode, and is able to decode the
transmission. If a transmission is successful, the corresponding
packet is removed from the queue, i.e., instantaneous acknowl-
edgements are assumed. A successfully received packet at a
sensor invokes a new computation thatmayresult in an update
being sent to a neighbour. We model this probabilistically, i.e.,
the successful reception of a packet generates another packet
to be sent to a neighbour with probabilityν.

Some important remarks are in order. Transmission to
each neighbour with equal probability in our computation
model is motivated by easy-to-implement asynchronous algo-
rithms based on random (and strictly local) communication
among sensors (gossip algorithms). The assumptions of omni-
directional antenna and a fixed power level are made to im-
pose minimal hardware requirements. With simple hardware,
sensors may have few power levels to choose from, if not,
a sophisticated power control. Though we do not consider
multiple power levels, we believe that our techniques can be
extended in that direction. The motivation for considering only
the path loss on wireless links is that in short-path flat-terrain
fixed wireless channel, temporal variations are very slow and
there is a strong LOS path ([19]). Nevertheless, the algorithms
we develop for self-organization aremeasurement-based and
not model-based, i.e., they are based on the estimates of the
quantities of interest (e.g., sensor throughputs or transmission
success probability on a link) obtained through on-line mea-
surements, rather than on any particular analytical form for
them. It will be clear from Section V and Section VI that many
of the stated assumptions, in particular SIR-based decoding,
communication without multipath effects, equal transmission
ranges, transmission to each neighbour with equal probability1,
instantaneous acknowledgements, probabilistic updates upon
reception, are not essential for the algorithms per se. The main
utility of these suppositions is to make the analysis tractable.

IV. OPTIMAL SELF-ORGANISATION: FORMULATION

In order to capture the temporal properties of a spatial
process being monitored, sensors need to sample it at a rate
akin to a Nyquist rate2. These samples along with the packets

1This, we think, is a reasonable assumption to construct a topology
because even before discovering its neighbours a sensor cannot determine its
communication pattern. It may, however, be unnecessary once the topology
is determined.

2We draw an analogy between the Nyquist rate and the local measurement
rate of a sensor, however, we do not assume that the traffic generated by
sensors is necessarily regular or periodic.
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Fig. 2. Saturation throughput (p
(s)
t ) variation with attempt probability (α)

for λ = 1 and2 per m2. R equals1 or 2m.

triggered by updates from the neighbours form an arrival
process into the queue (see Figure 1). Therefore, this sampling
rate cannot exceed the rate at which packets are drained from
the queue. More precisely, assume thatαi = α for each i
and that each sensor has all the nodes within a fixed distance,
say R ≤ R0 as its neighbours. In [21], we show that ifγ
denotes the arrival rate of measurements at each sensor, then
for a given sample path of the Poisson distributed sensor field
of intensityλ (denoted byN ) the packet queue at sensori is
stable if γ < p

(s)
i,t (λ, α;N ) − (1 − α)ν wherep(s)

i,t (λ, α;N )
denotes the probability of successful transmission (subscriptt)
by sensori in a slot in saturation (superscript(s)), i.e., when
the head-of-the-line packet, after its successful transmission,
is immediately replaced by another packet at each queue.
p
(s)
i,t (λ, α;N ) is also called thesaturation throughput. Now in

applications in which the sensors are used in a control loop or
even to detect critical phenomena they will need to sample and
process data at faster time-scales. The “traffic” carried by their
network in such situations may not be “light”. It will also be
governed by the computational accuracy requirements. More-
over, a wireless network is a queueing system with the “load
dependent service rate”. The “service rate” is also affected
inversely by the sensor density; a high density would be of
interest for capturing the spatial properties of a spatial process.
Hence, even if the sensors are sampling at a slower time-
scale, the overall traffic which includes the “computational”
traffic as well may not be “light” and may have the network
near saturation. We, therefore, argue that in our model, the
saturation throughput can be a good measure of performance.

To capture the random dispersion of sensors, we average
p
(s)
i,t (λ, α;N ) over all sensors and sample paths, and denote it

by p(s)
t (λ, α). This work is particularly motivated by Figure 2

which shows the variation ofp(s)
t (λ, α) with α; we have

assumed thatαi = α for each i. We use 1000 Poisson
distributed points as sensors on the plane forλ = 1 and
2 per m2. We take η = 4, β = 10 dB, R0 = 6m and
R equals 1 or 2m. Throughputs are averaged over1000
random point placements. Observe that, for a fixed value of
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λ, p(s)
t (λ, α) decreases asR increases and for a fixed value

of R, p(s)
t (λ, α) decreases asλ increases. Thus, high values

of p(s)
t (λ, α) decree small values ofR, however, arbitrarily

small values ofR result into a disconnected network. Note
also from Figure 2 that, for a fixedλ and R, there is a
value of α which maximisesp(s)

t (λ, α). Thus, sensors need
to form a network that is “optimally connected”, and operated
at an “optimal attempt rate”. Since the transmission powers of
sensors are assumed fixed, our notion of optimal connectivity
is that of “interconnecting sensors” so as to build an efficient
distributed computing machine and not of forming a topology
by controlling the transmission powers. The transmission
attempt rate, unlike power, can be easily modified.

Instead of addressing connectedness in terms of “connectiv-
ity range” we migrate to a more general concept of topology.
Some notation is in order. LetG denote a connected weighted
graph with vertex setV (|V | = N ), edge setE and weight
functionW : E → R+. The weight of an edge(i, j) ∈ E is
denoted byw(i, j).G can be a directed or an undirected graph.
If G is connectivity refers to strong connectivity.Vs denotes
the set of sensors; each element inVs is a triplet of the form
(i, xi, yi) wherei ∈ {1, 2, . . . , N} is the sensor index, andxi

andyi are the x-coordinate and y-coordinate ofi respectively.
Definition 4.1: The transmission graph, GR0 , is the sym-

metric directed graph withVs as its vertex set, and(i, j) ∈
ER0 if sensorj is within a distanceR0 of sensori. 2

For randomly locatedN sensors the transmission graphGR0

is a geometric random graph. We will assumeGR0 to be a
connected graph3. Thus,GR0 lays out the possible “intercon-
nections” of sensors and each subgraph ofGR0 specifies one
such interconnection or in other words a computing topology,
i.e., a set ofneighboursfor each sensor. In Section IV, we con-
sidered only special subgraphs ofGR0 obtained by connecting
sensors withinR ≤ R0 of each other as the network topology.
Let M(G′, α) denote the network throughput, i.e., the sum
of individual sensor throughputs with topology specified by
G′. Now if all the sensors always have packets to send then
M(G′,α)

N is the average saturation throughput of the network.
Then the discussion so far motivates the following problem.

max
{G∈Gcs,0≤α≤1}

M(G,α) (1)

where,Gcs is the set of all connected spanning subgraphs of
GR0 . Note thatGR0 ∈ Gcs.

Proposition 4.1:For everyG ⊂ Gcs, M(G,α) is a strictly
quasiconcave function ofα.
Proof: See Section IX. 2

Gcs is a finite set. Therefore, for a fixedα there is a
G∗ which maximisesM . On the other hand, for a fixed
topology,G, a unique maximiserα∗(G) of M(G,α) exists
by Proposition 4.1. However, neitherG∗ nor α∗(G) can
be computed a priori and used in the field owing to the
random deployment of sensors4. Hence, sensors must learn an
optimal topology and optimalα on their own. The previous
discussion suggests an iterative approach to findG∗ and

3GR0 can also be taken as the giant component in the random sensor field.
4Even for a known placement of sensors, computation of these values is

difficult if not impossible.

α∗(G∗). However, modifying topology in search of an optimal
one is practically infeasible. Moreover, tuning to a common
value ofα∗ in a distributed way is difficult; more importantly,
different sensors may need different values ofα to counter
the local inhomogeneities in the node placement.Hence, our
approach will be to formulate the problems (hence the notions
of optimality) and the algorithms for topology and attempt
rate separately.Due to this “decoupling” the algorithms for
topology can be used for anyαi’s and the algorithms for
attempt probabilities can be used on any topology. This way
sensors can form a topology motivated by the computational
requirements and then tune their attempt probabilities. In
Section V, we undertake the problem of defining and building
an optimal topology and in Section VI, the problem of defining
and tuning to optimal attempt probabilities.

V. OPTIMAL NETWORK TOPOLOGY

Let G′ := (V ′, E′) denote a subgraph of a given connected
graphG. For i ∈ V ′, let di(G′) denote the out-degree of node
i in G′. For all i ∈ V ′, let

ψi(G′) :=
1

di(G′)

∑

(i,j)∈E′
w(i, j) (2)

if di(G′) > 0 otherwise ψi(G′) = 0. Define a func-
tion ψ on G′ as ψ(G′) :=

∑
i∈V ′ ψi(G′) and let G̃ =

arg maxG′∈Gcs ψ(G′) where,Gcs is the set of all connected
spanning subgraphs ofG. Gcs is nonempty sinceG ∈ Gcs.
G̃ maximises the measureψ over all connected spanning
subgraphs ofG. We call G̃ the maximum average-weighted
spanning subgraph(MAWSS) of G. We will use the term
MAWSS to also denote an algorithm for determining an
MAWSS.

In (1) all theα’s are the same. Here we will allow different
α’s for different sensors as well. Denote byα the vector of
αi’s, α := (α1, α2, . . . , αN ). Letα be fixed and let for(i, j) ∈
ER0 , pij(α) denote the probability of successful transmission
from sensori to j underα. Recall that, we are assuming that
all sensors have packets to send. Therefore, according to our
model

pij(α) = αi(1− αj)P

(
(dij

d0
)−η

∑
k 6=i,j(

dkj

d0
)−ηYk

≥ β

)
(3)

The last term in (3) isP (Γij ≥ β) whereΓij denotes the SIR
of a transmission fromi to j5. dkj is the distance betweenk
andj, d0 is the near-field crossover distance andYk is 1 if k
transmits,0 otherwise. Sincepij(α) depends on the geometry
of interferers of sensorj, pji(α) need not equalpij(α) in a
random network.

Let Ni(G′) (respectivelyni(G′)) denote the set of neigh-
bours (respectively the number of neighbours) ofi in topology
G′. Now for eachi define,

Mi(G′, α) =
1

ni(G′)

∑

j∈Ni(G′)

pij(α) (4)

5A dense sensor network is an interference constrained system so that
thermal noise can be ignored from SIR. Thus, SIR does not depend on actual
transmit powers.
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Thus,Mi(G′, α) equals the time average throughput of sen-
sor i and M(G′, α) =

∑N
i=1Mi(G′, α) We have used our

assumption that in transmit mode a sensor transmits a packet
to one of its neighbours with probability 1

ni(G′)
. Note that,

the “out-degree” of a sensor inG′ is simply the number of its
neighbours,ni(G′). It, thus, follows by comparing (2) and (4)
that for a fixedα if G′ is a subgraph ofGR0 , and if for all
(i, j) ∈ ER0 , w(i, j) equalspij(α), thenψ(G′) is M(G′, α).
Since a sensor network needs to be connected, it follows from
our formulation in Section IV that,the optimal topology of a
sensor network is the MAWSS of itsGR0 .

Proposition 5.1:MAWSS for directed and undirected
graphs is NP-complete.
Proof: See Section IX. 2

In the following, we discuss directed graphs in particular,
and propose a heuristic algorithm for obtaining an approxima-
tion to the MAWSS. For generic computing tasks, a topology
with symmetric connectivity would be preferred (ifi has a
link to j, j has to have the reverse link). Note that, symmetric
topology problem is also NP-complete since MAWSS for
undirected graphs is a special case of it. We call the optimal
symmetric MAWSS topology the SYMMAWSS. For the lack
for space we omit the discussion of SYMMAWSS; for the
details see [21].

A. A Centralized MAWSS Algorithm

Some notation is in order. For nodei, ei(k) denotes the
kth heaviest outgoing edge andwi(k) denotes its weight. Ties
are resolved arbitrarily.E1(G) := {ei(1)|i ∈ G}, is the set
of maximum weight outgoing edges of all the nodes inG.
The basic idea is the following. It is clear that the MAWSS
containsE1(G). Hence if (V,E1(G)) is strongly connected,
we are done. If not, we convert the “maximum average weight”
problem to the “minimum sum of weights” problem by a
suitable transformation ofw(i, j) to w̄(i, j). We consider the
transformationw̄(i, j) = wi(1)− w(i, j) and and denote this
weight function byW̄ . We, then, construct minimum weight
out-branching (directed tree or arborescence) usingw̄(i, j)
rooted at eachi. Recall that, any out-branching rooted at a
given node contains one and only one edge incoming to every
other node. The minimum weight branchings pick out edges
with small w̄(i, j) which are the edges with largew(i, j). The
resulting graph is taken as an approximation to the MAWSS.
An optimal algorithm for constructing optimal branchings is
presented in ([22]). The advantage of underlying trees is that
they are efficient for information transport and in a variety of
scenarios where the computing and the communication tasks
can be merged, for example, calculation of the maximum of
the sensed values ([23]).

Proposition 5.2:The outputĜ of Algorithm 1 is a strongly
connected spanning subgraph ofG.
Proof: Note that Algorithm 1 constructs a route from every
node to every other node. 2

B. A Distributed MAWSS Algorithm

At the time of deployment, neitherGR0 nor pij(α) is
known to sensors. Over time, sensors “discover” each other

Algorithm 1 Algorithm for finding an approximation̂G to the
MAWSS of a directed GraphG

1: if (V,E1(G)) is strongly connectedthen
2: Ĝ = (V,E1(G))
3: else
4: For all (i, j) ∈ E, w̄(i, j) := wi(1) − w(i, j) and set

Ḡ = (V,E, W̄ )
5: For all i ∈ V , find Gi

out = (V,Ei
out), the minimum

weight out-branching of̄G rooted ati
6: Ĝ = (V,∪i∈V E

i
out)

by advertising their ids which can be simply their indices.
Let α and the locations of the sensors be fixed. At time0, the
sensors start broadcasting their ids. LetGn = (Vn, En) denote
the subgraph ofGR0 discovered until timen, i.e.,Vn = Vs and
(i, j) ∈ En if there exists a time slotm ≤ n in which sensorj
successfully received a transmission fromi for the first time.
G0 = (Vs, φ). Note thatGn is a random graph. In addition to
noting ids of its neighbours, a sensor alsocounts the number
of times it received a particular id; the larger this number, the
higher is the probability of successful transmission from that
node toi. To make it precise, letSij(n) denote the number
of times sensorj successfully receivedi till time n. Then the
following holds.

Proposition 5.3:Let 0 < αi < 1 for eachi. ThenGn →
GR0 and Sij(n)

n → pij(α) with probability 1.
Proof: See Section IX. 2

The convergence of the discovery process is in itself an
interesting problem since how fastGn converges toGR0 or in
other words how fast sensors “discover” each other depends
on α. Though finding an optimal, in the sense of minimising
the discovery time, value ofα is difficult, a value which will
expedite discovery is of practical importance since it would
be pre-configured at the time of deployment; we denote it
by αd (subscript ‘d’ denotes discovery) ([21]). Practically,
sensors will carry out the discovery process for either a pre-
programmed number of slots, or during the discovery phase
they will detect when the graph is connected and then stop. For
this discussion we will assume that eitherGR0 or a connected
subgraph of it has been discovered and sensori has an estimate
of pij(α) for each(i, j) discovered;j counts the number of
times it received the id fromi and sends back the number
to i; i divides it by the number of slots to form an estimate.
Algorithm 1 can be distributed ([24]). The algorithm works
by formation of node clusters, detection of cycles, selection
of minimum weight cluster incoming edge in a distributed
fashion. We omit the details.

C. Results

The setup is as explained in Section IV.1000 sensors form
a Poisson field on the plane withλ = 1. In this set of results,
we use the same value of attempt probability for each sensor.
Further, two “types” ofα’s need to be distinguished. The first,
is αd, the attempt probability sensors use whilediscovering
the topologyWe useαd = 0.05. For this value ofαd, the
discovered graph is connected within500 slots. Figure 3 shows
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Fig. 3. Topology discovered till500 slots (G500) by 1000 sensors with
λ = 1 per m2 andαd = 0.05. x andy axis scale is distance in m.
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Fig. 4. MAWSS constructed from the discovered topologyG500 of 1000
sensors withλ = 1 per m2 andαd = 0.05. x andy axis scale is distance
in m.
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Fig. 5. SYMMAWSS constructed from the discovered topologyG500 of
1000 sensors withλ = 1 per m2 and αd = 0.05. x and y axis scale is
distance in m.
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G500; recall thatGn denotes the discovered graph at slot
n. Figure 4 and Figure 5 respectively show MAWSS and
SYMMAWSS constructed fromG500; MAWSS here refers to
the graph obtained from Algorithm 1.

Once the topology formation is complete, sensors switch to
an “operational value” of the attempt probability. Figure 6
shows the variation of average saturation throughput of a
sensor with the operational values ofα for network topologies
given by G500, G1000, MAWSS and SYMMAWSS. Recall
that, for a given topologyG′ and α, M(G′, α) denotes the
network throughput. The average saturation throughput which
we plot in Figure 6 is simplyM(G′,α)

N . Note that the throughput
of G1000 is lower thanG500 since it includes more edges of
low probability of success discovered during additional500
slots. MAWSS and SYMMAWSS, on the other hand, eliminate
edges with low probability of success while maintaining the
connectivity; hence, the maximum throughput achieved by
them is almost 5 times of the corresponding discovered graphs.
Since symmetric edges are considered in SYMMAWSS, there
is slight throughput reduction for SYMMAWSS as compared
to MAWSS.

VI. OPTIMAL ATTEMPT PROBABILITIES

A crucial observation from Figure 6 is that the throughput
is maximised at a different operational value ofα than αd.
For example, the throughput is maximised atα = 0.25 for
MAWSS and is almost four times of that obtained withαd =
0.05, thereby, implying that it is indeed essential to operate at
such a value. However, as argued in Section IV a distributed
implementation warrants optimisation over a vector of attempt
probabilities,α. This leads to a peculiar problem thatα which
maximises the average throughput is degenerate, i.e. some
sensors haveαi = 1 and the remaining haveαi = 0 ([21]).
This necessitates a new look at the problem formulation.
Consider a sensor network in whichN sensors are connected
to a fusion center. The fusion center combines all the sensor
readings into a computation of a statistic of the process being
monitored; e.g., the time-varying average. Now the number of
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computations it can complete in timeT equals the minimum
of the number of readings of each sensor collected by it
in that duration. It follows that the computing rate equals
the minimum sensor throughput. In a spatially distributed
sensor network in which the global computation is arranged
on a tree (as in MAWSS), a sensor will update and transmit
its result after receiving corresponding results/measurements
from its children. Thus it locally acts a fusion center and
the rate at which it can complete its local computation is
constrained by the minimum of its children’s throughputs.
Thus in many computing scenarios it is imperative to improve
the minimum of sensor throughputs since few faster (in the
sense of throughput) sensors cannot in general expedite the
convergence of a global objective. This motivates the problem
of maximising the minimum of sensor throughputs.

In order to get some insight into throughput functions,
Mi(G,α), recall thatNi(G) (respectivelyni(G)) denotes the
set of neighbours (respectively number of neighbours) ofi.
Let αij denote the vectorα with entriesαi andαj omitted.

Proposition 6.1:For a fixed topology G, η and β,
Mi(G,α) = 1

ni(G)

∑
j∈Ni(G) αi(1 − αj)gij(αij). For each

j ∈ Ni(G), gij(.) either equals1 or there exists a setIij ⊆
Vs\{i, j} such thatgij(.) is a decreasing and affine function of
αk, k ∈ Iij and does not depend uponαk, k /∈ Iij . Moreover,
gij(1) = 0 andgij(0) = 1.
Proof: See Section IX. 2

Definition 6.1: Let the sensor locations be fixed. Then for
fixed β, η andG, j is called an interferer ofi if Mi(G,α)
is decreasing inαj . j is called a primary interferer ofi if
Mi(G,α) = 0 wheneverα is such thatαj = 1. 2

Thus, a neighbour of sensori is also its interferer. Further,
sensorj is a primary interferer ofi if it must be silent, i.e., in
receive mode, for any neighbour ofi to receive successfully
from i. Denote byIi the set of interferers of sensori. Let
Sj = {i|j ∈ Ii}. Note thatSj includes sensors which have
sensorj as their neighbour.

A. The MAXMIN Throughput

For a given network topologyG, consider the following
optimisation problem.

max
α∈[0,1]N

min
1≤i≤N

Mi(G,α) (5)

It is clear from Proposition 6.1 thatMi(G, .), 1 ≤ i ≤
N are continuous functions ofα, and so isminiMi(G, .).
Therefore, an optimum exists for the MAXMIN problem (5)
by Weierstrass Theorem. Since topologyG is fixed, henceforth
we suppress it from the notation. It is, however, assumed that
G is connected. Letα∗ denote an optimum of MAXMIN
andM∗ denoteminiMi(α∗). We will call α∗, the MAXMIN
throughput attempt probabilities(MMTAP). By 0 < α∗ < 1,
we mean0 < αi < 1, i = 1, 2, . . . , N .

Proposition 6.2: If every sensor is a primary interferer of
at least one sensor, then0 < α∗ < 1.
Proof: If α∗i = 0 for some i then clearlyMi(α∗) = 0. If
α∗i = 1 for somei thenMj(α∗) = 0, i ∈ Pj wherePj are
the primary interferers ofj. Proposition 6.1 implies that if

Algorithm 2 An MMTAP algorithm using generalised gradi-
ent ascent.

αj(0) ∈ [0, 1], j = 1, 2, . . . , N
u(k) = min

1≤i≤N
Mi(α(k)), k ≥ 0

U(k) = {i|1 ≤ i ≤ N,Mi(α(k)) = u(k)}

αj(k + 1) = Π


αj(k) +

aj(k)
|U(k)|

∑

i∈U(k)

∂Mi(α(k))
∂αj




j = 1, 2, . . . , N

αi ∈ (0, 1) for all i, Mi(G,α) > 0, 1 ≤ i ≤ N . Hence,
0 < α∗ < 1. 2

Consider firstN collocated sensors; by collocated we mean
that in any slot at most one transmission can be successful.
ThenMi(α) = αi Πj 6=i(1 − αj), 1 ≤ i ≤ N andα∗i = 1

N
which is an intuitive and desirable operating for sensors in this
scenario. Secondly, even when sensors are spatially distributed,
α∗ equalises the throughputs, i.e.,

Proposition 6.3:0 < α∗ < 1 ⇒ Mi(α∗) = Mj(α∗), 1 ≤
i, j ≤ N .
Proof: See Section IX. 2

The throughput equalizing propertymakes the MMTAP
particularly important since with MMTAP sensors operate at
equal processing rates which is desirable in applications where
computations are iterative.

B. A Generalised Gradient MMTAP Algorithm

Consider an iterative scheme to tuneα to the MMTAP in
Algorithm 2. Π denotes projection on[0, 1] and |U(k)| the
cardinality of setU(k). aj(k) is the step size in thekth

iteration at sensorj. Algorithm 2 is a “generalised gradient
ascent” algorithm; 1

|U(k)|
∑

i∈U(k)
∂Mi(α(k))

∂αj
being a gener-

alised gradient ofminiMi(α(k)) at α(k) ([25]). Informally
the iterations can be explained as follows.U(k) denotes the set
of sensors whose throughput is the minimum under operating
pointα(k). If j /∈ U(k), thenαj is reduced in the next iteration
since ∂Mi(α)

∂αj
< 0, i 6= j (see Proposition 6.1). This leads to

an increase in the throughput ofi ∈ U(k). If j ∈ U(k), then
αj is increased or decreased based on how it affects others
and how others affect its throughput. Thus the algorithm tries
to equalize as well as maximise the sensor throughputs.

Proposition 6.4:Let aj(k) = a(k), 1 ≤ j ≤ N, k ≥ 0. If
a(k) satisfy limk−>∞ a(k) = 0 and

∑∞
k=0 a(k) = ∞, then

Algorithm 2 converges to the MMTAP.
Proof: See Section IX. 2

C. A Distributed Stochastic MMTAP Algorithm

Though fixed in form for a given placement of nodes,
Mi(.) is not known at sensori and being a steady-state
average, onlynoisy measurementsof Mi(.) are available for
Algorithm 2. An unbiased estimator ofMi(.), denoted by
M̂i(.), is 1

τ

∑τ
j=1Xi(j) where Xi(j) = 1 if i transmits
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Fig. 7. Transmission graph,GR0 , of a random100 node sensor network.

successfully in slotj, otherwise 0. τ is the number of
estimation slots. Sensors also need toestimate the gradient
of Mi(.) in order to use Algorithm 2. Since we need a
distributed algorithm we consider simultaneous perturbation
(SP, [26]) based gradient estimation. Instead of perturbing
one component, i.e.,αi at a time to obtain the estimates of
partial derivatives, in SP allαis can be perturbed simulta-
neously given that perturbations for eachαi are zero mean
independent random variables with some additional conditions
([26]). This way,by choosing the perturbation amount locally,
sensors can simultaneously estimate the derivatives.In the
kth iteration, let ∆(k) denote a vector ofN independent
Bernoulli random variables taking values in{−1, 1} such that
{∆(k)} is an independent sequence with∆(k) independent of
α(0), α(1), . . . , α(k). Then the “central-difference estimator”

of ∂Mi(α)(k)
∂αj

is M̂i(α(k)+c(k)∆(k))−M̂i(α(k)−c(k)∆(k))
2c(k)∆j(k) where

c(k) is a scalar. SP requiresc(k) → 0 so that the estimator is
asymptotically unbiased.

Proposition 6.5:Let in Algorithm 2, the partial derivatives
of Mi(.), 1 ≤ i ≤ N be replaced by their estimates (biased
or unbiased). Letaj(k) = a(k), 1 ≤ j ≤ N, k ≥ 0 and
a(k) satisfy

∑∞
k=1 a(k) = ∞ and

∑∞
k=1 a(k)

2 < ∞. Then
the generated sequence{α(k), k ≥ 1} converges a.s. to the
MMTAP.
Proof: See Section IX. 2

For a complete distributed implementation we now only
need a way of obtaining an estimate of∂Mi(α(k))

∂αj
for each

i ∈ U(k) at every sensorj in iteration k. This itself can be
arranged as a computation on the underlying MAWSS tree.
We omit the details.

D. Results

We consider a network of100 sensors, each of transmission
range4m, deployed randomly in a square field of area400m2.
The MMTAP are unknown for this network6. Figure 8 shows
the GR0 and SYMMAWSS corresponding to it; scale in

6We have verified the MMTAP algorithm on networks simple enough to
deduceMi(.)’s (hence the MMTAP) easily ([21].
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Fig. 8. SYMMAWSS of the sensor network in Figure 7.
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Fig. 9. Evolution of theestimatedminimum sensor throughput in the100
node sensor network.

Figure 8 is distance inm. η = 4, β = 7dB and τ = 1000
slots.αi(0) = 0.1, 1 ≤ i ≤ 100. We choosea(k) = 0.1

(k+1)0.7

and c(k) = 0.1
(k+1)0.15 . Figure 9 shows the evolution of the

minimum sensor throughput in the network with iterations;
the actual estimates of sensor throughputs are used and the
resulting graph is smoothed by 5-point adjacent averaging
to show the trend. The algorithm appears to have reached a
throughput value of0.032 − 0.035 packets/slot starting from
0.015 packets/slot, a more than100% increase.

VII. D ISCUSSION

It is essential that after their deployment, sensors organise
into an optimal network as fast as possible. This is particu-
larly true of the network topology. The time (and message)
complexity of the distributed MAWSS algorithm discussed
in Section V-B which findsN branchings equalsO(N2)
([24]). This cost appears to be imperative for forming a
throughput optimal topology. In return, as seen from Fig-
ure 6, the performance gain is substantial. Algorithm V-B
also constructs directed trees rooted at each sensor, which
can be used in a variety of computational algorithms (e.g.,
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MMTAP) and for control information propagation. We expect
that our approach can be also extended directly to additional
topological requirements such ask-connectedness. Learning
an optimalα is an important but much harder problem. Our
algorithm is fairly simple and makes use of measurements
made locally. Its major complexity is in obtaining the estimates
of partial derivatives of throughputs at each sensor. Being con-
strained by the bias-variance dilemma ([27]) convergence of
our stochastic algorithms can be improved by careful selection
of the parameters. It is also possible for the sensors to choose
a good starting point from the knowledge of the probability of
successful transmission obtained during the discovery phase.
Moreover, Figure 9 indicates that the improvement within few
iterations may be significant.

The most important point regarding our algorithms is that
they aremeasurement-based not model-based. This means that
instead of particular analytical forms, they employ estimates
of sensor throughputs or probabilities of success over different
link obtained through on-line measurements. Therefore, the as-
sumptions in Section III regarding communication (e.g., SIR-
based decoding, communication without multipath effects,
etc.) and computation (e.g., transmission to each neighbour
with equal probability, etc.) are not essential for the algorithms
per se. Moreover, it may be possible to extend our approach to
other access schemes as well. Interestingly, these algorithms
can be seen as a tool by which thenetwork slowly and
continuously keeps on improving and adapting itself. This
aspect is particularly important from the point of view of
device failures and task reconfiguration. The other important
advantage of our MMTAP algorithm is that the throughput
at each sensor is measured using real transmissions and no
special packet transmissions are required. Hence, there is no
extra energy consumption. Further, they can work even in
the presence of energy saving techniques such as random
sleep time and can account for energy constraints directly,
for example, by upper bounding the attempt probabilities.
In ([21]), we apply our algorithms to a realistic scenario in
which sensors, by organising themselves optimally, are able
to compute accurately as well as efficiently, i.e., at higher
sampling rates with low computational delay.

We designed algorithms so as to achieve the optimal
performance and found correspondingly higher algorithmic
complexity. Our future work, therefore, is to develop asyn-
chronous algorithms with strictly local information exchange
for scalability. This paper lends support to any such effort since
it shows a way to obtain globally optimal performance against
which the performance of other algorithms can be compared.

VIII. C ONCLUSION

We viewed performance optimisation as the objective for
self-organisation in sensor networks and argued that the rate
at which a sensor network can process data in a distributed
fashion is governed by its communication throughput; hence
sensors must organise themselves in such a way as to opti-
mise their communication throughput. Using a simple model,
we showed that the network topology and the transmission
attempt rate are the critical factors which determine the

throughput. We obtained an optimal topology by the maximum
average weight (MAWSS) formulation and optimal attempt
probabilities by maximising the minimum sensor throughput
(MMTAP). The MMTAP were found to have an important
throughput-equalizing property. The MAWSS algorithm is
distributed and uses connectivity and probability of successful
transmission information obtained locally. We presented a
synchronous distributed stochastic algorithm for driving a
sensor network to the MMTAP. The algorithm uses local
throughput measurements and yields substantial performance
improvement even within few iterations. The performance im-
provement is at the price of algorithmic complexity. However,
this work shows that the performance gains from optimal self-
organisation can be substantial and the adaptive techniques
discussed in this paper need to be considered during the
protocol design.

IX. PROOFS

Definition 9.1: A function f : Rn → R is called strictly
quasiconcave iff(λx + (1 − λ)y) > min{f(x), f(y)} for
λ ∈ (0, 1). 2

Lemma 9.1:Consider functionf(x) = xg(x) wherex ∈
[0, 1] and g(x) is a strictly decreasing function ofx. Thenf
is strictly quasiconcave.
Proof: We show that forx, y ∈ (0, 1), f(y) > f(x) ⇒
f ′(x)(y − x) > 0. f(y) > f(x) meansyg(y) > xg(x). f ′

denotes the derivative,f ′(x) = xg′(x)+g(x). Supposex > y.
Then, xg(y) > yg(y) > xg(x). Thus, x(g(y) − g(x)) >
g(y)(x − y). Now y → x ⇒ −xg′(x) > g(x). Thus
g(x) + xg′(x) < 0 which implies(xg′(x) + g(x))(y − x) >
0. If x < y, yg(y) > xg(x) > xg(y). This, similar to
the previous derivation, yieldsg(x) + xg′(x) > 0. Hence,
(xg′(x) + g(x))(y − x) > 0. The strict inequality in one
variable case implies strict quasi-concavity. 2

Proof of Proposition 4.1: Recall thatαi = α for all i.
Note that (4), is of the formαg(α) whereg(α) combines the
“receiving part” (1− α) and the “interference part” (see (3)).
g(α) is strictly decreasing inα; g(1) = 0, g(0) = 1 and
g(α) > 0, α ∈ (0, 1). Therefore, by Lemma 9.1Mi(G,α)
is strictly quasiconcave. The proof concludes by noting that
for G ∈ Gcs M(G,α) =

∑N
i=1Mi(G,α) has the same form

αg(α). 2

Lemma 9.2:Consider the problem of maximisingf(k) =
1

k1+1 + 1
k2+1 + . . .+ 1

kp+1 subject to the constraints thatki ∈
{0, 1, 2, 3} for 1 ≤ i ≤ p, andk1 +k2+ . . .+kp = 3q (p > q).
Thenmax f(k) = p− 3q

4 and is achieved by ak which hasq
kis equal to 3 and the restp− q equal to0.
Proof: Relax the integer constraints to0 ≤ ki ≤ 3 for
i = 1, . . . , p. Denote byk∗ any k which hasq kis equal
to 3 and the restp − q equal to0 and by k̄ = ( 3q

p , . . . ,
3q
p ).

Then(k∗, 1
16 ) and(k̄, p2

(3q+p)2 ) are the stationary points of the
Lagrangian of the relaxed problem. Single (linear) constraint
implies that either of the two must be the maximum.f(k∗) =
p − 3q

4 > f(k̄) = p2

3q+p . Moreover,k∗ is an integer solution
which implies that it is the optimal solution of the problem
with integer constraints as well. 2

Proof of Proposition 5.1: The proof for undirected graphs
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Fig. 10. Gadget for proving NP-completeness of undirected MAWSS

uses transformation from 3DM (3-dimensional matching,
which is known to be NP-complete [28]), to MAWSS. An
MAWSS instance is a weighted connected graphG =
(V,E,W ), and a positive integerB and the question we ask
is, is there a graphG1 ∈ Gcs such thatM(G1) ≥ B? On the
other hand, a 3DM instance is a setS ⊆ X×Y ×Z, |S| = p,
whereX, Y andZ are disjoint sets having the same number
q of elements and the question is doesS contain a matching?

Consider the gadget in Figure 10.Rx, X, Ry, Y , Rz and
Z denote the sets ofq vertices each whereasA is a set of
p vertices (p > q). q vertices inRx andX are paired; the
corresponding vertices have an edge of weight 1. Similarly
for Ry, Y andRz, Z. R contains a single vertex which has
one edge of weight 1 from each vertex inA . The setsX,
Y , Z and S in an instance of 3DM correspond to the set
of verticesX, Y , Z andA respectively in Figure 10. Thus,
for each(x, y, z) in S, there are edges from verticesx ∈ X,
y ∈ Y and z ∈ Z to a vertex inA and |A| = p = |S|. Each
edge between a vertex inX (similarly in Y and Z) and a
vertex inA has weight0. We denote the resulting graph by
G. In G, each vertex inRx, Ry, Rz andR has an average
weight of 1. The vertices inX, Y and Z have the average
weights according to the connections resulting fromS. Each
vertex inA has 4 edges (one each from a vertex inX, Y ,
Z andR) and an average weight of14 . The claim is that a
matching exists if and only ifG has a connected spanning
subgraph withM = (1 + 3q) + 3q

2 + (p− 3q
4 ).

Suppose that a matching exists. Then consider subgraphG1

of G such that out ofp, q vertices inA have 3 edges each of
weight 0 fromX, Y andZ corresponding to the matching,
1 edge toR and the restp − q vertices have only 1 edge
connected toR. Thus, the sum of the average weights of
vertices inX (similarly Y and Z) is q

2 whereas that inA
is (p− q) + q× 1

4 = p− 3q
4 . It follows thatG1 is a connected

graph withM = (1 + 3q) + 3q
2 + (p− 3q

4 ).
For the converse, note that the subgraphs ofG in which each

vertex inX, Y andZ has exactly one edge connected to a
vertex inA are connected. Under such a condition the vertices
in X, Y andZ attain their maximum average weight of1

2 . It is
easy to see that only such a subgraph ofG will maximiseM
overGcs. Now M for these subgraphs will be determined by
their connections at the vertices inA. Letki denote the number

of edges between a vertexi ∈ A andX, Y andZ; by our
construction0 ≤ ki ≤ 3 and distinct vertices inX (similarly in
Y andZ) are connected to distinct vertices inA. Hence, from
Lemma 9.2 it follows that the assignment of edges between
A andX, Y andZ which maximisesM is such that out of
p vertices inA, q have 3 edges (one each fromX, Y andZ)
while the rest(p−q) have none connected toX, Y andZ. The
subgraph with this particular arrangement of edges amongA,
X, Y andZ has the maximumM(= (1+3q)+ 3q

2 +(p− 3q
4 ))

overGcs. Therefore, if there is a connected subgraph ofG with
M = (1 + 3q) + 3q

2 + (p − 3q
4 ), then the matching exists:q

points with edges fromX, Y , Z is the required matching.

3DM is, thus, reducible to MAWSS proving NP-
completeness of MAWSS for undirected graphs. NP-
completeness of MAWSS for directed graphs is established
by noting that STA (strong connectivity augmentation, [29])
is its special case. 2

Proof of Proposition 5.3: Since 0 < αi < 1 for each i,
pij(α) > 0 for each(i, j) ∈ ER0 . Therefore, the probability
that (i, j) is discovered in finite time is1. SinceN is finite,
Gn → GR0 in finite time with probability1. The second limit
follows from the strong law of large numbers. 2

Proof of Proposition 6.1: Let the sensor locations be fixed.
Recall Equation 3 and Equation 4. Note that,gij(αij) is
P (Γij ≥ β) with dkj fixed; recall thatΓij denotes the SIR

of a transmission fromi to j. If
(

dij
d0

)−η

∑
k 6=i,j

(
dkj
d0

)−η+N0

≥ β, i.e.,

the SIR of a transmission fromi to j is above the required
threshold even if all the other sensors are simultaneously
transmitting, then clearlygij(αij) = 1. If not, let v denote
anN dimensional vector each component of which is either

0 or 1. Let, V =

{
v :

(
dij
d0

)−η

∑
k 6=i,j

(
dkj
d0

)−ηvk+N0

≥ β

}
. Then,

P (Γij ≥ β) =
∑

v∈V Πk 6=i,jα
vk

k (1 − αk)(1−vk) Let v−m

denote a vector withmth entry omitted and let(v−m, vm)
representv. Then for eachk 6= i, j, P (Γij ≥ β) = αkak +
(1−αk)bk, whereak =

∑
v∈(v−k,1) Πl 6=i,j,kα

vl

l (1−αl)(1−vl)

and bk =
∑

v∈(v−k,0) Πl 6=i,j,kα
vl

l (1 − αl)(1−vl). If for every
(v−k, 0) ∈ V, (v−k, 1) ∈ V, thenak = bk. Hence,P (Γij ≥ β)
does not depend onk. Let Iij be the set of sensors for which
this condition fails. Then fork ∈ Iij , bk > ak since if
(v−k, 1) ∈ V then so is(v−k, 0), i.e., each term in the sum
for ak is also inbk. Thus it follows thatgij(αij) is decreasing
and affine inαk, k ∈ Iij . 2

Lemma 9.3:If 0 < α∗ < 1 then ∂Mi(α
∗)

∂αj
= 0 if and only

if i /∈ Sj .

Proof: Follows from Proposition 6.1. 2

Proof of Proposition 6.3:Note that MAXMIN is equivalent to
the constrained optimisation problem of maximisingx subject
to Mi(α) ≥ x, i = 1, 2, . . . , N , x ≥ 0, andαi ∈ [0, 1], i =
1, 2, . . . , N . Let x̃ := (x, α). By hypothesis0 < α∗ < 1.
Hencex∗ = M∗ > 0. Moreover, the Mangasarian-Fromowitz
constraint qualification holds at̃x∗. Therefore, by KKT The-
orem ([30]) there exists a vector of multiplier,µ∗ ≥ 0, such
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that µ∗i (Mi(α∗)− x∗) = 0, and

∂L(x̃∗, µ∗)
∂x

= 1−
N∑

i=1

µ∗i = 0 (6)

∂L(x̃∗, µ∗)
∂αj

=
N∑

i=1

µ∗i
∂Mi(α∗)
∂αj

= 0 (7)

Let µ∗j = 0 for somej. Then Equation 7 corresponding toj

implies that
∑

i:i 6=j µ
∗
i

∂Mi(α
∗)

∂αj
= 0. Recall thatIi denotes the

set of interferers of sensori and Sj = {i|j ∈ Ii}. Sj = φ
means that no sensor transmits toj and j is not interferer of
any sensors.j is thus an isolated sensor and cannot belong
to a connected network. Using Lemma 9.3 (7) reduces to∑

i:i∈Sj
µ∗i

∂Mi(α
∗)

∂αj
= 0. For each suchi, ∂Mi(α

∗)
∂αj

< 0 and

µ∗i ≥ 0. It follows that for all i ∈ Sj , µ∗i
∂Mi(α

∗)
∂αj

= 0 and
thereforeµ∗i = 0 i.e., for each sensori that transmits toj, or
is interfered with byj, µ∗i = 0. Continuing the argument for
each suchi and further, letA denote the final set{i|µ∗i = 0}.
Let B = {k|k /∈ A}. Then any suchk does not transmit
to any node inA and no sensor inA is an interferer ofk.
SinceG is a (strongly) connected topology, this implies that
for all k ∈ B, k /∈ G. Thus, for all i ∈ G, µ∗i = 0. This
contradicts (6). Therefore,µ∗i > 0, 1 ≤ i ≤ N implying that
Mi(α∗)−M∗ = 0, 1 ≤ i ≤ N . 2

Definition 9.2: ([31]). A function f : Rn → R is called
generalised differentiable atx ∈ Rn if in a vicinity of x
there exists upper semicontinuous multivalued mapping∂̄ with
convex compact values̄∂f(x) such that,f(y) = f(x)+gT (y−
x) + o(x, y, g), whereg ∈ ∂̄f(x) and limk

|o(x,y(k),g(k)|
‖y(k)−x‖ = 0

for any sequencesy(k) → x, g(k) → g, g(k) ∈ ∂̄f(y(k)). 2

Consider the problem of minimising a generalised differen-
tiable functionf(x) overX ⊆ Rn. Let X∗ := {x ∈ X|0 ∈
∂̄f(x)} andf∗ := {f(x)|x ∈ X∗}.

Lemma 9.4:([25]). The cluster points of the iterative
scheme,

x(k + 1) = Π[x(k)− a(k)g(k)], k ≥ 0

where, Π denotes the projectionX, a(k) are nonnegative
numbers,x(0) ∈ X and g(k) ∈ ∂̄f(x(k)), belong to a
connected subset ofX∗ and{f(x(k))} has a limit inf∗ if f∗

is finite, andlimk−>∞ a(k) = 0 with
∑∞

k=0 a(k) = ∞. 2

Proof of Proposition 6.4: F (α) := min1≤i≤N Mi(α)
is generalised differentiable. Letg(k) be a vector whose
jth component is 1

|U(k)|
∑

i∈U(k)
∂Mi(α(k))

∂αj
. Then g(k) ∈

∂̄F (α(k)), k ≥ 0. Since the constraint set[0, 1]N is a
Cartesian product of sets[0, 1], projection can be obtained
component-wise. Convergence follows from Lemma 9.4.2

Proof of Proposition 6.5: See [21], [25] for details. 2
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