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ABSTRACT 

This paper discusses a simple method of localisation in sen- 
sor networks in which a sensor with unknown location is 
localised to a disk of radius equal to the transmission range 
centered at a beacon if the sensor under consideration can 
receive a transmission from the beacon. This is a reliable 
and extremely easy-to-implement technique since it assumes 
only the basic communication capability. The real advan- 
tage, however, is h a t  once localised, a sensor can aid the 
other sensors to localise. This way by collaboration sensors 
can learn and improve their localisation regions iteratively. 
We analyse this iterative scheme and construct a distributed 
algorithm for utilising i t  in sensor networks. , 

1. INTRODUCTION 

Spatial or jocation information is of intrinsic interest in sen- 
sor networks; for example, it is essential i n  applications that 
involve data combining and estimation. However, such in- 
formation can neither be pre-configured in sensors owing 
to their ad hoc and possibly random deployment nor can 
it be centrally disseminated to sensors because of the ab- 
sence of a centralised coordinator. Further, because of cost 
and power constraints only a few sensors can be equipped 
with Global Positioning System (GPS) receivers. Thus, it is 
imperative that sensors infer their locations 'autonomously 
using only a few sensors which have knowledge of their 
location either through mounted GPS receivers or a priori 
placement with preset coordinates. 

This is not a new problem; locating objects in two di- 
mensions (e.g., surface of the earth) or three dimensions 
(e.g., space) from the knowledge of locations o f  some dis- 
tinguished nodes, called beacons, has been the central prob- 
lem in navigation. Location of a nodc can be known from 
its distances and/or angles to beacons. For example, on 
the plane, if distances to at least three beacons are known 
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from a node, then its position can bc fixed'. The distance 
measurements in this context are generally referred to as 
ranging. What distinguishes the localisation problem in 
sensor networks from the navigation problem is the follow- 
ing, Due to spatial expanse of a sensor network not every 
sensor will have the required number of beacons for rang- 
ing; to be cost effective, fewer beacons are desired. In ad- 
dition, thc traditional ranging methods based on received 
signal strength (RSSI), time of arrival (TOA), angle of ar- 
rival (AOA), time difference of arrival (TDOA), etc. (131) 
have several shortcomings from point of view of the sen- 
sor networks. RSSI is usuaIly very unpredictable since thc 
received signal power is a complex function of the propa- 
gation environment. Hence, radios i n  sensors will need to 
be well calibrated otherwise sensors may exhibit significant 
variation in power to distance mapping. TOA using acous- 
tic ranging requires an additional ultrasound source. TOA 
and RSSI are arfccted by measurement as well as non-line 
of sight errors. TDOA is not very practical for a distributed 
implementation. AOA sensing will require either an antenna 
array or  several ultrasound receivers. 

of localisation which we call the in-range method (IR). The 
basic premise of IR is that a transmission at a given power 
can be decoded only up to a maximum distance, called its 
transmission range. IR then simply localises a node with 
unknown location to a disk of radius equal to the range cen- 
tered at a beacon if the node under consideration can suc- 
cessfully decode a transmission from the beacon. Figure 1 
shows an example of IR localisation. Let R denote the range 
and D ( x , r )  a disk of radius T centcred at 2. In Figure 1, 
Bi is a beacon with location ui for i = 1,2,3.  The solid 
circles indicatedisks D(vi ,  R) ,  z = 1 ,2 ,3 .  The dotted cir- 
cles correspond to exact ranging. Thus, S is localised to 
X = D ( q ,  1.1) n D(uz2 T Z )  fl D(vQ, rg), i.e., the region of 
intersection of three solid circles. We will caIl X the local- 
isation set (or region) of sensor S. 

Though crude as compared to other ranging methods, 
IR is a reliable and easy to.implement technique which as-, 

This motivates us to consider a particularly simple method 

'Since no measurements are exact in practice. the location can only be 
estimated. 
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Fig. 1. Localisation with IR in the plane 

sumes only a hasic communication capability. The advan- 
tage of IR, however, is that once localised, a sensor con 
aid other sensors it1 localising and/or in reducing the lo- 
calisation sets of some other previously localised sensors. 
Figure 1 shows such a scenario. SI and Sz are two sen- 
sors with unknown locations. SI is in thc range of beacons 
B1 and Ba; Bi located at vi. Therefore, i t  gets localised 
to the region of intersection of D(v,, R) ,  i = 1 , 2  shown 
by dotted circles with centers w1 and w2. Sz, though not 
in the range of either B1 or B2, is in the range of SI; the 
dotted circle centered at SI is D(wUsl, R)  where ua1 denotes 
the location of &. Therefore, Sz gets localised to the re- 
gion bounded by the solid curve shown in Figure 1. This 
way sensors can learn and improve their localisation sets 
iteratively. The objective of this work is to investigate this 
iterative localisation process when sensors and beacons are 
randomly placed and to construct a distributed algorithm for 
utilising this scheme in sensor networks. h t  this paper we 

cor@ne our discussion to one dimensional sensor networks. 
Extension to planar sensor networks has been done in [4] 
and will be discussed in an extended version of this paper. 

This paper is organised as follows. Related work is re- 
viewed in Section 2, In Section 3 we describe the general 
1R scheme and analyse i t  in the one dimensional case in 
Section 4; for brevity we omit the formal proofs which can 
found in [4]. Results are discussed in Section 5. A dis- 
tributed algorithm.based on this scheme is presented in Sec- 
tion 6. We conclude in Section 7. 

2. RELATED WORK 

The localisation scheme in [SI uses RSSl based distance es- 
timatcs to beacons whereas in [ I ]  it is based on TOA with 
acoustic ranging and multilateration. Both these methods 
have limitations discussed in Section 1. The basic premise 
of [ 2 ]  is that the number of communication hops between 
2 sensors gives easy and reasonably accurate distance esti- 
mates at higher densities. Such distance estimates to many 
beacons are then used in a gradient descent algorithm at a 
sensor to minimise the location error. In its basic idea [6] i s  

the closest to our work, i.e., a sensor with unknown location 
is localised to a “rectangle” centered at a beacon if the sen- 
sor can hear a “Hello” from it. However, the analysis is in a 
discrete setting and the localisation scheme i s  not iterative. 

3. ITERATIVE LOCALISATION USING IR 

Consider a randomly deployed sensor network in a geo- 
graphical region A; in this paper A C R. The sensors are 
indexed by i E (1 ,2 , .  . . , N } .  We say that a transmission 
can be “decoded” by a sensor when its signal to interfer- 
ence ratio (SIR) exceeds a given threshold @ . The trans- 
mission range is then defined as the maximum distance at 
which a receiver can decode a transmitter in the absence 
of any co-channel interference. We denote the transmis- 
sion range of sensors by Ro. The sensors within Ro from 
i will be called its neighbours. The set of neighbours of 
i will be denoted by Ni and thejr number by ni. By the 
location of sensor i we mean its coordinates and denote it 
compactly by v i ;  in this paper wi is just the x-coordinate 
of sensor z. A localisation set for a sensor z is a subset 
of the region of deployment. Let Xi(0) denote the initial 
localisation set for i = 1 , 2 , .  . . , N .  Recall that beacons 
are those sensors which know their location; the others are 
called ordinary seiisors or simply sensors. Thus if i is a 
sensor then Xi(0) = A else X z ( 0 )  = {q}. Recall that 
D ( v , r )  denotes the disk of radius T centered at TI; in one 
dimension disks are “intervals”. 0 denotes the origin. If G 
and H are IWO sets, G + H denotes the set addition, i.e., 
G + H = { g  + h [ g  E G, h E H } .  

The following gives the iterative IK scheme. n is the 
iteration index. For n 2 0 and i = 1 , 2 , .  . . , N ,  

r , ( 7 1 +  I )  = 0 (Xk(7Z) + D(0,Ro))  (1) 
k E N i  

X I ( ,  i- 1) = Xi(n) n K(TL -t- I) (2) 

X k ( n )  denotes the Iocalisation set of node I; in iteration n. 
Therefore, if i i s  in the range of k, i is certainly in the re- 
gion X k ( n )  + D(0, Ro). Since this property holds for each 
neighhourof i, i is localised to nkEN,(X,(76)+ D(0,  &)). 
Thus, i t  follows that the localisation set of i in the (n  + l)th 
iteration is the intersection or its localisation set in the nth 
iteration and n , , , ( X k ( n )  i- D(0,  Ro)). 

Let L ( X )  denote a measure of set X; in one dimension 
i t  is the length of X. Define, x,(R) := L(X, (n) ) .  We call 
xl(n) the localisation error of sensor i in iteration n. Let 
- x(n) := ( x l (n ) ,  x ~ ( n ) ,  . . . , x ~ ( n ) )  and consider the vec- 
tor valued process (~(n), n 2 0) which we call the locali- 
sation process. Note-from (2) that for each i, x,(n) is non- 
increasing with n. Let A denote C(A). We say that sensor 
i is localised by (i.e., at or before) iteration n if xz(n)  < A. 
Then the performance measures which are of interest are 
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nition x(nj is the average localisation error in the network 
at the end of n iterations and v(n) is the fraction of nodes 
localised by iteration n. 

4. ONE DIMENSIONAL LOCALISATION PROCESS 

We assume N to be very large and model the random dis- 
persion of sensors on the real line as a one dimensional Pois- 
son point process 9 of intensity A; Poisson points indicate 
locations of sensing nodes. A fraction p of the nodes are 
beacons. In the point process model we assume that a node 
is a beacon with probability p independent of anything else. 
It follows that locations of beacons and sensors form inde- 
pendent Poisson processes of  intensity Xp and X ( l  - p ) )  
respectively. 

Recall that ' t i j  denotes the x coordinate of j .  Thus, disk 
D(uj ,Ro)  extends from wj - RO to vj + Ro. xj(n) is 
the length of X,(n). The length of the Iocalisation inter- 
val lying to the right of j is denoted by A?(n) while the 
length of the interval lying to the left of j is denoted by 
Ai(7~); hence, x,(n) = A;(n) + Af(n). If j is a bea- 
con, xj(7a) = A;(.) = Ai(n) = 0, n 3 0. If j is an 
ordinary sensor, Ag(0) = Aj(0) = $. In the Poisson pro- 
cess model, A should be interpreted as a value representing 
the initial uncertainty of each sensor. The evolution ( 2 )  in 
this sctting is as follows. RecaIl that NJ denotes the set of 
neighbours o f j .  For n 2 1 and j = 1 , 2 ,  . . . , N ,  

u:(n) = arg min (vk + AL(n - I)) (3) 
L E N ,  

A;(n) = rnin(A;(n - 1)) 

+ AL;(n)(n - 1) + - uj) (4) 

U;(.) = arg max ( vk  - Ai(. - 1)) 

Ai(n) = max(Ai(n - l), 
L E N ,  

uj ~ %qn) + at:.,n,(n - 1) + fzo) 
xj(n) '= A:(n) + Aj(n) 

If Nj is empty, then by convention the minimum over an 
empty sct is taken to be CO and we define the location of 
u;(n + 1) to be CO. Similarly for U;(TL  + 1). 

To understand the iterative process given by (3), let us 
first consider n = 1. Assume that j is a sensor. Since 
AL(0) = 0 if IC is a beacon and $ otherwise, i t  follows that, 
Xj(l) is decided only by the beacons in its range. Further, 
Xj(l) will be determined by the leftmost and the rightmost 
beacon in the range of j ;  the leftmost beacon will determine 
A;( 1) and the rightmost beacon will determine Ai ( l ) ,  Step 
(3) locates the leftmost beacon; it  is denoted by U;( I). Then 
it  is easy to see that A;(l) = vu; ( l )  + Ro - vj since Ro is 

Fig. 2. An example of the propagation of A>(n) and A$ (n). 

the range and uj is j ' s  location. Similarly uj(1) denotes the 
rightmost beacon so that Ai(1) = wj - 'vu;(1) f Ro. 

Now for n 2 2, consider an example shown in Figure 2. 
Assume that j has only one neighbour denoted by s1 with 
location v l .  Suppose that s1 is a sensor. Further, n - 1 
iterations are over; j has been localised to [uj - A$(n - 
I) ,  v j  + A>(n - I)] and s1 to 1.1 - A:(n- I), 211 +AI(n- 
l)]. Since j lies in the transmission range of si by virtue 
of this single constraint, j must lie within 1.1 - A:(. - 

1) - Ro, VI -t AY(n - I) + Ro] shown by the small square 
brackets. The length of the "right" side of this interval is 
v1 + Ai(n - 1) + h$ - 'uj.  It follows that A>(TL) will be 
the minimum of Ag(n - 1) a n d u l +  A[(n - 1) 1- Ro - wj. 
Similar analysis applies to A:(n). Equations (3) and (4) 
simply extend this logic to a general case. 

Though (3) and (4) arc much simplified compared to (Z), 
the proccss x(n) is still not amenable to analysis. We now 
work with atypical point of the Poisson process, called the 
tagged node (denoted by 0) and study the "coordinate" pro- 
cess of x(n), i.e., {xo(n),  7~ > 0}, the sequence of locali- 
sation errors of the tagged nodc. The performance measures 
discussed in Section 3 can be obtained at the tagged node as, 
x(n) = EXo('IL), v(n) = P(xo(n) < A ) .  

4.1. The Coordinate Process, { xn(n), n 2 0) 

If o is a sensor then X,(O) = A else X,(O) = {O). The 
eakier discussion has shown that if o is a sensor Xo(l) is 
decided only by the beacons in the range of 0. It i s  thus 
possible to explicitly characterise the distribution of x,( I )  
([4]), However, for further analysis we wilt work with a 
simpler process, { A ; ( n ) , n  2 0). Note that, Ag(1) and 
Ai(1) are identically distributed though not independent. 
By symmetry, this property holds for n 2. 2. 

Proposition 4.1 ([4]) If0 is a sensoz tlieprobability distri- 
bution uf A: (1) is, 

Y . 8  
P(Ag(1) 5 y) = 1 - 2Ro < y < 4 ( 5 )  { 1 - e - x P l l  O < Y 1 2 R a  

wirhprobabilit?lmassatA/2: P(Az(1) = A / 2 )  = e-Xp2Rn. 
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Corollary 4.1 

Observe from (3) that, for a given AL(l), A:(T!), n 2 2 
is determined by the (ordinary) sensors in the range of 0. 
Let N,“ denote the set of sensors in the range of o and n: 
their number. Consider now the iteration (3) applied to o 
f o r n  2 2. uL(n) := argminkENC (vk + A i ( n  - 1)) and 

AL(n) = nlin(AL(n - l), vuZ(n) + AL,,,,(n - 1) + EO)  (6) 

Recall that if N,” is empty, by convention the minimum over 
N,” in (6) is infinite and &(n) = AZ(n - 1). Now a direct 
analysis of (6) amounts to analysing {~(n), n 2 01 since 
to find the probability distribution of EL(n), we need the 
joint distribution of AL(n - l), I ;  E N,”. However, an 
asymptotically exact approximation for {xo(n) ,  n 2 2) 
can be obtained as follows. 

Since o is a typical point of Poisson process, n: is Pois- 
son distributed with mean X ( l  - p)2Ro. We denote by 
01; the k t h  “sensor-neighbour” of o. For a given ni, vok 
are independent uniformly distributed random variables in 
[-&, Ro]. We now index theseneighbours by i E { 1,. . . , ng} 
based on the order statistics of w o k ,  i.e., the sensor corre- 
sponding z t h  smallest value of wok’s is indexed i .  Thus 1 
(argniinl<k<nz u o k )  is the “leftmost” neighbour and the 
rest in the-increasing order towards right. Location of i 

is denoted by vi;  f v ,  (zing = ni) = (1 - ”) . . 
Now considera sequence {&In), R 2 0) such that A:( 1) = 

A:( 1) and for T I  2 2, 

n L - 1  

2Ro * 

AL(n) = mill(n;(l),vl 4- A:(n - 1) + Ro) (7) 

Thus, {AL(n), n 2 2) can be generated iteratively; com- 
putation of the statistics of AL(n) requires only the statistics 
of Ai(1) and that of Ai(71- 1) computed i n  the previous it- 
eration. Let F q , ) . ( x )  (respectively, FA.(,, ( 2 ) )  denote the 
~umulative probability distribution of Ai(n)  (respectively, 
A;(n)). Then the following holds. 

Proposition 4.2 (141) For n 2 1, 

4.2. The Process, ( ~ ( n ) ,  n 2 0) 

Recall that v(n) = P(xo(n) < A), the fraction of nodes 
which get localised by iteration n. Since all the sensors need 
to get localised it is important to study { ~ ( n ) ,  n 2 0). 

and 
~roposition4.3 (141) ~ ( 1 )  = p + (1 - p)(l - e - X P 2 R o  1 

lim ( p  + (1 -p) ( l  - e-XpnzRo) - ~ ( n ) )  = 0 (8) 
A-cu 

P 

Fig. 3. Localisation error (normalised to A) vs. p for X = 2 
perm, Ro = 2 m, A = 200111. Analysis and Simulation. 

5, RESULTS AND DISCUSSION 

Figure 3 shows the variation of average localisation error 
(normalised to A) with the beacon density y for increas- 
ing iterations when X = 2 per m. A is obtained as fol- 
lows. In the simulation, we generate 1000 Poisson points 
for the random sensor placement model. The initial uncer- 
tainly for each sensor is then the expected length of this 
placement, i.e., A = 7 and the initial location is its cen- 
ter. E x o ( l )  and E&,(2) are also obtained from the pre- 
vious analyses (Section 4.1). Note from Figure 3 that, in  
the case of EXo( l )  the simulation results perfectly match 
the analysis. For Exo(2), the analytical result gives a fairly 
good match even for a low value such as X = 2. For higher 
densities, analytical values match extremcly well with those 
obtained by simulation ([4]). This suggests that (7) may 
be used to characterise the localisation errors iteratively for 
values of intensity of practical interest. Figure 3 also shows 
the benefits of the iterative scheme. When 10% sensors are 
beacons (p = O.l), the localisation error is reduced from 
40% in the first iteration to less than 5% in 20th iteration. 

Figure 4 shows the variation of v ( n )  with p when X = 2 
per m. v(1) and 4 2 )  are also obtained analytically (see 
Section 4.2). Observe that (p -t (I - p)( l  - e--XJ’n2R11)) 
is an upper bound on v (n )  for n 2 2. This follows from 
the analysis ([41). On the other hand, for higher densities, 
the analytical and simulation results are in excellent match. 
Note from Figure 4 that with 10% beacons, starting with 
about 60% nodes getting localised in the first iteration, by 
20th iteralion about 98% the nodes are localised whereas 
with 20% beacons, starting with about 80% localised nodes 
in the first iteration, by 20th iteration almost all the nodes 
are localised and the localisation error is less than 1% (Fig- 
ure 3). 

It is important to understand that effectiveness of IR 

21 2 

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on July 08,2022 at 07:51:45 UTC from IEEE Xplore.  Restrictions apply. 



O C  I 
0.1 0 2  0.3 Q4 0.5 0.6 

D 

Fig. 4. Fraction of localised nodes vs. p for X = 2 per m, 
RO = 2 m. Analysis and Simulation. 

Algorithm 1 Localisation Algorithm on the real tine 
1 :  if beacon then 

3: broadcast ( 2 ,  Xi) 
4: else 
5: 

6: 

7: broadcast ( 2 ,  Xi) 
8: v i  = 

2: xa = (Vi, .i) 

initialise<ui = 0, X I  = -A/2,  xr = A/2 and Xi = 

upon receiving a broadcast from node k ,  ( k ,  X k ) ,  set 
Xi = (m.x(zf,rci - Ro),min(zi,si + b)) 
(x2, ZT) 

.i+.,' 
2 

does not depend on X being high. Note from Proposition 4.1 
that for a given p, localisation errors will be small if p := 
X2Ro is large. Similarly, the fraction of sensors which get 
localised per iteration will be large for large p as Proposi- 
tion 4.3 shows. Therefore, even in networks which are not 
very dense, IR will be an effective method as long as p is 
largc. 

6. LOCALISATION ALGORITHM 

The iterative scheme i n  (3-4) is easy to implement in sen- 
sor networks as a distributed asynchronous algorithm 1. In 
Algorithm 1 cach sensor positions itself to thc center of its 
localisation set. Figure 5 shows the variation of location 
estimation error (normalised to range Ro) with p using Al- 
gorithm l for increasing iterations. X = 2 perm and Ro = 2 
m. Observe that with only 15 - 20% beacons, sensors are 
able to estimate their locations with an average estimation 
error less than 30 - 35% of the range. By choosing param- 
eter p appropriately accuracy can be traded with the cost 
according to the needs of the application. 

Fig. 5. Location estimation error (normalised to Ro) vs. p 
for X : 2 perm, Ro = 2 m using Algorithm 1. 

7. CONCLUSION 

We proposed an extremely simple method of localisation 
that relies only on the basic communication capability of 
sensors. The method is rendered efficient because a sensor, 
after localising itself, aids others in focalisation. We anal- 
ysed the localisation process on the line and gave an itera- 
tive method of computing the average localisation error and 
the fraction of sensors localised. The results show that if the 
number of neighbours of sensors arc sufficiently high, the 
sensors can localise themselves collaboratively with small 
error using only a few beacons among them. 
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