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Performance of TCP Congestion Control With
Explicit Rate Feedback

Aditya Karnik and Anurag Kumar

Abstract—We consider a modification of TCP congestion control
in which the congestion window is adapted to explicit bottleneck
rate feedback; we call this RATCP (Rate Adaptive TCP). Our goal in
this paper is to study and compare the performance of RATCP and
TCP in various network scenarios with a view to understanding the
possibilities and limits of providing better feedback to TCP than
just implicit feedback via packet loss. To understand the dynamics
of rate feedback and window control, we develop and analyze
a model for a long-lived RATCP (and TCP) session that gets a
time-varying rate on a bottleneck link. We also conduct experi-
ments on a Linux based test-bed to study issues such as fairness,
random losses, and randomly arriving short file transfers. We find
that the analysis matches well with the results from the test-bed.
For large file transfers, under low background load, ideal fair rate
feedback improves the performance of TCP by 15%–20%. For
small randomly arriving file transfers, though RATCP performs
only slightly better than TCP it reduces losses and variability
of throughputs across sessions. RATCP distinguishes between
congestion and corruption losses, and ensures fairness for sessions
with different round trip times sharing the bottleneck link. We
believe that rate feedback mechanisms can be implemented using
distributed flow control and recently proposed REM in which
case, ECN bit itself can be used to provide the rate feedback.

Index Terms—Congestion control, rate feedback, TCP.

I. INTRODUCTION

TCP WINDOW adaptation is based on implicit feedbacks
from the network; acknowledgment cause the congestion

window to increase, and packet losses (indicated by timeouts
or duplicate acknowledgment) cause the window to decrease.
Owing to this blind rate adaptation mechanism, TCP has often
been found to be inefficient, in terms of underutilization of
link capacity and low session throughputs, and unfair in its
throughput performance. In view of this, various modifications
to basic TCP congestion control algorithms have been proposed
and investigated. This includes TCP-Vegas ([1]), TCP-SACK
([2]), New-Reno, limited transmit mechanism, and larger
initial windows ([3]). Estimates of the available bandwidth
are used to set the slow start threshold in [4]. More recently,
in TCP-Westwood ([5]) a mechanism of faster recovery by
setting the value of slow start threshold and congestion window
after a loss event based on available bandwidth estimates has
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been introduced. This approach does not require comprehen-
sive changes to the basic TCP implementation. However, the
benefits are limited since TCP still has to infer congestion
information on the end-to-end basis. TCP-Vegas, for example,
uses round-trip-time (RTT) measurements to estimate the actual
and expected throughput to set the congestion window.

Much more performance improvement can be expected with
explicit participation of the network in the congestion control of
TCP. One such mechanism is active queue management based
on RED or ECN. RED, unlike tail drop buffers, drops packets
randomly (based on average queue length) at a router buffer be-
fore it gets full. This forces TCP sources to back off before
the congestion takes place. RED is aimed at eliminating loss
synchronization and controlling the average queueing delay [6].
However, various studies show that benefits from RED are not
clear [7], [8] shows that RED degrades TCP performance under
a variety of scenarios. In addition, RED requires several parame-
ters to be configured on each router interface, and if not properly
configured it can induce network instability [9]. Lack of a clear
understanding of what an optimal average queue size should be
and absence of a systematic way of setting parameters means
that the choice of parameter is often empirical, even arbitrary.

Since dropping packets is rather a suboptimal way of con-
veying congestion information to TCP sources, ECN marks
packets with 1 bit of congestion notification [10]. Upon receipt
of such a congestion indication, TCP reduces its congestion
window. However, ECN relies on the underlying queue manage-
ment mechanism which in most cases is RED (thereby, inheriting
the problems of parameter configuration). ECN has been found
to reduce packet losses but does not necessarily improve through-
puts [11]. Though ECN presents a new way of providing explicit
congestion feedback to sources, it requires modifications to
routers as well as TCP stack. Moreover, clear understanding of
benefits of ECN is still a research issue [12], [13].

Compared to the “coarse” feedback provided by ECN, TCP
would clearly benefit from a more “sophisticated” feedback
from the network. Our view is particularly motivated from the
study of TCP performance over a rate controlled transport like
ATM/ABR. TCP is seen to benefit from the underlying rate
control even when the two control loops, namely TCP window
control and ATM/ABR rate control, do not interact ([14]). It
would, therefore, be interesting to study the performance gains
(and limits) when a more detailed feedback such as the available
rate information is made available to TCP congestion control.

Rate feedback (or rate control) for TCP over ATM or IP is
not new. An innovative approach suggested in [15] involves
maintaining an acknowledgment bucket at the edge device in
an ATM network and releasing the acknowledgment based
upon the available rate. An explicit window feedback based on
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the buffer occupancy at the edge device of an internetwork of
rate-controlled and nonrate-controlled segments is considered
in [16]. A more direct approach is taken in [17] (TCP over
ATM) and [18] (TCP over IP). Fair rate is calculated by a rate
allocation algorithm and is translated into window information
which is fed back as receiver window advertisement. It has
been shown that the rate feedback reduces packet losses, and
improves fairness and throughputs under various scenarios.
Our work differs from previous work in the following respects.

At the conceptual level, our objective is to understand the per-
formance limits of providing better feedback directly to TCP
sources than just implicit feedback via packet losses. Even if rate
is fed back to the TCP source, there is still an issue of utilizing
it efficiently. We suggest changes to TCP’s adaptive window al-
gorithm to utilize rate feedback more effectively and call this
modification Rate Adaptive TCP (RATCP). We assume that the
network is somehow able to feedback fair session rates to TCP
sources. The TCP sources then adapt their congestion windows
based on this rate feedback and an RTT estimate. Thus our con-
cern in this paper is to study the performance implications of
feeding available bottleneck rate information directly into TCP
windows, assuming that such rate information can be obtained
and that mechanisms exist for feeding it back to the sources.

The existing studies in this area are simulation and experi-
mentation based. Moreover, our aim is not just to enumerate
benefits of rate feedback under various scenarios, but to study
the dynamics of rate feedback and window control, for example,
the effect of feedback delay, rate mismatches etc. We, therefore,
develop an analytical model for obtaining the throughput of a
long-lived (or persistent) session sharing a bottleneck link with
short-lived (or ephemeral) sessions that arrive and depart ran-
domly; the ephemeral sessions are assumed to be ideally rate
controlled and the persistent session uses RATCP or TCP both
without the fast-retransmit feature; thus the persistent session
has a time varying fair rate. The analysis models the round trip
delay, the bottleneck buffer, slow start, congestion avoidance
and rate feedback. We proceed by identifying a certain Markov
regenerative process, and calculating the TCP throughput as the
reward rate in this process. This analysis allows us to charac-
terize the effect of variation of rate feedback on the performance
of TCP.

Our experimental setup comprises an implementation of
RATCP in Linux; the bottleneck link is emulated in the Linux
kernel. This setup and the analysis are cross-checked with each
other. The test-bed also provides quantitative results for the other
cases, including results for RATCP and TCP with fast-retransmit
and recovery. In particular, we compare the performance of
RATCP and TCP on our test-bed in the following scenarios:

1) A persistent session over a bottleneck link with random
loss.

2) Two persistent sessions with different round-trip times
sharing a bottleneck link; both the sessions use either
RATCP or TCP.

3) Two persistent sessions on a link, one using RATCP and
the other TCP.

4) A link being shared by ephemeral sessions that randomly
arrive and depart.

5) Scenario (4) on a link with random losses.

Scenarios (1) and (5) are particularly interesting from the point
of view of wireless networks. Thus, with the analysis and the ex-
periments we study the effect of rate variations, the comparison
with the ideal rate adaptive protocol, and the ability of RATCP
to distinguish congestion and random losses.

At the practical level, our results would be useful to the
designers of edge management devices where such techniques
could be employed. Rate feedback entails putting in place
mechanisms to generate and carry the available rate informa-
tion. An approach, which does not need such mechanisms, is
to estimate the available bandwidth at the TCP sources as in
TCP-Westwood [5]. However, this does not impose fairness in
the network; a source which sends at a rate matching the esti-
mated available rate can easily be starved by a greedy source.
A robust network-based mechanism can be implemented by
distributed rate control [19], [20]. Whereas in ATM/ABR
mechanism to carry rate feedbacks is in place (e.g., RM cells),
in IP networks, with some modifications, ECN bit can actually
be used to provide the rate feedback to TCP. Toward the end
of the paper, we briefly discuss the use of rate estimation
algorithms and explicit binary (or multi-bit) feedback schemes
as suggestions for implementation of RATCP.

This paper is organized as follows. In Section II, we describe
the RATCP algorithm. In Section III, we develop a stochastic
model for RATCP and present its analysis; the proofs are pre-
sented in Section VIII. The experimental setup is explained in
Section IV followed by numerical results in Section V. In Sec-
tion VI, we discuss rate estimation and feedback schemes which
can be used for implementing RATCP. We conclude in Sec-
tion VII.

II. RATCP: WINDOW ADAPTATION WITH RATE FEEDBACK

A. A Naive Rate to Window Translation

Consider a TCP session through a bottleneck link. If the round
trip propagation delay for the session is , and the fair share of
the bottleneck rate is , then the congestion window for this
session should be , where is a target buffer
backlog for this session. Now if the fair rate for the session is
time varying ( ), and is an estimate (at the source) of
at , then a simple, naive rate adapted window would be to take

, where is the available
rate as known to the source at time . Note that, measured
at the TCP source includes queueing delays. One way to get
better estimates is to track the base RTT, i.e., the minimum RTT
seen by the source. allows a session to take advantage of the
transient rate increments.1 In this paper, we wish to study how
such a naive feedback performs.

B. Window Adaptation

The rate adaptive window adaptation strategy is the following
( denotes the congestion window, and is the window ac-
tually used for transmission control):

• Slow start is carried out either at connection startup, or at
the restart after a timeout. We use the rate information for

1The importance of this parameter is well demonstrated by our results. TCP-
Vegas also uses a similar parameter [1].
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setting the slow start parameters: at timeout is set
to 1, and the slow start threshold (ssthresh) is set to the
value of at the timeout epoch. If during slow start

then the congestion window is dropped
to , and congestion avoidance is entered. This is
appropriate, since it is as if the ssthresh has been adjusted
downward.

• During congestion avoidance, at time , we compute
. If the conges-

tion window reduces as a result of ,
then it means that more than the desirable number
of packets are in the network. Acks following such a
window reduction do not cause the window to increase
until the number of unacknowledged packets corresponds
to the new window. This adds a phase of inactivity in
the modified TCP. Normal congestion avoidance be-
havior continues after the number of outstanding packets
matches the new congestion window. If during conges-
tion avoidance becomes less than ssthresh (due
to a feedback) then slow start is not re-initiated.
This is reasonable, since it is as if the ssthresh has been
adjusted downward, and we are now just entering conges-
tion avoidance. This also implies that ssthresh no longer
differentiates the phases of the TCP algorithm; we need
to introduce a separate variable for this purpose.

• If fast-retransmit and fast-recovery are implemented then
upon receiving (typically ) duplicate acks we
set (instead of

as in TCP-Reno), and the missing packet
is retransmitted. After every additional acknowledgment
received is increased by 1. Upon receipt of the ack
for the resent packet, congestion avoidance resumes, as
described above.

We call these modified TCP algorithms, Rate Adaptive TCP
(RATCP). We will compare RATCP and TCP without fast-re-
transmit and fast-recovery, and will call these versions RATCP-
OldTahoe and TCP-OldTahoe. The versions with fast-retransmit
and fast-recovery will be called RATCP-Reno and TCP-Reno.

III. A MODEL AND ITS ANALYSIS

Analysis, even if approximate, is essential for providing in-
sight into factors that affect the performance of a protocol. In
addition, although simulations and experiments are usually used
to validate analysis it is just as important to cross-check simu-
lations and experimental results with analyzes for at least some
cases.

We develop an analytical model for the performance of
RATCP OldTahoe in the following network scenario. There is
a persistent RATCP session, that shares a bottleneck link with
other elastic sessions. The elastic sessions are assumed to be
ideally rate controlled and ephemeral, i.e., they arrive at random
epochs, bring a random amount of data to transfer and depart
after completing their transfers. When there are ephemeral
sessions, we assume that these sessions use exactly
of the link capacity of packets/s, and the persistent session’s
share is pkts/s. Thus the fair bandwidth available
to the persistent session is randomly time varying. Ephemeral

Fig. 1. A queueing model of the persistent TCP session.

sessions should not be likened to the “background traffic”; they
are ideally rate-controlled, hence their packets do not occupy
the link buffers. Their role is to make the available rate at the
bottleneck link time varying; otherwise, after rate feedback
takes effect, there will be ideal performance. This amounts to
an assumption of per flow queueing and round robin service
over the flows at the router.

Our analysis captures the important effect of time scales of
rate variations at the bottleneck link as compared to the propaga-
tion delay. Thus, the role of our analysis is to study the dynamics
of rate changes at the bottleneck link, round trip delay and the
rate adaptive TCP window control. Because of these issues, this
analysis does not lead to close form expressions; however, the
numerical results provide insights into the dynamics we intend
to study.2

Fig. 1 shows a schematic queueing model of the persistent
TCP session. The bottleneck link is modeled as a finite buffer
queue with maximum buffer size of packets, and a server
with time-varying rate pkts/s. Note that the
ephemeral sessions are only modeled as modulating the rate
available to the TCP session, and hence the link buffer only
holds packets from the TCP session. denotes the fixed round
trip delay and is modeled as an infinite server with fixed service
time equal to . We assume that the link from the source to the
bottleneck link is infinitely fast.

The continuous time processes for this model are hard to an-
alyze. Instead, we follow the analysis procedure developed in
[14]. Define the epochs , . Observe that
none of the packets that are in the delay queue at time will
still be in that queue at time , and any packet that arrives
into the delay queue during will still be there at time

. We thus consider the processes embedded at the epochs
(see Fig. 2), and define

where, at epoch , and denote the rate window
and the congestion window for the persistent RATCP session.

denotes the number of ephemeral sessions on the link,
the number of packets in the link buffer, and the number
of packets in the propagation queue; this is the total number of
packets and acks in transit.

A. Model for the Rate Modulating Process

We assume that the ephemeral sessions arrive and de-
part at the discrete epochs . Thus, during the interval ( ,

2Previous analytical work which arrived at closed-forms for TCP perfor-
mance has not dealt with time varying rates.
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Fig. 2. Evolution of fZ ; k � 0g, showing the model for timeout based loss recovery.

) the rate available to the TCP session is constant at
. A new arrival occurs at any with proba-

bility ; i.e., the inter-arrival times are geometrically distributed
(taking values that are multiples of ). The amount of data to
be transferred by an ephemeral session is denoted by , and is
taken to be exponentially distributed with mean , in units of

. When there are sessions sharing the link, each session
is served at . Let be the probability that a session active
at and being served at a rate in ( , ) departs by

. Then it is clear that

Thus given that there are ephemeral sessions active at , each
one of them independently completes in the interval ( , )
with probability . It follows that is a DTMC.
Note that since the TCP session is persistent it is always counted
as being active in the per session rate calculation, and hence

evolves independently of the other components of
the process .

Denote by the transition probability matrix of
. Then we have

if
for

if

where . This also im-

plies that the number of sessions which depart in ( , ) con-
ditioned on the number of sessions present at is binomially
distributed.

B. Model of Window Adaptation to Rate Feedback

The rate window is calculated from the instantaneous rate in-
formation known at the TCP source of the tagged session. We as-
sume that delay is known at the TCP source and that it receives
a (delayed) rate feedback every round trip time. With these as-
sumptions, our analysis gives a bound on the performance of
TCP with rate feedback. In experiments we will study the effect
of estimation errors in the base round trip delay. Owing to one
delay in rate feedback, the rate window calculated at is given
by

(1)

where . Then, the window adaptation
policy implies that

(2)

Note that the assumption of an infinite rate link between the
TCP source and the bottleneck link implies that, if is not
rate limited (and there are no losses), then
(any window increase immediately results in as many more
packets in the network). We can then see how, adaptation
to the rate window reduces the packet losses due to buffer
overflow, since it controls the backlog of packets in the buffer
to a target value of . This can be seen as follows. Note that

. Assuming that the bottleneck link was busy
throughout ( , ) ( ), we find from (1)
that, .
Hence, and then excess packets are drained
from the network.

C. Evolution of , and a Process

We make some basic assumptions in order to make the anal-
ysis of the process tractable.

• The source immediately transmits new packets as soon as
its window allows it to; these arrive instantaneously at the
link buffer.

• Packet transmissions from the link do not straddle the
epochs .

• During each interval , the acknowledgment
(acks) arrive at the TCP source at the rate .

Let . Then
. Note that there can be at most acks

during ( , ). These acks may trigger new packet arrivals
into the link buffer. In congestion avoidance we have the
following possibilities.

1) If (this would occur if ),
then packets need to be removed from
the network before congestion avoidance resumes. Since
the number of acks that will be received in ( , ) is ,
we first have the following two cases.

• Case 1: not enough acks are received, the
source is inactive throughout ( , ) and

; there is no packet loss.
• Case 2: congestion avoidance com-

mences during ( , ) after the first acks are re-
ceived. There may be losses in ( , ) after acks
are received.

2) Case 3: congestion avoidance con-
tinues; as acks are received, is incremented and
new packets are generated. There may be losses in ( ,

).
If a loss does occur during ( , ), adjustments to

may occur till the ack for the packet just prior to the one that is
lost is received (see Fig. 2). We assume that this ack arrives at



112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

the source in ( , ). At this point the source starts a coarse
timer. We assume that the coarse timeout occurs during ( ,

) and the recovery begins at (see Fig. 2). Recalling that
wearenotmodeling thefast-retransmitprocedure,denoteby ,
thedurationof theslowstartphase(innumberof intervals).
will vary with each loss instance, but developing an indexing for
it would be cumbersome. Then the recovery is over at ,

and the congestion avoidance phase begins.
Define the embedded epochs by , and for

no loss in
loss in

where denotes the duration of the slow start phase. Finally,
define the embedded process with

.
Proposition 3.1: is a Markov Renewal

process.
The proof of Proposition 3.1 is presented in Section VIII.

D. Computation of Throughput

Given the Markov Renewal Process , a
reward is associated with the cycle ( , ), as the
number of successful packets accounted in that interval. Let

and respectively denote the reward and the length
of the cycle beginning with . Denote by , the sta-
tionary probability distribution of the Markov chain

. Then denoting by the throughput, and by the expec-
tation with respect to , from the Markov Renewal-Reward
Theorem we have

(3)

If packet loss does not occur in ( , ), then we count the
reward as the number of acks received by the source, that is,

, denoted by to show dependence on . When
packet loss does occur, the reward is accounted as the sum of

acks that return to the source in ( , ), the number of
packets ahead of the packet that is lost , and

, the number of packets transmitted in the slow
start phase. We do not count any of the packets transmitted suc-
cessfully after the lost packet. Thus,

w.p.

w.p.

w.p.
w.p.

Analysis of TCP without rate control is similar to the analysis
described above. Since at the embedded epochs , the equa-
tion holds, we need to consider only the
four-dimensional process:

needs to be considered as it determines the rate at which
acks return from the delay queue to the source. Additional de-
tails of the analysis are provided in [21].

Fig. 3. Implementation of the Wide-Area Link Emulator (WALE) in the Linux
kernel.

IV. EXPERIMENTAL SETUP

The experimental results for the network of Fig. 1 reported
here are obtained from a Linux based Wide-Area Link Emu-
lator (WALE) [22]. WALE, as shown in Fig. 3, models a full
duplex WAN link on a single Ethernet interface. The link pa-
rameters namely, send/receive buffer sizes, send/receive trans-
mission rates, and send/receive propagation delays are emulated
at the generic device driver layer. To emulate lossy links, e.g.,
satellite links, random loss module (RLM) creates packet losses
with a user specified probability. All these parameters can be set
using a link configuration utility. File transfers are run using the
actual Linux TCP code modified according to RATCP.

Modifications include new variables for rate window and for
phase to differentiate slow start and congestion avoidance. The
exact rate feedback with appropriate delay is artificially provided
to theTCPsenderusinganewsystemcall.Theratewindowisthen
calculatedusingthisratefeedbackandTCPbaseRTTestimatefor
every incoming ack (tcp-ack routine); this models the case when
rate is fed back in ack packets. The congestion window is updated
for every incoming ack as per the original algorithms. The base
RTT estimates are obtained in the RTT estimation routine.

We also modify the socket layer so that the file transfer appli-
cation is able to select either TCP or RATCP as the underlying
transportprotocol.This enablesus tocompare theperformanceof
competingTCPandRATCPsessionsover thebottlenecklink.Ex-
periments involving random losses are carried out using the RLM
in WALE. Files are transfered from “server” to “client”. WALE is
configured on the server. Along with the file transfer request, the
client also requests the transport protocol (RATCP or TCP) to
be used for the transfer. Throughputs are measured at the client.

V. NUMERICAL RESULTS

A. RATCP OldTahoe and TCP OldTahoe: Analysis and
Simulation

The rate modulating Markov chain discussed in Section III.A
is infinite. However, to arrive at the numerical results, we limit
the number of ephemeral sessions to some finite number .
We investigate the performance of RATCP and TCP with dif-
ferent rates of variation of the available rate to the tagged ses-
sion. The arrival rate of ephemeral sessions along with
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decides the average number of sessions on the link and varia-
tions in the available rate. With very high arrival rate, the number
of sessions is almost always ; hence each session gets a
throughput of . Thus, in the ideal case the tagged
session throughput varies between and . The
variance of the number of the ephemeral sessions increases with
the arrival rate but decreases at higher arrival rates. Hence, the
rate of variation of the rate available to the tagged session is low
when the arrival rate is either very low or very high.

The common parameters selected for these results are:
link rate, Mb/s, link buffer, packets,
TCP packet length bytes, mean ephemeral session
length, kB, round trip delay, ms, maximum
number of ephemeral sessions on the link, . Session
arrival rate is given in sessions/s. For the results in this section
the tagged session is assumed to know and (delayed) rate
feedback is made available to it every .

Fig. 4 shows the basic comparison of the efficiency of RATCP
and TCP obtained from the analysis. We define efficiency as the
throughput of the tagged session normalized to the mean fair
rate it gets. Let denote the stationary probability distribution
of the rate modulating Markov chain discussed in
Section III-A. Then is the mean fair
rate of the tagged session. Hence,

Efficiency

Recall that denotes the throughput. An “ideal rate adaptive
protocol” (IRAP) would adapt to the rate feedback instanta-
neously and without any losses. This way, efficiency can be in-
terpreted as fraction of IRAP throughput obtained by a protocol
under investigation.

There is an important effect of time scales of rate variations
at the bottleneck link as compared to the round trip delay. When
the rate variations are slow, feedback is effective and perfor-
mance is expected to improve. On the other hand, the perfor-
mance degrades because of rate mismatches; this effect is the
worst when the bottleneck rate varies over propagation delay
i.e., when the rate feedback is always “wrong”. Recall that, since

at any time , when the arrival rate of the ephemeral
sessions is very low or very high the fair rate variations are slow,
whereas for intermediate arrival rates the rate variations are fast.
We make the following observations from Fig. 4.

• When the arrival rate of the ephemeral sessions is very
low, RATCP gives about 17%–20% better throughput than
TCP. Since both RATCP and TCP recover conservatively
from losses, the improvement with RATCP occurs since
it suffers less losses, because of the adaptation to the rate.

• As the arrival rate increases RATCP does not have a sig-
nificant advantage over TCP. This is because, when the
rate variations are comparable to the propagation delay,
there are frequent mismatches between the sending rate
and the available bottleneck rate, and hence the rate feed-
back is not very effective. However, RATCP is able to con-
tain packet losses to a smaller value as compared to TCP.
Since the buffer backlog is only 1 packet in RATCP, it is
not able to take advantage of the transient rate increases,
and thus has a sharper decrease in the efficiency, with in-
creasing ephemeral session arrival rate. The performance

Fig. 4. Efficiency variation of RATCP and TCP with the ephemeral session
arrival rate. Analysis.

Fig. 5. Throughput variation of RATCP and TCP with the ephemeral session
arrival rate. Analysis and experiment. � = 1 packet.

of RATCP can be enhanced in this region by a larger value
of . We show the performance with .

• When the arrival rate is higher, the mean number of ses-
sions on the link increases. This implies that the rate avail-
able per session is small, and TCP needs to build a smaller
window before a loss occurs. Thus the penalty for a packet
loss is not significant and TCP performance is close to that
of RATCP.

• When , RATCP is able to keep more packets in the
network but without losses. Hence, with this value of
efficiency is improved substantially over the whole range
of rate variation.

Fig. 5 shows the comparison of absolute throughputs (cor-
responding to efficiency results depicted in Fig. 4) of RATCP
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TABLE I
THROUGHPUT (kB/s) OF THE PERSISTENT SESSION FOR VARIOUS PROTOCOLS AND PARAMETERS.

EACH COLUMN CORRESPONDS TO AN ARRIVAL RATE OF EPHEMERAL SESSIONS ON THE LINK

Fig. 6. Efficiency variation of RATCP (Reno and OldTahoe) with the
ephemeral session arrival rate compared to TCP Reno.

and TCP obtained analytically as well as from experiments.
Note from Fig. 5, that analytical and experimental results match
well with analysis being slight overestimate. Overall the anal-
ysis procedure captures the performance quite well. Numerical
values are shown in Table I.

B. RATCP Reno; Random Losses

We have described fast-retransmit and recovery in RATCP
Reno in Section II. Table I gives the throughput comparison of
RATCP Reno and TCP Reno. Fig. 6 shows the comparison of
efficiency. Although TCP-Reno implements an efficient way
of avoiding timeouts, it is, however, incapable of reducing
losses. Hence, RATCP Reno (even RATCP OldTahoe, )
outperforms TCP Reno when the rate variations are slow.
However, fast retransmit works well in TCP Reno when the
arrival rate of the ephemeral sessions is high; it matches the
throughput of RATCP with and is much more efficient

(Fig. 6). Recall that in this region TCP needs to build a smaller
window after a loss. This means that TCP Reno can keep
more packets in the network as compared to RATCP ( )
and still recover from the losses efficiently. However, when
the rate variations are fast, TCP loses multiple packets due
to frequent rate mismatches. This leads to multiple window
cutbacks.3 Hence, TCP frequently recovers by timeout resulting
in degradation of throughput. RATCP Reno, on the other
hand, controls losses and implements much more efficient
fast retransmit thereby performing overall better than TCP
over a broad range of rate variations. Recall that, in RATCP
fast-retransmit and fast-recovery, upon receiving three dupli-
cate acks we set instead of

as in TCP-Reno.
On links where transmission error probability is high, e.g.,

satellite links, it is particularly important that TCP retransmit the
packets lost due to corruption without reducing its congestion
window. Various techniques like FEC, ECN bits, ICMP mes-
sages, etc. have been proposed to inform TCP of the corruption
losses [3]. However, it remains a difficult problem and major
bottleneck in the performance of TCP over lossy links [23]. On
the other hand RATCP-Reno maintains the fair window in fast
retransmit; hence, it is indirectly able to differentiate conges-
tion and corruption losses. This can be seen from Fig. 7 where
we plot the throughput of a single persistent session versus the
packet loss rate. The parameters are as given earlier except that
there are no ephemeral session arrivals. Recall that the bottle-
neck link rate is 100 kB/s and ms. and . No-
tice that RATCP Reno succeeds in maintaining the throughput
of the session above 85 kB/s for a wide range of packet loss
probabilities, whereas the session throughput with TCP Reno
drops to less than 50 kB/s with a packet loss probability of 1%.
Further, with , RATCP does not achieve significantly
higher throughput than when due to only random loss.
This is a significant result and suggests that RATCP could be
used in conjunction with performance enhancing edge devices
between the satellite networks and terrestrial networks.

C. Fairness

We continue to use the same experimental set-up and the link
parameters. Fig. 8 shows the fairness comparison of RATCP and
TCP, when two sessions with RTTs 100 ms and 200 ms share

3New TCP implementations do not cut the window multiple times if multiple
packets are lost in the same round trip time.
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Fig. 7. Throughput variation of OldTahoe and Reno versions of RATCP and
TCP with random packet drop probability.

Fig. 8. Throughput comparison of 2 competing sessions on the link with
different round trip times- 100 ms and 200 ms. Sessions either use RATCP
Reno or TCP Reno. � = 1 packet.

the bottleneck link. When TCP sessions with larger propaga-
tion delays share a link with sessions with smaller delays they
suffer because of the following effect—smaller delay sessions
increase their windows at a higher rate creating frequent losses
and recovery thereafter is slow for sessions with larger propa-
gation delays. Since larger RTT session requires larger window

Fig. 9. Throughput comparison of two competing sessions on the link, one
uses TCP Reno and the other RATCP Reno. RTT is equal to 100 ms for both
the sessions. � = 1 packet.

for a given throughput the above phenomenon results in a low
throughput for large RTT sessions. This leads to unfairness as
seen from Fig. 8; session with 200 ms delay gets 50%–60%
less throughput than the session with 100 ms delay. Since the
windows are calculated based on the fair rate feedback, as ex-
pected, RATCP sessions in spite of different propagation delays
get equal throughputs. Interestingly however, when an RATCP
session competes with a TCP session, as seen from Fig. 9, TCP
gains. This is because, RATCP limits its window, whereas TCP
has more number of packets in the round trip pipe and creates
losses for both. A similar phenomenon is seen when TCP-Vegas
competes with TCP-Reno [24].

D. Finite-Size File Transfers (HTTP-Like TCP Transfers)

Web traffic is the predominant traffic in the Internet today. To
model such a realistic situation, we need to consider a traffic
model in which sessions arrive randomly and transfer small
files. We assume that sessions arrive in a Poisson process and
require file transfers with sizes exponentially distributed with
mean 200 kB. If denotes the session arrival rate, then the load
on the link, , is defined as . Experiments are conducted
for different values of . The session arrival rate is then cal-
culated from the formula for . We now use the following pa-
rameters: link rate, Mb/s, link buffer, kB,
TCP packet length bytes, mean file transfer size,

kB, round trip propagation delay, ms. For RATCP,
we assume that the exact rate is available at the sender (after one
round trip time), and it uses the base RTT estimate to calculate
the rate window.

Fig. 10 shows the variation of average throughput of sessions
(averaged over 500 sessions) with the load on the link. Note
that, the average throughput performance of RATCP and TCP
is almost the same. However, it can be seen from Fig. 11 that
losses incurred by RATCP with are significantly fewer
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Fig. 10. Variation of average session throughput with load.

Fig. 11. Average retransmitted data per sessions versus load.

than by TCP and by RATCP with . This is explained by
the following experimental observations. Fig. 12 shows the byte
(transmitted on the link) numbers plotted against time for ran-
domly picked 20 consecutive TCP sessions in the above exper-
iment. The origin of time axis is the system time of the arrival
of the first session and hence is arbitrary. The corresponding
plot for RATCP sessions is shown in Fig. 13. Each curve rep-
resents the evolution of one session; the average throughput of

Fig. 12. Evolution of the congestion window of 20 TCP sessions sharing the
link. Mean file transfer size is 200 kB.

Fig. 13. Evolution of the congestion window of 20 RATCP sessions sharing
the link. Mean file transfer size is 200 kB.

that session can be calculated as the ratio of total number of
bytes transferred (obtained from -axis) to the total time taken
(obtained from -axis). In addition, the slope of a curve gives
the instantaneous rate that session gets. Note that, a disconti-
nuity in a curve indicates packet losses. Observe that, the curves
of RATCP sessions have equal slopes indicating fair alloca-
tion of instantaneous rates to all the sessions; hence RATCP
sessions get equal instantaneous throughputs. As would be ex-
pected there are hardly any packet losses. On the other hand,
TCP sessions incur more losses and some sessions get signifi-
cantly higher throughputs than other sessions. We find that this
leads to almost the same average performance of both the pro-
tocols.

Random Loss: Fig. 14 shows the performance of web-like
transfers on a link with random losses. Load on the link is 0.5
and mean file transfer size is 200 kB. Two RTT’s are studied 100
and 500 ms. Note that, RATCP gives a 10% improvement in the
average throughput over TCP. With a large RTT, e.g., 500 ms
typically encountered on satellite links, performance degrades
significantly for both the protocols. However, we have found
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Fig. 14. Average sessions throughput versus random loss probability. Mean
file transfer size is 200 kB. Round trip times are 100 ms and 500 ms.

that with larger file sizes (mean file size 1 MB) and small load
values, RATCP maintains a higher throughout than TCP for a
wide range of packet loss probabilities. This performance is sim-
ilar to the one observed in Fig. 7.

VI. AVAILABLE RATE ESTIMATION AND FEEDBACK

To improve upon TCP’s basic algorithms which estimate the
available rate in the network, various algorithms have been pro-
posed [25]. A sender-side technique uses the rate of returning
acks. However, it assumes that the original spacing of packets is
preserved in acks; this makes this technique problematic. This
problem can be solved by estimating the available rate at the
receiver using TCP packets and informing the source through
a TCP options field. Using this information, the TCP source
may set the value of slow start threshold or adapt the conges-
tion window. However, this does not guarantee fairness since
the estimated rate may not be the fair rate. In addition, the per-
formance crucially depends on the accuracy of the estimates.
Also, on lossy links these techniques will perform poorly.

The techniques discussed above use only the end-to-end in-
formation. A network based technique may be implemented
using recently proposed Random Early Marking or (REM) [13].
REM is motivated by optimization based flow control, where
sources and links maximize a global measure of network per-
formance in a distributed fashion [19]. In a network of links
and sources, a source attains a utility when it trans-
mits at rate . The objective is to maximize sub-
ject to the constraint that the total source rate on any link is less
than the link capacity. To solve the optimization problem in a
decentralised way, each link calculates a “price” per unit band-
width by measuring the aggregate source rate. A source is fed
back the sum of the prices over all the links it uses; this sum
called the path price for source . It then chooses a transmis-
sion rate that maximizes its own utility based on the path price.

Fig. 15. A satellite networking situation where RATCP will be useful.

This is implemented as follows. Each link measures the total
source rate using the buffer backlog and “feeds back” its price
to the sources by “marking” packets. A packet is marked with
probability that is exponentially increasing in the price so that
the end-to-end marking probability is exponential in the path
price. A source can estimate the price by the fraction of marked
packets and then adjust its rate. Marking is done using ECN bits
in IP packets. We have used as the fair share of bandwidth,
however, with REM sources may use different utility functions
to adjust their rates.

On wireless or satellite links, direct feedback from the edge
devices can be obtained. With a split-connection approach ([26]
and references therein), RATCP can be used on the wireless
link. The edge device can explicitly calculate rates for sessions
going through it and feed them to RATCP. A possible scenario is
shown in Fig. 15 where clients download data from the Internet
via a proxy server(shown as an integration of proxy-web server
and a bandwidth controller) using a satellite link which is the
bottleneck link. RATCP is implemented in the proxy for client
side connections.

VII. CONCLUSIONS

In this paper we set out to understand the performance im-
plications of feeding the available bottleneck link rate directly
into TCP windows. Assuming that such information is avail-
able and there is a mechanism to feed it back to the source, we
studied an approach for adapting the TCP congestion window
to explicit rate feedbacks, and called this modification RATCP.
Using analysis and an experimental test-bed we studied the per-
formance of TCP and RATCP under various network scenarios.
Our main observations are as follows.

1. There is an important effect of time scales of rate vari-
ations at the bottleneck link compared to the propaga-
tion delay. When the rate variations are slow compared
to the RTT, feedback is effective and the performance is
improved. On the other hand, when the propagation delay
is large and rate variations are rapid, the performance de-
grades because of rate mismatches. These observations
are similar to the ones in [14]. The context in [14] TCP
over ATM-ABR; no feedback of rates to TCP windows.

2. When the file transfers are large and the load on the link
is low, RATCP performs significantly better (17%–20%)
than TCP.

3. RATCP is most advantageous in dealing effectively with
random losses on the link. With the rate information,
RATCP differentiates between congestion and corruption
losses leading to higher throughputs over a wide range
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of random loss probabilities. This scenario is particularly
important from the point of view of wireless and satellite
networks.

4. RATCP ensures fairness among sessions even if they have
different propagation delays.

5. With short file transfers RATCP is only slightly better than
TCP. TCP sessions incur more losses and some of the ses-
sions get significantly higher throughputs than others. On
the other hand, RATCP sessions get equal instantaneous
throughput with hardly any packet losses.

6. It is possible to implement rate feedback mechanisms
based on distributed flow control algorithms. With REM
as the feedback mechanism ECN bit itself can be used.

VIII. PROOF OF PROPOSITION 3.1

Let ,
where and

. Define .
Remark: It requires too much notation to write down the

complete transition probabilities for each pair of states. In the
following exposition we adopt the approach of taking an event of
interest, and obtaining the transition probability from one state
to another if this event occurs. The sum of these probabilities
yields the actual transition probability in the computer program
that is used to obtain the stationary probability distribution of

.
We consider each of the three cases discussed in Sec-

tion III-C.
Transition Probabilities for Case 1: During ( , )

the source is idle and there is no packet loss. Let
; we also have . Then it is

clear that with probability

(4)

and

(5)

Model for Window Increase During Congestion Avoid-
ance: We model the congestion avoidance phase probabilisti-
cally (see also [14], [27]). For a nonduplicate ack received at
, is incremented by 1 with probability .

To simplify the analysis, we assume here that the probability of
window increase in ( , ) is constant and equals .

Transition Probabilities for Cases 2 and 3: Recall the def-
initions of these cases from Section III-C. In Case 2 we have

, and only after acks have been received will conges-
tion avoidance resume; new packets will be generated and the
window may increase. We call the acks that affect the window
increase in ( , ), effective acks, and denote them by (
is used to denote a particular value). With this notation (and re-
calling the notation for the elements of ) we have for Case
2, , and for Case 3, . Let denote the total
window increase in ( , ). Then for ,

(6)

Calculation of Loss Probability: A packet loss occurs when
a packet finds the link buffer full (tail drop). It can be seen that
loss occurs in ( , ) when the window increment is more
than a value, called the loss threshold, . We now obtain
this threshold.

Let denote the ack arrival epochs in ( , ).4

With as above, note that is the arrival epoch of the first
effective ack. For , define . Then for ,
define buffer occupancy at , window increase
in , number of packets inserted into the link in

, and number of packets transmitted by the link
in . Note that, the number of packets inserted into the
link till constitutes the packets triggered by acks received
and the new packets generated due to the window increase up
to and including epoch . For example in Case 3, ,
and and, owing to the back-to-back assumption,

.
Denote by , the buffer occupancy at the first effective

ack arrival, that is, just after the ack arrives. For example, in
Case 3, equals , ; then equals .

Consider the case that and (note that,
the loss may occur even when and ).
Then, for , . Let

be a particular value of such that
; hence, for ,

. This means that if exceeds then
loss occurs at . Observe that the sequence is nonincreasing
with . Thus, in this case, we define

(7)

It is easily seen that loss occurs if and only if .
Hence,

(8)
Transition Probability Calculations: New Arrivals, No

Loss: . Recall that is the buffer
occupancy at the first effective ack arrival, and thus equals

, where, . Also
. From these, is obtained by using (7).

Let be the number of packets transmitted from the link in
( , ), and the window increment in ( , ). Then

where and it can be seen that, for
and , with probability

(9)

4The packets enter the link buffer instantaneously after an ack arrival; we,
therefore, refer to a packet arrival epoch at the link by the corresponding ack
arrival epoch at the source.
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Fig. 16. Slow start phase when the bandwidth-delay product is 4.

and

(10)

where .
Transition Probability Calculations: New Arrivals, Loss Oc-

curs: . Recall that, we do not consider adapta-
tion to the rate window in slow start.5 Therefore, given ssthresh
and the number of active sessions at the beginning of the re-
covery, the slow start duration and the state of the system at the
end of slow-start can be determined.

Initial Conditions at Slow Start: Note that,
is a DTMC. Let, denote

the one-step probability. Then observe that

Recovery begins at , ssthresh is set to , and during
slow start the number of sessions constraining the persistent ses-
sion’s rate is assumed to be ; hence,

Modeling Slow Start: Note that, at the beginning of slow
start, , , , , . Since
we assume that , and the rate for the persis-
tent session is constant (given by ) during slow-start,
the slow start evolution is determined as follows. Define

and . As in [28], we
consider mini-cycles of duration , where mini-cycle refers
to the time interval . Fig. 16 shows the evolu-
tion of the buffer and the TCP window in the slow start phase.
Let denote the mini-cycle when the pipe becomes full. Then

and, and
. Note that, if

then the packet loss takes place in or before the mini-cycle
(see [28]). If then in every next mini-cycle,

and increase linearly by leading to packet
loss if

. This causes a second period of timeout and recovery.
ssthresh set for the second slow start does not exceed half the
current value. Hence, the recovery is completed with the suc-
cessful slow start phase. Results for the recovery phase can be
arrived at with little algebra. The details are provided in [21].

5This basically means that, though the rate modulation process evolves in-
dependently during the period of recovery, we assume that the rate available to
the tagged session remains constant during this period. This assumption is not
made in the experiments.

These calculations provide the slow-start duration ,
and also the values of the number of packets in the buffer and
in the delay queue at the end of slow start, i.e., and

. We will denote these simply by , , . Putting
the above calculation together, we have, with probability (recall
that we have )

(11)

and

(12)

with probability

It, therefore, follows from (4), (5), (9)–(12), that
is a Markov chain, since the distribution of can be found
without any knowledge of the past, given . Also given ,
the distribution of can be found without knowl-
edge of the past. is thus a Markov Renewal
Process.
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