
Time and Energy Complexity of
Distributed Computation in
Wireless Sensor Networks∗

Nilesh Khude1, Anurag Kumar1, Aditya Karnik 2

Abstract— We consider a scenario where a wireless sensor
network is formed by randomly deploying n sensors to measure
some spatial function over a field, with the objective of computing
the maximum value of the measurements and communicating it
to an operator station. We view the problem as one of message
passing distributed computation over a geometric random graph.
The network is assumed to be synchronous; at each sampling
instant each sensor measures a value, and then the sensors
collaboratively compute and deliver the maximum of these values
to the operator station. Computation algorithms differ in the
messages they need to exchange, and our formulation focuses on
the problem of scheduling of the message exchanges. We do not
exploit techniques such as source compression, or block coding
of the computations.

For this problem, we study the computation time and energy
expenditure for one time maximum computation, and also the
pipeline throughput. We show that, for an optimal algorithm,
the computation time, energy expenditure and the achievable
rate of computation scale as Θ

(

√

n

log n

)

, Θ(n) and Θ
(

1
log n

)

asymptotically (in probability) as the number of sensors n → ∞.
We also analyze the performance of three specific com-

putational algorithms, namely, the tree algorithm, multihop
transmission, and the ripple algorithm, and obtain scaling laws
for the computation time and energy expenditure as n → ∞.
Simulation results are provided to show that our analysis indeed
captures the correct scaling; the simulations also yield estimates
of the constant multipliers in the scaling laws. Our analyses
throughout assume a centralized scheduler and hence our results
can be viewed as providing bounds for the performance with a
distributed scheduler.

Keywords: distributed maximum computation, scaling
laws for sensor networks

I. INTRODUCTION

A wireless sensor network is formed by a set of small
untethered sensor devices that are deployed in an ad hoc
fashion and cooperate in sensing the environment and in
computing some quantity of global interest (for a survey
see [1]). Sensor nodes have limited, and in many cases,
irreplaceable power sources. Power consumption occurs due to
radio transmission, reception, sensing and computing, typically
in decreasing order. As a node spends the maximum energy
in communication, it is desirable to have local interactions
between the sensors to process the data in the network
and, hence, reduce transmissions, rather than to transmit the
raw data to the base station. In this paper we focus on

∗This work was supported by the Indo-French Centre for Promotion of
Advanced Research (IFCPAR) under research contract No. 2900-IT.

1ECE Department, Indian Institute of Science, Bangalore, INDIA
2Tata Institute of Fundamental Research. Mumbai, INDIA

the distributed computation approach for sensor information
processing.

It is assumed that time is slotted and the n sensors
are synchronised at slot boundaries. The sensors periodi-
cally (at some multiple of the slot time) sample the envi-
ronment variable, e.g., temperature. At sampling instant k
each sensor measures a value, yielding a vector of values
(v1(k), v2(k), · · · , vn(k)). The objective is to collaboratively
compute and deliver max{v1(k), v2(k), · · · , vn(k)} to an op-
erator station, for each such vector of sampled values. See
[3] where the need for a distributed maximum computation
arises as a part of a distributed self-tuning algorithm for
the optimal operation of a sensor network. If the sensors
calculate the local maxima while routing the values to the
operator station, we can reduce the traffic in the network
and thereby increase the network lifetime. In case of the
function max, this is possible because the maximum function
is insensitive to the order of computation and can be calcu-
lated recursively by using partial results obtained by using
subsets of the data, i.e., max{a, b, c, d, e} can be calculated
as max{max{a, b}, max{c, max{d, e}}}. This means that the
function max can be expressed as compositions of itself.

We adopt the message passing distributed computing model.
The sensors communicate by sending packets to each other
and then performing computations based on the received data
and the partial results they have. When successive results for
several sampled values need to be computed then separate
pipelined computations are performed for each vector of
sampled values. Thus we do not exploit block computation,
as has been done in [2].

The computation algorithms we consider differ in the way
the computations are organised, and hence in the message
transmissions that are required to carry out the task. For
our underlying assumptions, we provide, for the number of
nodes, n, becoming large, optimal scaling results (i.e., the best
possible time and energy scaling with the number of nodes),
and also the performance of some candidate computation
algorithms, thus identifying the best among these.

The following is a summary of our contributions in this
paper: All our results are of the nature of providing asymptotic
scaling laws (that hold in the “in probability” sense) as the
number of nodes n → ∞. Assuming that the transmission

range r(n) scales as Θ(
√

log n
n

), we establish that the time
required for one computation (e.g., initiated by a query) by
an optimal algorithm is Θ

(

√

n
log n

)

. The minimum energy

expended in the network during a computation is Θ(n), and
the maximum achievable rate of pipelined computations is
Θ
(

1
log n

)

. All these orders are tight bounds in the sense

that there exist (centralized) algorithms that achieve these
orders. We also obtain scaling laws for the computation
time and energy expenditure of the tree algorithm, multihop
transmission, and the ripple algorithm, and we conclude that
among these the tree algorithm is the best in terms of time and
energy complexity. All these analyses assume a centralized,
collision-free medium access scheduler. Thus these orders can
be viewed as lower bounds when some practical distributed
medium access protocol is implemented.

The work we report in this paper is closely related to the
one presented in [2]. We will discuss the relationships after
formally presenting our model in Section II. We will then
discuss some background results in Section III. In Section IV,
we obtain the optimal order expressions for the performance
measures. The performance of some algorithms is analyzed in
Section V. Simulation results are presented in Section VI. We
conclude the paper in Section VII.

II. THE MODEL AND PERFORMANCE MEASURES

We consider n sensors deployed in a circular field. A
sensor located at the coordinate X measures the value of
some spatial function (say, temperature) f(X). We assume
that the measurements are exact, i.e., the errors due to noise or
quantization are not considered. We are interested in obtaining
the maximum of the measured values and communicating the
maximum to an operator station located at the centre of the
field.
Sensor Network Model: The two dimensional field in which
the n sensors are located is denoted by A. The sensor network
is characterized by an indexed set of sensors locations S;
sensor i has location Xi, Xi ∈ A, 1 ≤ i ≤ n. Thus, the
network S is a random vector (X1, . . . ,Xn) ∈ An where
Xis are i.i.d. random variables with uniform distribution over
A. The random experiment of deploying a network of sensors
is characterized by the probability space Σn := (An,Fn, P n)
where An is the sample space, Fn is the event space (a Borel
field) and P n is the probability measure. We index the whole
experiment by n, the number of nodes deployed in the field.
As n increases, we get a sequence of experiments. We wish to
study asymptotics of certain performance measures as n → ∞.

All radio communication is over a common channel and any
radio transceiver can either transmit or receive at a time. The
transmission range of the sensors is fixed for fixed n and is
denoted by r(n). If any two sensors are within a distance r(n)
of each other then there is a bidirectional link between them.
Thus, the neighbours of a node are nodes within a distance
r(n) from that node. The form of r(n) we use is motivated
by the results of [5] (see Lemma 3.1).

Definition 2.1: Given a network realisation S, the graph
G(S) is a random graph formed by the n nodes at the locations
defined by S, and links joining the nodes that are separated
by a distance not greater than r(n). 2

Interference Model: Let |Xi − Xj | denote the Euclidean
distance between the nodes i and j. We adopt the protocol
model which defines the interference constraints as follows.

Definition 2.2 (Gupta and Kumar [6]): Protocol Model of
Interference: When node i transmits to node j (i.e., i → j),
then the transmission is successful if

1) |Xi −Xj | ≤ r(n)
2) For every node k that transmits simultaneously, |Xk −

Xj | ≥ (1 + ∆)r(n) for some fixed ∆ > 0.
2

Distributed Computation Model: We work with the model
of message passing distributed computation. Nodes explicitly
send packets to each other, and do not exploit any extra
information available on the wireless medium by way of
listening to the other nodes’ transmissions or to collisions.
Nodes draw inference based on only the packets that are
explicitly sent to them. This necessitates that to complete
a computation, each node must influence the computation.
As an example, if there are three sensors with values a, b,
and c, such that a > b > c, the broadcast of the largest
value a suffices to complete the computation. However, in the
message passing model, unless the operator station hears at
least once from all the nodes it is unable to conclude that the
computation is complete. Note that this does not imply that
the operator station must explicitly receive each value, only
that the computation it receives must have been influenced by
every sensor’s value. Further, the computation of the maximum
for each set of measured values is carried out separately, and
block computation is not exploited as in [2].

Formally, suppose that the result delivered to the oper-
ator station is y = max S, and is obtained as y =
max{y1, y2, · · · , ym}, with yi = max Si, where, for 1 ≤ i ≤
m, Si ⊂ S. Now even though y = yj for some j, 1 ≤ j ≤ m
(i.e., the maximum is determined by the subset of sensors Sj),
we require that every node k, 1 ≤ k ≤ n, belongs to some set
Si, 1 ≤ i ≤ m, in the final computation. We will then say that
every node has had influence on the computation. This implies
that every node must transmit at least once in order to have
influence on the result.

Further, we define N (k)
j , the k hop neighborhood of node

j as follows. Let N denote the set of n nodes. N (0)
j :=

{j}; N (1)
j := {i ∈ N : |Xi − Xj | ≤ r(n)} ; N (k)

j :=

{i ∈ N : |Xi − Xl| ≤ r(n), l ∈ N (k−1)
j }. We note that from

the beginning of the slot in which node j first transmits its
value, it takes at least k hops until the computations in the set
N (k)

j −N (k−1)
j are influenced by the value of node j, i.e., in

each slot the influence of node j can spread by at most one
hop.

A computation algorithm defines the sequence of message
passing transactions, between specified transmitter-receiver
pairs, that leads to the function being computed and the results
delivered to the operator station. A computation algorithm may
have associated with it a subgraph of G(S) such that only the
links in this subgraph are activated. For example, in a tree
algorithm (see Section V) a tree subgraph of G(S) is defined
and only the links in this tree are activated, progressing from
the leaves up to the root.

Recently Giridhar and Kumar have addressed the problem of
distributed computation (or data fusion) in [2]. The functions
they consider are symmetric1. They prove a Ω

(

1
log n

)

lower
bound on the rate of pipelined computation of symmetric
functions in a random planar network. For an upper bound
on the rate, the symmetric functions are divided into two
subclasses viz. type-sensitive functions and type-threshold

1A function is said to be symmetric if the function value is insensitive to
the order in which data is processed or to the identity of node that measures
the data.

functions2. For type-sensitive functions the upper bound on rate
is shown to be O

(

1
log n

)

in a random planar network; whereas
for type-threshold functions the upper bound is shown to be
O
(

1
log log n

)

. In our work, reported here, we have considered
the max function and we find the achievable maximum rate
to be Θ

(

1
log n

)

. Thus the upper bound on the achievable
computation rate that we obtain is lower. This is because
our message passing computation model does not maximally
utilize the information available by virtue of the radio being a
broadcast medium, and we do not exploit techniques such as
block coding across measurements.
Scheduling Assumptions: A synchronised time slotted system
is assumed, with a packet transmission between any pair of
nodes requiring one slot. For the purpose of obtaining our
scaling results, we assume perfect scheduling of transmissions,
i.e., in every slot certain links are scheduled and these
transmissions are guaranteed to succeed. The perfect scheduler
has a set of maximal activation sets, i.e., a set of transmitter-
receiver pairs which can communicate simultaneously without
violating the interference constraints. The activation sets that
are scheduled are maximal in the sense that addition of
any transmitter-receiver pair in such a set will violate the
interference constraints. Also, the perfect scheduler is assumed
to be optimal in the sense that given the node placements
and the set of transmissions to be activated, it chooses the
activation sets resulting in the minimum number of slots.
Owing to these assumptions, our scaling laws should be
viewed as lower bounds on what is practically achievable.
Computation and Scheduling Interaction: The computation
progresses in stages, each stage requiring the transmission
of messages from certain transmitters to designated receivers
(including, possibly, broadcast to a set of receivers in the
neighbourhood of each transmitter). Given the transmissions
to be scheduled at each stage, the scheduler provides a
deterministic sequence of maximal activation sets that need
to be activated in the successive slots in order to complete
this stage of computation. After the completion of a stage in
the computation, the computation algorithm defines the next
set of transmissions to be scheduled.

For example, in the Tree algorithm (see Section V), each
stage corresponds to activation of links at one level in the tree.
When a stage of computation involves one transmission from
every node, we call such a stage a round. Note that since
a computation algorithm requires each node to transmit its
measured value at least once, a computation involves at least
one round.
Energy Expenditure Model: We consider the following
components of energy expenditure per packet transmission
and reception. Exmit−radio: the transmit energy radiated. Thus
Exmit−radio = α dη , where d is the distance between the
transmitter and the receiver, η is the path loss exponent
(2 ≤ η ≤ 4), and α is the energy corresponding to the
received power level at the receiver required for successful
reception in the presence of receiver noise (also sometimes
called the receiver sensitivity). Exmit−pkt: Energy required in
the transmitter’s electronics to transmit a packet. Ereceive−pkt :

2Informally, type-sensitive functions are those which require almost the
entire data for computation, e.g., the mean value of the measurements. On
the other hand type-threshold functions can be computed with some part of
the measurements, i.e., the entire data is not required for computation, e.g.,
an indicator function.

Energy required in the receiver’s electronics to receive a
packet. Eproc−pkt: Energy required by the on-board computer
to perform the computational task triggered by a received
packet.
Performance Measures: For a given node placement S, a
computation algorithm will result in the maximum being
computed in some number of slots. We denote the time
required to complete the computation by an optimal scheduler
by Γ(S). Thus, for a given computation algorithm, Γ is a
random variable over Σn which takes a specific value for
every realization of S. Also the node placement S and the
computation algorithm (along with the centralised schedule)
determine the number of transmissions and receptions by each
node; and thereby the total energy spent. Let E(S) be the total
energy spent in the network while performing one computation
and E denote the random variable over Σn, akin to Γ.

III. BACKGROUND RESULTS

The presentation of these results is interspersed with re-
marks about the intuition behind them. In writing these
remarks we use the notation Θ(·) loosely; it only means “of
the order,” the “in probability” qualification being implied.
Bounds on the number of hops in the shortest path:
Consider a network realization S and consider all the pairs
of points in the field A separated by a distance d; these points
need not be locations of nodes. If a node at one such point were
to communicate with a node at the other point at a distance
d, the packets will be transmitted along a multihop path using
some intermediate nodes. The number of hops in the shortest
path joining these points and using the intermediate nodes
and links in G(S) will be finite and will depend on the
distance d. We define H(d) (H(d), resp.) as the supremum
(infimum, resp.) over the number of hops in the shortest paths
connecting all such pairs of points. Thus H(d) and H(d) are
random variables over Σn defined for the distance d. We need
probabilistic bounds on H(d) and H(d) as a function of d and
r(n).

Lemma 3.1: For a circular field of unit radius:
(1) If r(n) =

√

πp2

2
√

p2−4

log n

n
, with p > 2, then

limn→∞ Pn (G is connected) = 1.
(2) In addition

lim
n→∞

Pn

(

d

r(n)
≤ H(d) ≤ H(d) ≤ p

d

r(n)

)

= 1

Remark: This result has the obvious intuition. The transmis-
sion range of a node is r(n). Hence, the number of hops in the
shortest path between any two nodes separated by a distance
d should be Θ

(

d
r(n)

)

.
Proof: The first part follows easily from the results in [5].

The proof of the second part is provided in the Appendix. 2

Corollary 3.1: In a square field of unit area if n nodes are
deployed and r(n) =

√

p2

2
√

p2−4

log n

n
, with p > 2 then the

following hold
(1)

lim
n→∞

Pn (G is connected) = 1

(2)

lim
n→∞

Pn

(

d

r(n)
≤ H(d) ≤ H(d) ≤ p

d

r(n)

)

= 1

2

Remark: In this paper, we have chosen p = 2
√

2, which

implies r(n) =
√

2π log n
n

for a circular field of unit radius.
This choice of form of r(n) is motivated by the necessity to
maximize the spatial reuse in the network while retaining the
connectivity of the network. 2

Bounds on the number of simultaneous transmissions:
Corresponding to every sample point S, and given an r(n),
we have a set of activation sets. We are interested in upper
and lower bounds that uniformly bound the cardinalities of
all the activation sets, i.e., these are bounds on the number
of simultaneous transmissions in the network. We denote the
minimum and maximum of the cardinalities of these activation
sets by γ(S) and γ(S) respectively. The quantities γ and γ
also are random variables that take specific values for a given
network realization.

Lemma 3.2: With the protocol model of interference, and
with perfect scheduling of transmissions, if the transmission

range r(n) =
√

2π log n
n

, there exist some positive constants
a1 and a2 such that

lim
n→∞

Pn

(

a1
n

log n
≤ γ ≤ γ ≤ a2

n

log n

)

= 1

Remark: This is what we would intuitively expect since the
area of the field A divided by π(r(n))2 is of the order n

log n
.

Proof: See the Appendix. 2

Bounds on the time required for a round: Recall the notion
of round from Section II. Though each node transmits once in
a round, the time required to complete a round will depend on
the transmitter-receiver combinations. Let T (S) (T (S), resp)
denote the maximum (minimum, resp.) of the time required to
complete a round, with maximum (minimum, resp.) taken over
all possible transmitter-receiver combinations. We note that
for a given network realization S and optimal link scheduling
algorithm, the bounds T (S) and T (S) are fixed. Thus, T and
T are random variables over Σn.

Lemma 3.3: With the protocol model of interference, with
perfect scheduling of transmissions, and with the transmission

range r(n) =
√

2π log n
n

, the bounds on the time required to

schedule transmission of all the nodes T and T satisfy the
relation

lim
n→∞

Pn

(

π∆2

2
log n ≤ T ≤ T ≤ 8π(1 + µ)(2 + ∆)2 log n

)

= 1

Proof: See the Appendix. 2

Remark: The intuition behind the above two results is the
following. If we assume that the interference is zero outside
the range of the transmitter, i.e., ∆ = 0, then the number
of simultaneous transmissions is equal to the number disjoint
disks of radius r(n). Each disk occupies an area of Θ(πr2(n)).
Hence the number of simultaneous transmissions should be
Θ
(

1
r2(n)

)

= Θ
(

n
log n

)

. This implies that the number of
slots required to schedule all the nodes’ transmissions once
is Θ(log n). 2

Farthest nodes: We will need the following observations.
Lemma 3.4: Consider a square field of unit area. For a given

ε > 0, probability that the farthest node from the center of the
field lies at a distance greater than

(

1√
2
− ε
)

goes to 1 as
n → ∞. 2

�������
�������
�������
�������

�����
�����
�����
�����

�
�
�

��������������������������������������

1

d

Fig. 1. Tessellation to get the bounds on the number of neighbours of a
node. d =

√

K log n

n
where K = 8.

Lemma 3.5: In the circular field of unit radius, for a given
ε > 0, probability that the farthest node from the center of the
field lies least at a distance of 1 − ε goes to 1 as n → ∞. 2

IV. OPTIMAL ORDERS FOR PERFORMANCE MEASURES

In this section, we obtain the optimal order relations for
the performance measures such as computation time, energy
expenditure and the rate (throughput) of maximum calculation.
Initially we shall assume that the field is a square of unit area
and obtain a bound on the computation time. We then extend
this to a circular field.

For computation time and energy expenditure, we shall first
obtain absolute lower bounds in order sense (i.e., we establish
Ω(·) relations). These bounds are absolute in the sense that no
algorithm can do better than these bounds. We then construct
centralized algorithms that achieve the same order as that
of the lower bounds (but with a different leading constant).
This gives an upper bound on computation time and energy
expenditure for an optimal algorithm (i.e., O(·) relation). Thus
we obtain an exact order (i.e., Θ(·) relation) for an optimal
algorithm.
Optimal order for computation time:

Theorem 4.1: If n nodes are uniformly distributed in the
square field of unit area, then there exist positive constants u1
and u2 such that the number of slots required for an optimal
algorithm to calculate the maximum measured value under the
assumption of perfect scheduling obeys the following relation

lim
n→∞

Pn

(

u1

√

n

log n
≤ Γopt ≤ u2

√

n

log n

)

= 1

Remark: Thus we see that the optimum scaling of computation
time Γopt with n is Θ

(

√

n

log n

)

. 2

Proof: We note that for the value which we report as the
maximum value to indeed be maximum value, all the nodes’
values must be considered while calculating the maximum.
Hence, there should be at least one node which has received
all the values or the maximum value computed by this node
has the influence of all the values on it. Probability that
the influence of the farthest node’s value has to propagate a
distance

(

1√
2
− ε
)

goes to 1 as n → ∞ for all ε > 0 (Lemma
3.4). As seen before the influence of a node’s value can
propagate at most one hop in a slot. Hence, the computation
time has to be at least the time taken by the value of the
farthest node to influence the result received by the center.
This gives the lower bound on the computation time that
Γopt ≥ H(dmax). From Lemma 3.1, for ε > 0

lim
n→∞

Pn

(

Γopt ≥
(

1√
2
− ε

)

1

r(n)

)

= 1 (1)

A A A

A A

A B

B

 BB

BB

Fig. 2. The construction for an upper bound on the computation time.

(Here the transmission range r(n) should be considered for
the square field as per Corollary 3.1).

The upper bound on the computation time can be obtained
by giving an actual computation algorithm. We assume ∆ =
0 in obtaining the upper bound on computation time. This
assumption does not affect the order of the computation time.
(See Remarks 4.1.) Here we consider a centralized algorithm
and obtain its computation time. The computation time of an
optimal algorithm will be less than this time.

We divide the field into the square cells of size
√

K log n
n

where K = 8; see Figure 1. The number of cells in the field
Mn = n

K log n
. We need an upper bound on the number of

nodes falling in a cell. Xue and Kumar in [7] have given a
bound (see Theorem 8.1 in the Appendix) that for K > 1

log 4
e

,
if a square field of unit area is tessellated into square cells

by a grid of size
√

K log n
n

, where n is the number of nodes
uniformly deployed in the field then the probability that the
number of nodes falling in a cell is bounded by (1−µ)K log n
and (1+µ)K log n goes 1 as n → ∞ (here µ ∈ (0, 1) satisfies
some conditions). We note that the average number of nodes in
a cell is K log n and µ captures the variation. Since in our case,
K = 8 > 1

log 4
e

, the result applies. Hence, with probability 1,
the number of nodes in a cell is bounded by (1 + µ)K log n.

Now, we draw circles as shown in the left part of Figure 2.
Type A and B circles together cover the whole area. Also,

Pn (Number of nodes in any circle ≤ (1 + µ)K log n)

≥ Pn(Number of nodes in any cell ≤ (1 + µ)K log n)

= 1 as n → ∞
Hence,

lim
n→∞

Pn(Number of nodes in any circle ≤ (1+µ)K log n) = 1

We elect the node which is nearest to the center of the circle
as the cluster-head. All nodes in type A circles form clusters
and the nodes in type B circles that do not lie in the type
A circles form clusters. Type B cluster-heads actually cover
smaller area.

It can be shown similar to the Lemma 3.4 that the proba-
bility that the cluster-head lies in the circle of radius ε at the
center of the circle goes to 1 as n → ∞ for all values of ε
and hence for the case when ε → 0.

Hence, all nodes within a circle can reach their cluster-heads
in one hop. Since we have assumed zero interference outside
the range (See Remarks 4.1), non overlapping circles can have
simultaneous transmissions. This means all type A clusters can
have one transmission in each cluster simultaneously. After
type A cluster-heads have received the values from the cluster

members (which will take at most (1 + µ)K log n slots), the
same procedure can be repeated for the type B clusters. Hence,
the cluster-heads will get all the values in their clusters in less
than 2(1+µ)K log n, considering both type A and B clusters.

Now, we have to consider only the cluster-heads. The type
A cluster-heads will report their values to the type B cluster-
heads as shown in the right side of Figure 2. Each cluster-head
has to send the value to a node which is at a distance

√
2r(n)

apart. Hence, the path will have ≤ 4 hops high probability as
n → ∞ (Lemma 3.1). Thus it will require at most 16 slots.
Note that all type B cluster-heads are 2r(n) apart. Hence there
is no interference and all the assigned type B cluster-heads can
receive simultaneously.

Now only type B cluster-heads are remaining. They are
aligned in the straight lines. The type B cluster-heads which
are near the left and right edge transmit their values towards
the central part (of the line) horizontally. As the values
reach other cluster-heads in the path, the new maximum
value is propagated ahead. These transmissions can occur
simultaneously as the paths are confined in the rectangles
(Lemma 3.1), and the minimum distance between any two
rectangles is 2r(n) − 2 r(n)

2
√

2
> r(n). Hence there is no

interference.
Since the range is r(n) and the values have to propagate

a distance 1/2 units, the probability that the time required for
the propagation ≤ 2

√
2

2r(n) slots approaches 1 as n → ∞.
Once these values merge on the central vertical line, the

same procedure can be used to get all the values at the center.
Considering that the probability of occurrence of all the events
approaches 1 as n → ∞ we can say that

lim
n→∞

Pn

(

Γopt ≤ 2(1 + µ)K log n + 16 +

√
2

r(n)
+

√
2

r(n)

)

= 1

lim
n→∞

Pn

(

Γopt ≤ 16(1 + µ) log n + 16 + 2

√

n

log n

)

= 1 (2)

From Equations 1 and 2,

lim
n→∞

Pn

((

1√
2
− ε

)
√

n

2 log n
≤ Γopt

≤ 16(1 + µ) log n + 16 + 2

√

n

log n

)

= 1

2

Remarks 4.1: 1) The assumption of ∆ = 0 is to simplify
the presentation, and does not change the order of the
computation time. If ∆ > 0, then the transmissions in a
Type A cluster will interfere with some constant number
of other type A clusters and this constant depends only
on ∆. Thus, in this case, all the type A clusters can be
activated in a constant number of slots (which depends
only on ∆), rather than in 1 slot as assumed in the proof.
Thus, we obtain the same scaling order even if ∆ > 0.

2) Intuition about the log n term in the upper bound
expression can be obtained as follows. Since we form
clusters of nodes that are one hop neighbours of the
cluster-heads, the number of cluster members is the
number of nodes that lie in a circle of radius r(n)
drawn around the cluster-head. The node density is
n
π

. Hence, the number of cluster members would be
Θ(πr2(n)n

π
) = Θ(log n). Only one node in a cluster

can transmit in a slot; hence Θ(log n) slots are needed
to complete the collection of values from a cluster. The
clusterheads need to transmit the values to the operator
station. Since the clusterheads are sparsely distributed,
simultaneous transmissions are possible and value of the
farthest clusterhead needs to travel unit distance which
requires Θ(1

r(n)) slots.
3) The above result can be very easily extended to the

circular field. We skip the proof and state the result as
a corollary. 2

Corollary 4.1: If n nodes are uniformly distributed in a
circular field of unit radius, then there exist positive constants
v1 and v2 such that the number of slots required for an optimal
algorithm to calculate the maximum measured value under the
assumption of perfect scheduling obeys the following relation

lim
n→∞

Pn

(

v1

√

n

log n
≤ Γopt ≤ v2

√

n

log n

)

2

Optimal Order for Energy Expenditure:
Theorem 4.2: If n nodes are uniformly distributed in a

circular field of unit radius, then the total energy expenditure in
the network by an optimal algorithm to calculate the maximum
measured value, under the assumption of perfect scheduling,
is Θ(n).

Proof: In any algorithm, every node has to transmit at
least once and at least to its one hop neighbour. Similarly,
every transmission must be received. The number of compar-
isons required can vary depending on how many values we
report to the operator station which will be compared at the
operator station. Hence, we get a lower bound as

Eopt ≥ n(Exmit−radio + Exmit−pkt + Ereceive−pkt)

We shall see that the tree algorithm (see Section V) has energy
expenditure

ETree = n(Exmit−radio+Exmit−pkt+Ereceive−pkt+Eproc−pkt)

An optimal algorithm will have energy expenditure at most
equal to the tree algorithm. Hence,

Eopt ≤ n(Exmit−radio+Exmit−pkt+Ereceive−pkt+Eproc−pkt)

Hence, E = Θ(n) for all n. 2

Optimal Order for the Achievable Pipelined Throughput:
The network normally will perform the computations contin-
uously. This can be viewed as a complex queueing system in
which a batch of measurements arrives at sampling instants
in the sampling buffers of the nodes with the arrival rate
of the batches being equal to the sampling rate. The batch
leaves the system when corresponding maximum computation
is over. The computations are pipelined in the network. It is
of interest to obtain the saturation throughput of this system,
which will dictate the permissible sampling rate of the sensors.
That is, our interest is to characterize the interdeparture time of
the batches of the measurements when the nodes are infinite.
We denote this inter-departure time (also called as pipelined
computation time) by Γpipeline(S). Γpipeline is a random
variable over Σn.

We derive the result for the square field of unit area (with
the transmission range modified as per Corollary 3.1) and then
the result for the circular field A follows.

Theorem 4.3: If n nodes are uniformly distributed in a
square field of unit area, then there exist positive constants w1

log n Columns log n Columns

1 2 2 1

Fig. 3. Transmission scheme for an upper bound on the pipelined
computation time. First the computation is done in the leftmost and rightmost
log n columns (marked with 1), and then in the next set of log n columns
(marked with 2), and so on.

and w2 such that the number of slots required for an optimal
algorithm to continuously compute the maximum measured
value under the assumption of perfect scheduling obeys the
following relation

lim
n→∞

Pn (w1 log n < Γpipeline < w2 log n) = 1

Proof: In the message passing paradigm (see II), each
node has to transmit at least once to complete a computation.
From Lemma 3.1, we know that the time required to schedule
a round in a square field is lower bounded as

T >
∆2

2
log n

This gives the following lower bound on pipelined computa-
tion time Γpipeline

Pn

(

Γpipeline >
∆2

2
log n

)

= 1 for all n

An upper bound on the pipelined computation time required
for an optimal algorithm can be obtained by actually construct-
ing a computation scheme. Here we follow the scheme used
to obtain the upper bound on the computation time, where the

field is tessellated in the small cells of size
√

K log n
n

with
K = 8 and the nodes are divided into type A and B clusters.
The transmission schedule is as follows. First, the nodes in
the rightmost and leftmost log n columns of type A clusters
transmit their values to their respective cluster heads (these
columns are marked as 1 in the Figure 3). Different type A
clusters can have simultaneous transmissions. Since there is
no spatial reuse within a cluster and the number of cluster
members is bounded , this will take at most (1 + µ)K log n
slots with high probability as n → ∞ (see [7]).
Next, these type A cluster heads transmit the effective maxi-
mum values to the nearest type B cluster heads that are towards
the central region. Each value has to travel

√
2r(n) units which

require at most 4 slots. Since, the adjacent type A cluster-
heads cannot transmit simultaneously, this requires at most
8(= 4 + 4) slots. In the next (1 + µ)K log n slots these log n
columns of type B cluster-heads collect the values from their
cluster members and compute the effective maximum value.

These maximum values are propagated horizontally to the next
type B cluster heads located at a distance of 2 lognr(n) from
the farthest of the log n type B cluster-heads. This requires
< 4

√
2 log n slots with high probability as n → ∞. (Lemma

3.1).
Thus after 2(1 + µ)K log n + 8 + 4

√
2 log n slots, the first

measurements in the leftmost and rightmost log n columns
have been transported outside the leftmost and rightmost
columns and now are nearer to the central region. Now the
log n type A clusters that are adjacent to the first batch of
type A clusters (marked as 2 in Figure 3), can collect their
first measurements whereas the rightmost and leftmost log n
type A cluster-heads (marked as 1 in Figure 3) can collect the
second measurements.
Thus, in steady state, when the leftmost log n columns are
computing with their mth measurements, the next set of log n
columns to the right are computing with their (m − 1)th

measurements and so on. These measurements, propagating
horizontally with the time lag of 2(1 + µ)K log n + 8 +
4
√

2 log n slots are collected at type B cluster-heads located
along the central vertical line. These values should propa-
gate vertically towards the operator station. However, due to
interference constraints the transmissions along the vertical
and horizontal directions are not possible simultaneously.
Hence additional 4

√
2 log n slots are required for this vertical

propagation of length 2r(n) log n. Thus the results of the
successive batches of the measurements arrive at the operator
station with the lag of at most 2(1+µ)K log n+8+8

√
2 log n.

Thus

lim
n→∞

Pn
(

Γpipeline < 2(1 + µ)K log n + 8 + 8
√

2
)

= 1

Defining K ′ appropriately, we have

lim
n→∞

Pn
(

Γpipeline < K′ log n
)

= 1

This completes the proof. 2

Remarks 4.2: 1) In at most K ′ log n slots, the measure-
ments have propagated by a distance of 2r(n) log n . The
total distance to travel is 1 unit (1

2 units in horizontal and
vertical directions respectively). This requires at most
K′ log n 1

2r(n) log n
= K′

2r(n)
= K′′

√

n

log n
slots. Thus, the

sojourn time of a batch in this algorithm also is of the
order 1

r(n) , same as that of the computation time.
2) A very similar result can be established for the circular

field also. This result means that the throughput of the
pipelined computations scales as Θ

(

1
log n

)

. We note that
this is also the round rate for scheduling n nodes.

3) This result can also be independently obtained as a
consequence of Theorem 2 in [2]. 2

V. PERFORMANCE OF SPECIFIC PROTOCOLS WITH
PERFECT SCHEDULING

We analyze the performance of some computation algo-
rithms in this section. Let the distance of a node from the
centre of the field be denoted by a random variable D. In the
accompanying analysis we will need the probability density
function f(·) of D. For a circular field of unit radius, this is
easily seen to be f(s) = 2s, 0 ≤ s ≤ 1 (To see this, note that
F (s) = πs2

π.12 and hence f(s)ds = 2πsds
π

= 2sds).

In this section, we will provide the scaling results and the
intuition behind them. The detailed proofs are omitted, and
can be found in [4].
Tree Algorithm: The sensors form a spanning tree with the
operator station as the root of the tree. Here the children of a
sensor are amongst its one hop neighbours. Each sensor gets
values from its children, compares with its own value and
forwards only the maximum value to its parent. So, for each
maximum computation each sensor transmits only once. The
slowest computation will be over a tree that is a string. For
fast computation, we need a shallow tree. Hence, we take all
the neighbours of the operator station as its children.

We also note that the nodes with different parents are
not assured to have simultaneous transmissions. Simultaneous
transmissions occur only if the nodes have different parents
and the interference constraints are met.

The following result provides the asymptotic order for
the computation time and energy expenditure for maximum
computation over a tree. The number of hops required for the
farthest node to reach the centre is nothing but the depth of
the tree. From Lemma 3.1, we know upper and lower bounds
on the number of hops. We analyse ΓTree in both the cases
which combined together provide the displayed result.

Proposition 5.1: For the tree algorithm, if n sensors are
distributed uniformly over a circular field of unit radius, then
there exist positive constants a1, b1 and b2 such that the energy
expenditure E and the computation time Γ required to compute
the maximum of the measured values satisfy the relations.

ETree = a1n asn → ∞
lim

n→∞
Pn
(

b1

√

n log n ≤ ΓTree ≤ b2

√

n logn
)

= 1

2

Remark: The following is the intuition for the above result. In
the tree algorithm every node transmits only once. There are
n transmissions, n receptions and n comparisons. Hence the
energy expenditure is Θ(n). For computation time we know
that the number of hops between the farthest node and the
operator station is of the order 1

r(n) . It can be shown ([4])
that the time required to schedule the nodes at a level is of
the order log n. Hence the computation time is of the order

1
r(n) log n, i.e.

√
n log n. This is because the nodes at a level

cannot be scheduled before all the descendant nodes of this
level are scheduled.
Multi-Hop Transmission: n this computation algorithm the
value of each node is transported via multihop transmissions
to the operator station. No computations are performed at the
intermediate nodes. Each transmission follows a shortest path
from a node to the operator station. Thus, this computation
algorithm also basically involves a tree rooted at the operator
station.

We recall that the transmission range r(n) =

√

2π log n

n
. Let

H(d) denote the random variable denoting the number of hops
in the shortest path from a node at a distance d from the centre
to the operator station. From Lemma 3.1, if a node is at a
distance s from the center of the field, then

lim
n→∞

Pn

(

s

r(n)
≤ H(s) ≤ H(s) ≤ 2

√
2s

r(n)

)

= 1

where H(s) and H(s) are lower and upper bounds the number
of hops in the shortest path from that node to the operator

station. We define

Ehop := Exmit−pkt + Exmit−radio + Ereceive−pkt

where, Exmit−radio = α

(

√

2π log n
n

)η

The average energy spent in the node’s transmission to the
operator station is calculated as follows

E(H(D).Ehop) = Ehop

∫ 1

0

E(H(s)) 2sds (3)

From the definition of H(s) and H(s), it follows that

E(H(s)) ≤ E(H(s)) ≤ E
(

H(s)
)

Consider

E(H(s)) ≥ E

(

H(s).I{H(s)≥ s
r(n)

}
)

≥ s

r(n)
.Pn

(

H(s) ≥ s

r(n)

)

where I{·} is and indicator function. Now consider

E

(

H(s)
)

= E

(

H(s).I
{H(s)≤ 2

√
2s

r(n)
}

)

+ E

(

H(s).I
{H(s)> 2

√
2s

r(n)
}

)

≤ 2
√

2s

r(n)
Pn

(

H(s) ≤ 2
√

2s

r(n)

)

+ nPn

(

H(s) >
2
√

2s

r(n)

)

The above equation uses the fact that the maximum number of
hops in any shortest path cannot be more than n, the number
of nodes. It has been shown in [4] that Pn

(

H(s) > 2
√

2s
r(n)

)

=

O
(

1
n

)

. Hence

s

r(n)
Pn

(

H(s) ≥ s

r(n)

)

≤ E(H(s)) ≤ 2
√

2s

r(n)
Pn

(

H(s) ≤ 2
√

2s

r(n)

)

+ xn

where xn = O(1). Hence as n → ∞, E(H(s)) = Θ
(

s
r(n)

)

.
Thus substituting in Equation 3 and simplifying, we get
E(E) = Θ

(

1
r(n)

)

. This gives the total energy, as n → ∞,
as

E(EMulti−Hop) = nE(E) = Θ

(

n

r(n)

)

= Θ

(

n

√

n

log n

)

We now obtain bounds on the computation time
ΓMulti−Hop. Each sensor sends its value to the operator
station via the shortest path. These paths can be found by
constructing a breadth first tree with operator station as
root. The transmissions can then be viewed in the form of
tree as in the tree algorithm but with the difference that the
values do not merge. Computation is complete when all the n
measurements are received at the operator station. Since, the
operator station can receive at most one packet in a slot, it
will take at least n slots to complete the computation. Thus,
we get the obvious lower bound on the computation time as

ΓMulti−Hop ≥ n for all n

We now obtain an upper bound. The computation algorithm
progresses in stages. In each stage, all nodes that have packets
to send to the operator station transmit one packet to their

parents in the tree. Thus in the first stage, all the nodes
transmit. Let the number of neighbours of the operator station
be n0. (n0 is a random variable defined over Σn that takes
specific value for each network realisation.) Then in the first
round the operator station receives n0 new values; these are
the values of its neighbours. In the next stage, the leaf nodes
have no packets, but the next level of nodes will have one
or more packets. During this stage again, the operator station
receives n0 new values. Then the number of stages are n

n0
and

the number of slots required for each stage is bounded by the
number of slots required for a full round which is provided
by Lemma 3.3. Note that all the nodes do not transmit in all
the stages.

It can be shown that the number of neighbours of the
operator station is of the order log n. More precisely it can
be shown that ([4])

lim
n→∞

Pn(π log n < n0 < 3π log n) = 1 (4)

Thus using Lemma 3.3 and Equation 4, we get bounds on
the computation time as

lim
n→∞

Pn(
∆2

6
n < ΓMulti−Hop < 8(1 + µ)(2 + ∆)n) = 1

We summarize the above results as follows.
Proposition 5.2: For multi-hop transmission, as n → ∞

E(EMulti−Hop) = Θ

(

n

√

n

log n

)

and there exists a positive constant d1 such that the compu-
tation time ΓMulti−Hop required to compute the maximum
satisfies the relation.

lim
n→∞

Pn (n ≤ ΓMulti−Hop ≤ d1n) = 1

2

Remark: Here is the main intuition behind the arguments
leading to the result. We know that the time required to
schedule the transmissions in an area is of the order n

1

r2(n)

,

i.e., log n. After each round, the operator station receives one
value from each of its one hop neighbours, the number of
which is of the order nr2(n), i.e., log n. Hence the number
of rounds required is of the order n

log n
. This shows that the

computation time is of the order n. For, energy expenditure,
we notice that each node induces on an average Θ

(

1
r(n)

)

transmissions. Each transmission requires fixed energy. Hence,
the energy expenditure is of the order n

r(n) , i.e., n
√

n
log n

. 2

Ripple Algorithm: In this algorithm, sensors keep on ex-
changing their current estimates of the maximum values and
eventually all the sensors know the maximum value. The
transmissions take place in stages that are rounds as defined
in Section II. In a round, every node transmits its current
estimate of the maximum value, receives the estimates from its
neighbours and then updates its own estimate of the maximum
value at the end of the round. We note that the values of all
the sensors propagates one hop distance in every round, like
a ripple. Hence, once the influence of the value of the farthest
node reaches the centre, the computation is over. We need

not continue till all the nodes know the actual maximum. The
probability that the farthest node has a distance of (1−ε) unit,
for a given ε > 0, from the centre approaches 1 as n → ∞
(Lemma 3.5). In Lemma 3.3, we have obtained bounds on
the number of slots required to schedule a round. Since any
node’s value propagates by one hop in a round, the number
of rounds required to complete the computation is calculated
using Lemma 3.1,

lim
n→∞

Pn

(

(1 − ε)√
2π

√

n

log n
≤ number of rounds (5)

≤ 2√
π

√

n

log n

)

= 1

This combined with Lemma 3.3 gives bounds on the compu-
tation time

lim
n→∞

Pn

(√
π∆2

2
√

2

√

n log n ≤ ΓRipple

≤ 16
√

π(1 + µ)(2 + ∆/2)
√

n log n
)

= 1

To calculate the energy expenditure, we need to know
bounds on the number of neighbours. For this we use the
result from [7] to bound the number of neighbours.

In each round, every node broadcasts its current maximum
value and receives its neighbours’ values. It calculates the new
maximum value and broadcasts it in the next round, i.e., only
after it has got values from all neighbours. So, in a round
each node has one transmission and receives and compares its
neighbours’ values to compute the current maximum. To find
the maximum of m values, we need (m − 1) computations.
If Ni is the number of neighbours of node i, then node i
compares (Ni + 1) values (neighbours’ values and its own
value). Hence, node i does Ni computations in each round.

The energy spent by node i in a round,

Ei = Exmit−radio+Exmit−pkt+Ni.Ereceive−pkt+Ni.Eproc−pkt

where, Exmit−radio = α

(

√

2π log n
n

)η

. Let Exmitter :=

Exmit−radio + Exmit−pkt and Ereceiver := Ereceive−pkt +
Eproc−pkt.

From the bound on the number of neighbours from [7] (see
Theorem 8.1 in Appendix), we obtain the following result for
Ei

lim
n→∞

Pn
(

Exmitter + (1 − µ)2π2 log n(Ereceiver) ≤

Ei ≤ Exmitter + (1 + µ)2π2 log n(Ereceiver)
)

= 1

where µ satisfies the condition given in [7]. This equation
combined with the Equation 6 gives the bounds on Ei for any
i which in turn gives the bound on E(S)

lim
n→∞

Pn

(

(1 − ε)
√

2π
n

√

n

log n

(

Exmitter + (1 − µ)2π
2

log n.(Ereceiver)

)

≤

ERipple ≤
2

√
π

n

√

n

log n

(

Exmitter + (1 + µ)2π
2

log n.(Ereceiver)

)

)

= 1

We summarize the above results as a proposition.

TABLE I
ORDER EXPRESSIONS FOR ENERGY EXPENDITURE AND COMPUTATION

TIME FOR VARIOUS PROTOCOLS

Algorithm Energy Expenditure Computation Time

Optimum Algorithms Θ (n) Θ

(

√

n
log n

)

Multi-hop transmission Θ

(

n
√

n
log n

)

Θ(n)

Tree Algorithm Θ(n) Θ(
√

n log n)

Ripple Algorithm Θ(n
√

n log n) Θ(
√

n log n)

Proposition 5.3: For the ripple algorithm, if n sensors are
distributed uniformly over a field of unit radius, then there
exist positive constants k1, k2, l1 and l2 such that the energy
expenditure E(S) and the computation time Γ(S) required to
compute the maximum satisfy the relation.

lim
n→∞

Pn
(

k1n
√

nlogn ≤ ERipple ≤ k2n
√

nlog n
)

= 1

lim
n→∞

Pn
(

l1
√

n logn ≤ ΓRipple ≤ l2
√

n logn
)

= 1

2

Remark: The following is the intuition behind the arguments
leading to the above result. We know that the number of
slots required to schedule the transmissions in an area is of
the order n

1

r2(n)

, i.e., log n. After each round, the values can

influence the estimates of nodes at one hop. The number of
hops between the farthest node and the operator station are
of the order 1

r(n) . Hence the rounds required are of the order
1

r(n) . This shows that the computation time is of the order
1

r(n) log n, i.e.
√

n log n. For energy expenditure, we notice
that for each node in each round there is one transmission and
Θ(log n) receptions. As n → ∞, the energy spent in reception
is dominant over that of radio transmissions. Hence, the energy
expenditure of the network is of the order n log n 1

r(n) , i.e.,
n
√

nlog n.

VI. SIMULATION RESULTS

Table I summarizes the order expressions obtained in the
previous section for all the algorithms. However, the constants
multiplying these expressions are not known. In this section
we validate these order results from a simulation, and as a
by-product also obtain estimates of the constants.

The simulations are conducted as follows.
1) For the tree algorithm, we build a breadth first tree

rooted at the operator station. To calculate the compu-
tation time, we schedule the nodes at the same levels
by building activation sets. We use the protocol model
for interference. The schedule is suboptimal as we
ensure that the transmissions are successful irrespective
of the location of the receivers, i.e., all the transmitters
are at least (2 + ∆)r(n) distance apart from any
other transmitter. We start from the leaf level and
go on scheduling the nodes up the tree. This gives
the computation time. Since, each node has only one

fixed energy transmission, the energy can be readily
calculated.

2) For multi-hop transmissions, the breadth first tree used
in the tree algorithm gives the shortest path to the root
for each node. We note that all nodes do not always
have packets to transmit. Hence, while scheduling, we
consider only those nodes which have packets to send.
The transmissions are carried on until all the n values
reach the operator station. This gives the computation
time. Each transmission requires fixed energy. Hence
the total number of transmissions give the total energy
expenditure.

3) In the ripple algorithm, we have rounds in which each
node transmits once. We schedule all the nodes using
activation sets as before. In a round, each node has one
transmission and as many receptions as the number of
its neighbours. This gives the round time and energy
per round which are the same for all rounds. Since
the number of rounds required is the number of hops
required for the farthest node to reach the operator
station, the depth of the tree is the number of rounds
required. This gives the total computation time and
energy.

The simulation plots are obtained by taking an average
over ten realizations of the node locations. The parameters
used for the simulations are as follows: Exmit−pkt = 0.25,
Ereceive−pkt = 0.5, Eproc−pkt = 0.00001, ∆ = 0.5,

Exmit−radio = 100r3(n) and r(n) =
√

2π log n
n

. The energy
values can be viewed as scaled versions of practical values.

Suppose G(n) is the value of some performance measure
obtained from the simulation as described above and f(n)
is the scaling law we obtain (e.g., f(n) =

√
n log n for the

computation time for the tree algorithm), then we plot G(n)
f(n) .

The theoretical results suggest the existence of constants a and
a and functions l(n) = o(f(n)) and u(n) = o(f(n)) such that

lim
n→∞

Pn (af(n) + l(n) ≤ G(n) ≤ af(n) + u(n)) = 1

lim
n→∞

Pn

(

a +
l(n)

f(n)
≤ G(n)

f(n)
≤ a +

u(n)

f(n)

)

= 1

lim
n→∞

Pn

(

a ≤ G(n)

f(n)
≤ a

)

= 1

Thus for large n, the values G(n)
f(n) should be confined between

the two limits a and a.
In Figures 4, 5 and 6 we plot the ratios of the observed

computation times and the asymptotic orders for the three
algorithms. The plots show that in each case the interval
within which these ratios should lie appears to collapse to
a constant, an estimate of which is shown by the flat lines.
The computation time has converged in all the cases. The
energy curves in case of Tree and Multi-Hop algorithms have
not converged because for any finite n the Exmit−radio is
finite. Since Exmit−radio decays with n, we observe that
the energy curves are decaying. The energy curve in case
of Ripple algorithm has converged because unlike the other

two algorithm, Ripple has broadcast transmissions. Hence the
total energy spent in reception dominates over Exmit−radio. Of
course, these observations also help to corroborate our scaling
results. In Table II we display the order results along with the
constant multipliers estimated from the simulation.

Figure 7 compares time and energy requirements of all the
three algorithms. From these figures, it is clear that a tree is
the preferable way to arrange the computations in the case of
computing the maximum.

0

0.5

1

1.5

2

2.5

3

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Multi hop Transmissions - Computation Time

th
simulation values

0

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Multi hop Transmissions - Energy per Computation

th
simulation values

Fig. 4. Multihop transmission: (upper panel) Ratio of observed computation
time to the corresponding asymptotic order, and (lower panel) the ratio
of the observed energy expenditure per computation and the corresponding
asymptotic order. The flat lines show the estimate of the constant multiplying
the asymptotic order.

VII. CONCLUSIONS

We have addressed the issue of scheduling the processing
of information, i.e., the sequence of message passing and
computations, in sensor networks. We considered the function
max, and obtained optimal order (in probability) expressions
as functions of n, the number of nodes, for certain performance
measures, namely, computation time, energy expenditure and
the rate of computation. These orders provide measures to
calibrate the performance of any specific algorithm. We then
analyzed some specific computational algorithms and obtained
scaling laws for the computation time and energy expenditure
with these algorithms. We saw that the tree algorithm arranges
the computations most efficiently in terms of computation
delay and energy expenditure.

In the present work we have assumed a scheduler with
global knowledge of the network topology. Hence, the results
can be viewed as bounds on the performance when some
distributed scheduler is implemented. The performance of dis-
tributed computing with a distributed medium access protocol
(such as random access), which does not assume any global

TABLE II
EXPRESSIONS FOR ENERGY EXPENDITURE AND COMPUTATION TIME OBTAINED FROM SIMULATIONS WITH ∆ = 0.5

Algorithm Energy Expenditure Computation Time

Multi-hop transmission 0.24

(

n
√

n
log n

)

1.64(n)

Tree Algorithm 0.75(n) 3.15(
√

n log n)

Ripple Algorithm 1.44(n
√

n log n) 9.6(
√

n log n)

0

1

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Tree Algorithm - Computation Time

th
simulation values

0

0.5

1

1.5

2

2.5

3

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Tree Algorithm - Energy per Computation

th
simulation values

Fig. 5. Tree Algorithm: (upper panel) Ratio of observed computation time to
the corresponding asymptotic order, and (lower panel) the ratio of the observed
energy expenditure per computation and the corresponding asymptotic order.
The flat lines show the estimate of the constant multiplying the asymptotic
order.

knowledge, is a topic of some of our ongoing work in this
direction.

VIII. APPENDIX

Proof: (Lemma 3.1): Part (2): Consider two nodes sepa-
rated by distance d. Since the transmission range is r(n), one
hop can cover the distance of at most r(n). Clearly,

Pn

(

H(d) ≥ d

r(n)

)

= 1 for all n (6)

To obtain the upper bound on the number of hops, we make
the construction shown in Figure 8. We draw a rectangle of
sides d and h joining the points A and B as shown in the figure.
We divide the rectangle into bins of sides b = r(n)

p
and h.

There are p d
r(n) bins 3. The bins are indexed. We select h such

that any node in a bin can communicate with any other node in

3In the entire proof we have used p d
r(n)

as an integer which may not be the

case. Precisely, it should be bp d
r(n)

c. However, asymptotically (as n → ∞),

r << d and p d
r(n)

can be approximated as a large integer.

0

5

10

15

20

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Ripple Algorithm - Computation Time

th
simulation values

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000 6000 7000 8000

Ra
tio

Number of nodes n

Ripple Algorithm - Energy per Computation

th
simulation values

Fig. 6. Ripple Algorithm: (upper panel) Ratio of observed computation
time to the corresponding asymptotic order, and (lower panel) the ratio
of the observed energy expenditure per computation and the corresponding
asymptotic order. The flat lines show the estimate of the constant multiplying
the asymptotic order.

the adjacent bins. Hence, h2 +
(

2r(n)
p

)2

= r2(n). This gives

h =

√
p2−4

p
r(n) . The area of a bin is h r(n)

p
=

√
p2−4

p2 r2(n).
We note that the nodes in the adjacent bins are in each

other’s range. Further, if every bin contains at least one node,
then there exists a path contained in the rectangle. However,
for the path to be in the rectangle, it is not necessary to have
a node in every bin. Hence,

1 ≥ Pn (a path exists in the rectangle)

≥ Pn

(

∩p d
r(n)

i=1 bin i in the rectangle has at least one node
)

= 1 −Pn

(

∪p d
r(n)

i bin i in the rectangle has no node
)

≥ 1 −
p d

r(n)
∑

i

Pn (bin i in the rectangle has no node)

= 1 − p
d

r(n)

(

1 −
√

p2 − 4

πp2
r2(n)

)n

0

10000

20000

30000

40000

50000

60000

1000 2000 3000 4000 5000 6000 7000 8000

En
er

gy
 un

its

Number of nodes n

Energy comparisons

Multihop
Tree

0

2000

4000

6000

8000

10000

12000

14000

1000 2000 3000 4000 5000 6000 7000 8000

Tim
e s

lot
s

Number of nodes n

Time comparisons

Ripple
Multihop

Tree

Fig. 7. Comparison of energy consumption (upper panel) and computation
time (lower panel) per computation for the three algorithms. The energy
required for the ripple algorithm is not shown because of the very large values.

d

b

r(n)h A B

Fig. 8. Construction for an upper bound on hop number between the nodes
A and B

The last step uses the facts that the area of a bin is√
p2−4

p2 r2(n), that of the entire field is π and uniform
distribution of the n nodes.

Since the radius of the field is 1, we have 0 ≤ d ≤ 2. We
note that p is finite. Also, r(n) → 0 as n → ∞. Thus,

lim
n→∞

(

1 −
√

p2 − 4

πp2
r2(n)

)− πp2

(
√

p2−4)r2(n)

= e

Hence, for large n,

p
d

r(n)

(

1 −
√

p2 − 4

πp2
r2(n)

)n

≈ pd e
−
(√

p2−4

πp2 nr2(n)+ log r(n)

)

.

Thus, in order to show that p d
r(n)

(

1 −
√

p2−4

πp2 r2(n)

)n

→ 0

as n → ∞, we need
(

√

p2 − 4

πp2
nr2(n) + log r(n)

)

→ ∞ as n → ∞

If we choose r(n) =
√

k log n
n

, k > 0, it can be shown that

the above expression holds only if k ≥ πp2

2
√

p2−4
Thus, if we

choose r(n) =

√

πp2

2
√

p2−4

log n
n

, then,

lim
n→∞

Pn (a path from node A to B exists in the rectangle) = 1

We note that if a path lies in the rectangle, an upper bound
on the number of hops in that path is p d

r(n) and hence the upper
bound on the number of hops in the shortest path H(d) ≤
p d

r(n) . However, the converse is not true. Hence,

Pn

(

H(d) ≤ p
d

r(n)

)

≥

Pn (a path from point A to B exists in the rectangle)

Hence,

Pn

(

H(d) ≤ p
d

r(n)

)

= 1 as n → ∞ (7)

Equations 6 and 7 prove the Lemma. 2

We need the following result established by Xue and
Kumar [7]. In this set up, the square field of unit area is split

into small squares (cells) of size
√

K log n
n

×
√

K log n
n

by a
grid. The cells are indexed by i ∈ {1, . . . , n

K log n
}.

Theorem 8.1 (Xue and Kumar [7]): Let K > 1

log(4
e)

, and

let µ∗ ∈ (0, 1) be the only root of the equation

−µ∗ + (1 + µ∗) log(1 + µ∗) = 1/K

We tessellate the square field of unit area as mentioned above.
There are n nodes deployed uniformly in the square field. Let
Ni be the number of nodes in the ith cell; and Mn be the total
number of cells

(

Mn = n
K log n

)

. Then the following holds for
any µ > µ∗

lim
n→∞

Pn

(

max
1≤i≤Mn

|Ni − K log n| ≤ µK log n

)

= 1

2

Remark: This implies that the number of nodes lying in any
cell is uniformly bounded between (1 − µ)K log n and (1 +
µ)K log n w.p. 1 as n → ∞. We note that the expected number
of nodes in a cell is K log n; thus µ captures the range of
variation from the mean. We note that this result also holds in
our case of circular field of unit radius. 2

Proof: (Lemma 3.2): In order to prove γ = Θ
(

n
log n

)

asymptotically, we need two inequalities which we obtain in
two parts(a) and (b).
(a): Consider the two simultaneous transmissions i → j and
k → l. By the triangle inequality,

|Xj − Xl| + |Xl − Xk | ≥ |Xj − Xk |
|Xj − Xl| + r(n) ≥ |Xj − Xl| + |Xl − Xk | ≥ |Xj − Xk | ≥ (1 + ∆)r(n)

|Xj − Xl| ≥ ∆r(n)

This has been shown in [6].

Thus, the simultaneous transmissions i → j and k → l ne-
cessitate the condition |Xj −Xl| ≥ ∆r(n), i.e., the minimum
distance between any two receivers receiving simultaneously
must be at least ∆r(n). This necessary condition is equivalent
to the statement that the disks of radius ∆

2 r(n) centered around
the receivers should be disjoint.

Note that this is the most compact arrangement of receivers
possible. For this condition to suffice for the successful
receptions at all the receivers, the transmitters and receivers
must be located in a specific manner; any arbitrary location of
the transmitters will not permit simultaneous transmissions.

The area of a disk of radius ∆
2 r(n) is π∆2

4 r2(n). Hence, an
upper bound on the number of simultaneous transmissions in
the field A for all S,

γ(S) <
π

π∆2

4 r2(n)
=

4

∆2r2(n)

γ(S) <
2

π∆2

n

log n
(8)

The bound above is an unachievable upper bound since the
actual number of the disks that can be accommodated in the
field will be less than the above bound.
(b): To obtain the lower bound, we consider the construction
shown in the Figure 9. We inscribe a square field inside the
given circular field A and partition the square field into small
squares of size (2 + ∆)r(n) by a grid. We shall find a lower
bound on the number of simultaneous transmissions possible
only inside the square. Clearly, This is also a lower bound on
γ(S). This is to avoid the cells which are at the boundary and
are not completely within the field.

Note that Theorem 8.1 holds as K = 2π(2+∆)2 > 1

log(4
e)

.

Hence the probability that the number of nodes in any cell is
between 2π(1−µ)(2+∆)2 log n and 2π(1+µ)(2+∆)2 log n
goes to 1 as n → ∞. Now we number the cells by their
X and Y coordinates. The pair (i, j), where i and j are
integers, denotes a cell. The origin can be any cell. We
mark the cells whose coordinates are of the form (2l, 2k)
(say, the hashed cells in Figure 9). We note that any node
from one such marked cell is at least (2 + ∆)r(n) distance
away from any node in some other marked cell. Thus, if we
choose one node from each of the marked cells, they can
have simultaneous transmissions irrespective of the locations
of their receivers. After scheduling these cells, we can schedule
the transmissions of the nodes in the cells with coordinates of
the form (2l + 1, 2k + 1) (say, the filled cells), (2l, 2k + 1)
and (2l+1, 2k) (unfilled cells in last two cases) in three slots.
Thus in four slots, a node from each cell is scheduled. We note
that the fact that the transmissions are successful irrespective
of the location of the receivers gives a lower bound on the
number of simultaneous transmissions possible.

The size of the square is
√

2. Thus the total number of cells
that can be accommodated in the square is

2

(2 + ∆)2r2(n)
=

1

π(2 + ∆)2
n

log n

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�������
�������
�������

�������
�������
�������

���
���
���
���

�������
�������
�������
�������

�������
�������
�������

�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������

�����
�����
�����

sqrt(2)

d

Fig. 9. Construction for lower bound on hop number of simultaneous
transmissions. d = (2 + ∆)r(n).

In one slots, nodes from only 1
4

th of the cells can transmit.
We need to show that the probability of any cell being empty
is zero as n → ∞. This is evident from the result of Xue and
Kumar [7], stated earlier in the paper. Thus

lim
n→∞

Pn

(

1

4π(2 + ∆)2
n

log n
< γ

)

= 1 (9)

Thus, Equations 8 and 9 prove the lemma. 2

Proof: (Lemma 3.3): In a round, each node transmits once
to one of its neighbours. There are n transmissions in a round.
A lower bound can be obtained from Equation 8. We know
that the number of simultaneous transmissions is bounded by
γ(S) < 2

π∆2
n

log n
. Hence a lower bound on the round time

T (S) for all S is

T (S) ≥ n

γ(S)

T (S) ≥ π

2
∆2 log n (10)

To find an upper bound, we again split the field A into squares
of size (2 + ∆)r(n). We know that in four slots all the cells
get one transmission scheduled, hence the time required to
complete a round is determined by the maximum number of
nodes a cell can have. From the previous lemma, we know
that 2π(1 + µ)(2 + ∆)2 log n bounds this number with high
probability. Hence we get an upper bound on the round time.

lim
n→∞

Pn(T ≤ 8π(1 + µ)(2 + ∆)2 log n) = 1 (11)

Equations 10 and 11 together prove the lemma. 2

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramanian, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38:393–422, 2002.

[2] Arvind Giridhar and P. R. Kumar. Data fusion over sensor networks:
Computing and communicating functions of measurements. IEEE Journal
on Selected Areas in Communications, submitted.

[3] Aditya Karnik and Anurag Kumar. Distributed optimal self-organisation
in a class of ad hoc sensor networks. In IEEE Infocom, 2004.

[4] Nilesh Khude. Distributed computation on wireless sensor networks.
Master’s thesis, ECE Department, Indian Institute of Science, Bangalore,
June 2004.

[5] Piyush Gupta and P.R. Kumar. Critical Power for Asymptotic
Connectivity in Wireless Networks. A Volume in Honour of W.H.Fleming
in Stochastic Analysis, Control, Optimisation and Applications, 1998.

[6] Piyush Gupta and P.R. Kumar. The Capacity of Wireless Networks. IEEE
Transactions on Information Theory, IT46(2):388–404, March 2000.

[7] Feng Xue and P. R. Kumar. The number of neighbors needed for
connectivity of wireless networks. Wireless Networks, to appear.

