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AbstractWe consider elastic sessions sharing a single bottleneck link; the sessions are owcontrolled by TCP. Sessions arrive randomly, in a Poisson process, request the transferof a randomly chosen volume of data (from some �le size distribution), and then departafter completion of the transfer. We �rst consider the Processor Sharing (PS) model forthis problem, and study the tail behaviour of the autocovariance of the aggregate owprocess in the link. We show that if the �le size distribution is Pareto, with parameter�, then the process is long range dependent with Hurst parameter 3��2 . This latterresult is similar to the one previous researchers have obtained by using the M/G/1model, which is inappropriate when the sessions are bottleneck constrained.We then study the same scenario on a network test-bed in which TCP enforces thebandwidth sharing. For Pareto distributed �le sizes, with tail parameter 1 < � < 2, we�nd that (i) the measured Hurst parameter of the aggregate tra�c in the link matcheswell with the analytical formula when � is close to 1, and (ii) bu�er loss is excessive,leading to lower session throughput than predicted by the PS model. We �nd that for�le size distributions with �nite second moment the PS model predicts fairly well theaverage throughput per session, and there is little sensitivity to the �le size distribution.�To appear in NCC 2000, New Delhi, January 2000.
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1 IntroductionSeveral measurements on tra�c in the Internet have shown that packet ow processes havethe property of long range dependence (LRD) ([13], [14]). Thus these processes are notwell modelled by the Poisson process, or even a Markov modulated process with a smallnumber of states. Since LRD has important consequences for congestion phenomena, andhence network dimensioning, there have been e�orts to explain long range dependence viaanalytical models. For elastic sessions (which are our concern in this paper) the originsof LRD have been traced to heavy tailed �le sizes ([6]). If several sources transmit such�les, alternating between �le transmission at a �xed rate and idleness, then it has beenshown that the aggregate ow process is LRD. In the Internet, however, session throughputsare constrained by network bottlenecks. The TCP protocol roughly attempts to share thenetwork bandwidth fairly between contending ows. Hence there is a need to understand theLRD behaviour of aggregate ows in the Internet, keeping adaptive rate controlled bandwidthsharing in mind.
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linkFigure 1: The network scenario considered in this paper.In this paper we consider the network scenario shown in Figure 1. The clients aredownloading �les from the server across the bottleneck link. Requests for �le transfer arrivein a Poisson process; the request sizes are independently and identically distributed withsome distribution. We study this scenario using an analytical model, and an experimentaltest-bed.We �rst use the processor sharing (PS) queue (see [12]) as a model for ideal bandwidthsharing on the bottleneck link. Hence one of the themes of this work is also to investigatethe PS queue as a model for TCP controlled bandwidth sharing (see [15] for such use ofthe PS model). The busy-idle process of the PS queue then models the aggregate packetow in the network (we justify this view in Section 2). The service time distribution in thequeue corresponds to the distribution of �le sizes requested by the clients. We consider thestationary version of the busy-idle process, and, using Laplace Transforms and a Tauberiantheorem, we show that if the �le size distribution is Pareto with tail parameter �, then the2



process is LRD with Hurst parameter H = 3��2 . If the �le size distribution has �nite secondmoment, then the process is not LRD. The above formula for the Hurst parameter was alsoobtained earlier, but in the context of the M/G/1 model, which does not model bottleneckconstrained bandwidth sharing (see [14]).We then use a test-bed to study how well the above theoretical results, obtained fromthe PS model, hold when the sessions are ow controlled by TCP. We also study how well thePS model predicts the TCP controlled session throughputs. In our network test-bed threeLinux PCs are used, one as the web server, one acting as the clients, and one serving as aserial link emulator. As in the analytical model, the simulated transfer requests arrive in aPoisson process, and request the transfer of �les with independent and identically distributed(i.i.d.) sizes.Our experimental results show that for Pareto �le size distribution with � close to 1,the departure process of the bottleneck queue has an H parameter that matches well withthe formula H = 3��2 . Further, the H parameter decreases with increasing �.We �nd that the PS model predicts the session throughputs fairly well when the �lesize distributions have a �nite second moment. Further, the average per session throughput isonly slightly sensitive to �le size distribution1. For Pareto �le size distribution, however, andfor the tail parameter � close to one, the PS model overestimates the session throughputs,the error becoming larger as � approaches 1. We trace these observations to the fact thatTCP performance is sensitive to packet loss. We �nd that with heavy tailed �le sizes, thereis greater bu�er loss, and hence throughput su�ers.The most important related work is that of Heyman et al [9]. The authors studya model comprising several hosts connected to a backbone link via low speed access links.Each host alternates between downloading �les and \thinking". An analytical model isdeveloped and it is shown that the session throughputs are insensitive to the �le size dis-tributions. There is, however, no analytical study of LRD in the network tra�c. Anotherrelated reference is [3], where the authors provide asymptotic approximations for bandwidthdimensioning using the model in [9].Our work demonstrates the importance of considering heavy tailed �le sizes in networkbu�er sizing for TCP controlled elastic tra�c, and relates the parameter of the Pareto �lesize distribution to the Hurst parameter of the tra�c in the network link.The paper is organised as follows. In Section 2 we justify the use of the PS model, and1Note that the (customer) average session throughput is sensitive to �le size distribution even for the PSmodel; it is the time average fair bandwidth share that is insensitive (see Section 4).3



relate the aggregate network tra�c to the busy-idle process of the PS queue. In Section 3we analyse the stationary busy-idle process and develop results on the tail behaviour of itsautocovariance function. In Section 4 we provide the experimental results from a networktest-bed.2 The Processor Sharing Model: Ideal Bandwidth Shar-ing
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arrivalsFigure 2: The actual ow of tra�c in the network, and the processor sharing model.Figure 2 shows a schematic of how tra�c ows in the network shown in Figure 1. Theclients generate �le transfer requests. After the requests reach the server, we can view the�les to be \queued" at the server, waiting as they are gradually transferred to the clients.In the �gure, the �les have been shown broken up into �xed length packets. With idealbandwidth sharing, when there are n �les, each �le transfers its packets at 1nth of the linkrate. The network link carries the superposition of these rate controlled ows from each�le transfer. Thus, considering a uid model, we can model the �le transfer process, withideal bandwidth sharing, by a processor sharing queue model. The unsent fragments of the�les in the server, constitute the \customers" queued in the PS model (see the lower part ofFigure 2).Notice, from the above discussion, that the aggregate ow in the network will berelated to the departure process of the PS model. There are, however, two aggregate owprocesses in our single link \network" (see Figure 2), one that ows into the link bu�er,and one that ows out of the bu�er on to the link. One can reasonably argue that the4



process entering the network bu�er, and the network bu�er's behaviour, relate to a roughapproximation of the implicit feedback based fair bandwidth sharing, and are thus \internal"to this fair sharing mechanism, whereas the process on the network link is akin to thedeparture process of the PS model. The link alternates between carrying tra�c at the fulllink rate, and idle periods, and therefore the ow process on it would correspond to the busy-idle process of the PS model. In the results of our test-bed experiments, we will estimatethe H parameter of this output process and compare the estimates with what is predictedby the PS model.The PS model assumes ideal bandwidth sharing, and does not explicitly model thecrude manner in which TCP attempts to adaptively share the link bandwidth. In the actualnetwork discrete packets ow and these need to be queued in the network bu�ers. WithTCP controlling the bandwidth sharing, there will be rate mismatches between the packetarrival rate into the link and the link service rate. Hence bu�ers can �ll up and lose packets.Thus, if speci�c �le size distributions result in greater packet loss, then one would expectthat the throughputs with TCP will not be the same as predicted by the PS model.In the next section we show that with Pareto distributed �le sizes the PS modelpredicts that the aggregate tra�c is LRD. In Section 4 we examine how well this result holdsin an experimental test-bed where the ows are TCP controlled. We also �nd that the PSmodel overestimates the throughputs for Pareto �le sizes, whereas it is a good approximationfor �le size distributions with �nite second moment.3 Long Range Dependence of the Aggregate Bit RateProcessIt is well known that the busy-idle process of an M/G/1 PS queue is the same as that ofany M/G/1 queue with a nonidling (\work conserving") service discipline. Consider thebusy-idle process of such an M/G/1 queue. Let fX(t); t � 0g denote a stochastic processthat is 1 when the queue is busy, and 0 when the queue is idle. We know (see, for example,[11]) that fX(t)g is an alternating renewal process [4].Let � denote the rate of the Poisson arrival process. This corresponds to the arrivalrate of �le transfer requests (see Figure 2). Let B denote the random variable for the workbrought by a customer, and ~b(s) its Laplace Stieltjes transform (LST)2. In the network2We follow the convention that if Z is a random variable then EZ is its expectation, Z(�) denotes itscumulative distribution function, z(�) its density (if it exists), ~z(s) the LST of Z(�), and ~Z(�) the Laplace5



context, this work is the �le size to be transferred divided by the bit rate of the link. Weassume throughout that EB <1. Let G denote the busy period random variable, and ~g(s)its LST. Finally, as usual, we let � = �EB.Except where explicitly noted, we consider the stationary version of the processfX(t); t � 0g. It is well known that fX(t)g is characterised as follows: X(0) = 1 withprobability �, and X(0) = 0 otherwise. If X(0) = 1, then the �rst 1-period of the processhas duration Ge, the excess life distribution of G; i.e., Ge(t) = 1EG R t0(1 � G(u))du. On theother hand if X(0) = 0, then the �rst 0-period is exponentially distributed with parameter�. After the �rst period is obtained in this way, the process alternates between the states 0and 1, staying in state 0 for a duration distributed as Exponential(�), and staying in state1 for a duration distributed as G(�).De�ne pe(t) = Prob(X(t) = 1 j X(0) = 1)andpo(t) = Prob(X(t) = 1 j X(0) = 1 and t = 0 is the start of an ordinary busy period)3.1 The Autocovariance Function of fX(t)gAs discussed in Section 2, we wish to study the autocovariance function r(�) of fX(t)g; i.e.,r(�) = EX(t)X(t+ �)� �2 (1)Clearly, since X(t) 2 f0; 1g, r(�) = �(pe(�)� �) (2)A renewal argument yields the following equation (the superscript c on a distribution denotesthe complementary distribution)pe(t) = Gce(t) + tZ0 t�uZ0 �e��v po(t� (u+ v)) dv dGe(u) (3)where po(t) is characterised by the following equationpo(t) = Gc(t) + tZ0 t�uZ0 �e��v po(t� (u+ v))dv dG(u) (4)Transform (LT) of Z(�). 6



Taking Laplace Transforms in Equations 4 and 3, we obtain~po(s) = 1� ~g(s)s +  �s+ �! ~po(s) � ~g(s) (5)~pe(s) = 1� ~ge(s)s +  �s+ �! ~po(s) � ~ge(s)Obtaining ~po(s) from Equation 5, and noting that ~ge(s) = 1� ~g(s)sEG , we obtain~pe(s) = 1s  1� 1� ~g(s)EG(s+ �(1� ~g(s)))! (6)De�ne x(s) = 1� ~g(s). From Equation 1, and the fact that EG = EB1� � , we get the Laplacetransform for r(t) as ~r(s) = �(1� �)s  1� x(s)EB(s + �x(s))! (7)Our aim is to now to study the properties of r(t) for large t via its Laplace transform.In order to apply certain Tauberian theorems (to be stated later) we �rst need to showthat r(t) is ultimately nonnegative, in the sense that there exits t0 such that r(t) � 0; t � t0.De�ne qe(t) = 1�pe(t). Take X(0) = 1, and let fTk; k � 1g denote the epochs at which busyperiods (or 1-periods) start in the process fX(t)g. Let me;1(t) denote the renewal function(see [18]) of the delayed renewal process fTk; k � 1g (\delayed" because the �rst 1-periodhas the distribution Ge(�). The mean renewal time in this renewal process is EG+(1=�). Itis then easily shown that pe(t) = 1� 1� _me;1(t) (8)where, _me;1(t) is the renewal density. Taking transforms, we have~pe(s) = 1s � 1� ~me;1(s) (9)where ~me;1(s) is the LST of me;1(t). It can be shown that~me;1(s) = � x(s)sEG(s+ � x(s)) (10)Notice that Equations 10 and 9 are consistent with Equation 6.7



We show that r(t) is ultimately nonnegative by showing that _me;1(t) increases to itslimit 1(1=�)+EG . For this we proceed as follows. Noting that ~me;1(s) is the LST of me;1(t),from Equation 10 we have s ~me;1(s) = � (1� ~g(s))EG(s+ �(1� ~g(s)))= �(EGs� o(s))EG(s+ �(EGs� o(s)))= 1� o(s)sEG1� + EG �1� o(s)sEG�If the o(s) term can be shown to be positive then it is clear that, ultimately,_me;1(t) " 1(1=�) + EGIn both the cases we study below (�nite EB2 and Pareto distribution) this turns out to betrue. Hence, ultimately, pe(t) # �, which implies (see Equation 2) that r(t) is ultimatelynonnegative.3.2 Two Tauberian TheoremsTo study the asymptotics of r(t) from its Laplace transform, we need slight generalisationsof two Tauberian theorem from Widder [16, Theorem 2.2, page 197; Theorem 5.3, page209]. The generalisations are in replacing the nonnegativity of the function by its ultimatenonegativity.Theorem 1 If 1: ~f(s) = 1Z0 e�st f(t) dt; 0 < x <12: f(t) � 0 for t � t03: lims!0+ ~f(s) = Athen 1Z0 f(u)du = A 28



Theorem 2 If 3 1: ~f(s) = 1Z0 e�st f(t) dt; 0 < x <12: f(t) � 0 for t � t03: ~f(s) � As ; s! 0+; for some  > 0then tZ0 f(u)du � At�( + 1) t!1 2The proofs of these results are simple derivations from the results of Widder[16]. We providethe proof of Theorem 2 in Appendix A.3.3 File Sizes with Finite Second MomentTheorem 3 If 0 < EB2 <1 then the autocovariance function r(t) is summable, i.e.,Z 10 r(u) du <1.Proof: We have Equation 7~r(s) = �(1� �)s  1� x(s)EB(s+ �x(s))!In an attempt to apply Theorem 1, we considerlims!0+ 1s  1� x(s)EB(s+ �x(s))! = lims!0+ EBs� (1� �) x(s)sEB(s+ �x(s))Applying L'Hospital's rule twice, we getlims!0+ EBs� (1� �) x(s)sEB(s+ �x(s)) = EB � (1� �)x0(s) js!0+EB(s+ �x(s)) + sEB(1 + �x0(s)) js!0+= �(1� �)x00(s) js!0+EB(1 + �x0(s)) + EB(1 + �x0(s)) + sEB(�x00(s)) js!0+3We use the usual notation a(t) � b(t); t! t0 to mean limt!t0 a(t)b(t) = 1.9



Since we are given that EB2 <1, the equation continues as= (1� �) EG22EB (1=(1� �))= (1� �)22EB EB2(1� �)3= EB22EB(1� �)where the formula for EG2 is taken from Kleinrock, Vol I [11]. Hencelims!0+ ~r(s) = �EB22EBFurther, with 0 < EB2 < 1, the argument at the end of Section 3.1 shows that r(t) isultimately nonnegative. It follows, from Theorem 1 thatZ 10 r(u) du = �EB22EBNotice that the expression has the familiar form of the mean residual service time in theM/G/1 queue. 2Since r(t) is summable, it follows that when the �le size distribution has a �nite secondmoment, then the aggregate process of (ideally) ow controlled elastic ows cannot be long-range dependent (see [2]).3.4 Pareto Distributed File SizesWe now consider �le size distributions given by1� B(x) = ( 1 for 0 � x � 1x�� for x � 1where 1 < � < 2. For this distribution we have EB = ���1 , and EB2 =1. It is easily seenthat ~b(s) is given by ~b(s) = � � s� �(��; s)where, �(�; �) is the incomplete Gamma function4. Further, by using the series expansion ofthe incomplete Gamma function (see [8, page 941]), we get~b(s) = �s�(�(��)� 1Xn=0 (�1)n s��+nn! (�� + n) )= �s� �(��)� � 1Xn=0 (�1)n snn! (�� + n) (11)4�(a; y) = R ay e�uua�1 du 10



For the M/G/1 busy period we have the relationship [11]~g(s) = ~b(s+ �(1� ~g(s))Using Equation 11, and recalling that x(s) = 1� ~g(s), we obtain~g(s) = 1� � 1Xn=1 (�1)nn! (�� + n) (s+ �(1� ~g(s))n + ��(��)(s+ �(1� ~g(s)))�0 = x(s)� � 1Xn=1 (�1)nn! (�� + n) (s+ �x(s))n + ��(��)(s+ �x(s))�x(s)s+ �x(s) = � 1Xn=1 (�1)nn! (�� + n) (s + �x(s))n�1 � ��(��)(s+ �x(s))��11� x(s)EB(s+ �x(s)) = (�� 1) �(��)(s+ �x(s))��1 � 1Xn=2 (�1)n(s+ �x(s))n! (�� + n) !It follows, from Equation 7, that~r(s) = �(1� �)(�� 1)s  �(��)(s+ �x(s))��1 � 1Xn=2 (�1)n (s+ �x(s))n�1n! (�� + n) ! (12)In order to apply Theorem 2, we establish the following Lemma.Lemma 1 For 1 < � < 2,~r(s) � �(1� �)(2��)(�� 1)�(��) s�(2��) s! 0+Proof: With Equation 12 in mind, we considers(2��)s  �(��)(s+ �x(s))��1 � 1Xn=2 (�1)n (s+ �x(s))n�1n! (�� + n) ! =�(��)  s+ �x(s)s !(��1)  1� 1Xn=2 (�1)n (s+ �x(s))n��n! (�� + n) �(��) !Since 1 < � < 2, writing x(s) = EGs � o(s), as s ! 0+ we get the right hand side of theequation to converge to �(��) (1 + �EG)(��1)which, since EG = EB=(1� �), becomes�(��) (1� �)(1��)Hence the result follows. 211



We need to also establish that r(t) is ultimately nonnegative. To apply the approachat the end of Section 3.1 we need to show that the o(s) term there is postive. To show thiswe proceed from the series expansion of x(s):x(s) = ���(��) (s+ �x(s))� + � 1Xn=1 (�1)nn! (�� + n) (s+ �x(s))nTaking only the lower order terms (noting that � = � ���1 , and x(s) = EGs+ o(s)),x(s)� �x(s)� � ��� 1� s = ���(��)  s1� �!� + o(s2)It follows that x(s) =  �=(�� 1)1� � ! s� ��(��)(1� �)(�+1) s� + o(s2)= sEG� ��(��)(1� �)(�+1) s� + o(s2)Since 1 < � < 2 and ��(��)(1��)(�+1) > 0 we are done, and r(t) is ultimately nonnegative.We can now apply Theorem 2 to conclude thatZ t0 r(u) du � �(1� �)(2��)(�� 1)�(��)�(3� �) t(2��) t!1 (13)We can thus conclude that, as t ! 1, the autocovariance function r(t) behaves as t�(��1),and hence (with 1 < � < 2) the process fX(t)g is long range dependent with Hurst parameterH = 3��2 . Note that this formula is the same as that reported in [5], and in [14] (see also[17]), where it was obtained by considering the M/G/1 model. The M/G/1 model assumesthat the network ows are constrained by access links, or the clients, or by some other means,and the ows do not interact due to bandwidth sharing in the network link. The processorsharing model, however, captures the interaction between ows that are constrained by abottleneck link. It is interesting that the same formula for the Hurst parameter carries overto this more complex bandwidth sharing situation.4 Experimental Results from a Network Test-Bed4.1 The Network Test-BedFigure 3 shows the experimental setup that we have used to study the network scenarioof Figure 1. One machine generates �le downloads from another machine that runs a web12
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Figure 3: Experimental setup for emulation of the scenario in Figure 1. The Linux PC inthe middle emulates a wide area link. The bu�er sizes, link speeds, and propagation delaysare con�gurable.server. All the tra�c between these machines passes (via Ethernet) through a third LinuxPC that acts as a link emulator. In the generic Ethernet driver of this machine we haveintroduced some software (see [1]) that bu�ers packets in either direction, and then releasesthem at a con�gurable speed. In general, this emulator can also introduce a \propagation"delay, and introduce random losses; but we do not exercise these features in our experimentsreported in this paper.4.2 Experimental ProcedureWe wish to experiment with �le sizes of various distributions. For any given distribution,we generate a set of 1000 random numbers from that distribution, and taking these as a1000 �le sizes, we create one �le of each size and store it in the server machine. On theclient machine a program repeatedly requests for the transfer of a �le randomly chosen fromamong the 1000 �les on the server. Between successive requests, the program \sleeps" for anexponentially distributed time, thus modelling the Poisson \arrival" epochs of �le transferrequests.The link speed in the emulator is set to the desired bit rate (128Kbps in all the resultsreported here). We take the propagation delay to be zero. The bu�er size on the emulatoris also set to the desired value (32KB for the results reported here).The client machine runs a TCP packet capture program that records the TCP/IPheader, and the receipt epoch, of every packet delivered to the clients. Note that thesereceipt epochs correspond to departure epochs from the network queue in Figure 2. Usingthese packet traces we can study the second order characteristics of the network departureprocess. 13



4.3 H Parameter of the Aggregate Departure ProcessesFrom the packet trace provided by the packet capture program we obtain the time series ofthe aggregate number of bytes in the network link departure process in 0.1 second intervals.Let fBkg denote this time series. Since the aggregation intervals are of �xed length, thefBkg process is proportional to the rate process. Hence, fBkg corresponds to the processfXkg that was studied in Section 2. We estimate the H parameter of fBkg, and compare itwith that predicted by the theory based on the PS model. The variance-time plot techniqueis used to estimate H (see [2]).We show the results from �ve such experiments in Tables 1, 2, 3, 4, and 5. The �lesize distributions for these tables are, respectively, exponential, gamma (order 2), and Paretowith � = 1:1; 1:2; 1:6, and with mean 10KB. In order to get the average of the 1000 sample�les for Pareto with � = 1:1 to be close to 10KB, we had to use a distribution with mean12KB; this is because there is signi�cant mass in the tail of this distribution.Each table shows the con�gured link load (arrival rate � mean �le size), the measuredH parameter at the link output, the number of packets lost, the number of bytes lost, themeasured average �le transfer throughput, the measured link occupancy, and the numberof �les transferred. The measured link occupancy is di�erent from the con�gured load fortwo reasons: the link carries header bytes (this causes the link occupancy to be higher thanthat con�gured); when the request arrival rate is high (the interarrival times are small) theUNIX sleep utility is inaccurate (this causes the actual o�ered load to be smaller than thatcon�gured).We infer from the analysis in Section 2 that for exponential and gamma distributionswe expect the H parameter to be 0.5, irrespective of the load, and for Pareto, with parameter� we expect H = 3��2 . We observe from Tables 1 and 2, that for exponential and gammadistributions H is about 0.5 for load 0.1, and increases to about 0.7 for load 0.9. FromTable 3, we observe that for Pareto with � = 1:1 the H parameter varies between 0.96 and0.93, as against the theoretical value of 0.95. From Tables 4 and 5, we see that for Pareto,and � = 1:2, the measured H parameter is in the range 0.94 and 0.89 (the theory yielding0.9), and for � = 1:6 the measured H parameter is in the range 0.77 to 0.85 (the theoryyielding 0.7).At the very least, it is clear from these measurements that the H parameter of thedeparture process depends on the �le size distribution. The closeness of match betweenthe theoretical and the measured Hurst parameters for � = 1:1 is striking, and supportsthe application of the PS model results in Section 2 to this situation. For Pareto �le sizedistributions, the H parameter does decrease with increasing �, but the H values are higherthan predicted by theory. For �le size distributions with �nite second moments, the H14



O�ered H packets bytes Throughput Measured Total No.load lost lost (Kbps) load of �les(as con�gured) transferred0.1 0.49 0 0 13.11 0.10 5550.2 0.57 11 16654 12.50 0.21 11360.3 0.58 17 24341 11.80 0.32 16890.4 0.61 30 43388 11.16 0.41 22160.5 0.60 61 86738 10.34 0.51 27420.6 0.60 124 184370 9.30 0.60 32480.7 0.59 299 441749 8.35 0.69 37010.8 0.67 870 1279408 6.71 0.79 42500.9 0.70 1951 2848090 4.93 0.88 4666Table 1: Exponential �le size distributionO�ered H packets bytes Throughput Measured Total No.load lost lost (Kbps) load of �les(as con�gured) transferred0.1 0.54 0 0 13.30 0.10 5470.2 0.49 0 0 13.25 0.21 11120.3 0.53 0 0 12.76 0.31 16590.4 0.53 0 0 12.19 0.41 21910.5 0.57 5 6742 11.46 0.51 27010.6 0.58 16 24224 10.53 0.60 31930.7 0.55 39 56014 9.38 0.69 36840.8 0.64 137 199986 8.18 0.78 41250.9 0.70 897 1310032 6.29 0.86 4556Table 2: Gamma �le size distributionparameter is close to 0.5 only for low loads, but increases for higher loads.O�ered H packets bytes Throughput Measured Total No.load lost lost (Kbps) load of �les(as con�gured) transferred0.1 0.96 63 90305 10.81 0.13 5790.2 0.94 104 150280 10.67 0.23 11800.3 0.94 161 228636 10.05 0.31 17540.4 0.93 263 379832 8.91 0.42 23180.5 0.95 648 907225 6.99 0.59 28510.6 0.95 863 1221730 5.41 0.71 33600.7 0.95 1420 2008299 4.24 0.80 38730.8 0.94 2006 2831271 3.38 0.85 44080.9 0.93 2305 3251933 2.76 0.89 4764Table 3: Pareto �le size distribution, � = 1:1While the Hurst parameter is a useful, parsimonious quanti�cation of long range de-pendence in processes, it is also known that the estimation of H is fraught with di�culties.We have chosen a simple estimation technique (the variance-time plot), for which there is the15



O�ered H packets bytes Throughput Measured Total No.load lost lost (Kbps) load of �les(as con�gured) transferred0.1 0.94 42 60858 11.68 0.13 5650.2 0.89 94 138727 11.62 0.21 11570.3 0.91 163 235380 10.78 0.31 17180.4 0.91 256 365646 9.96 0.40 22650.5 0.94 549 788322 7.71 0.59 27810.6 0.94 928 1318624 6.33 0.69 32850.7 0.95 1497 2131505 4.81 0.79 37960.8 0.94 2065 2942136 3.80 0.85 43120.9 0.92 2896 4123049 2.97 0.90 4748Table 4: Pareto �le size distribution, � = 1:2O�ered H packets bytes Throughput Measured Total No.load lost lost (Kbps) load of �les(as con�gured) transferred0.1 0.78 11 16654 13.65 0.11 5550.2 0.79 64 96043 13.04 0.21 11330.3 0.81 128 189610 12.22 0.31 16880.4 0.77 170 255783 11.50 0.40 22160.5 0.83 398 586872 9.93 0.54 27380.6 0.85 622 911215 8.88 0.63 32430.7 0.85 914 1344548 7.59 0.72 37370.8 0.85 1463 2158562 6.10 0.81 42530.9 0.85 2580 3794063 4.59 0.88 4695Table 5: Pareto �le size distribution, � = 1:6problem of determining where on the plot the asymptotic behaviour \starts". Even more so-phisticated estimators, such as the maximum likelihood based Whittle estimator, are knownto give widely di�erent results for the same data depending on the modelling assumptionsmade (see [2, page 118-119]). Further investigations are needed to better reconcile the abovetest-bed results with the theory.4.4 Average File Transfer ThroughputWe �rst need to de�ne some more notation. Consider several �les being transferred over thenetwork, indexed by k = 1; 2; : : :. For the kth �le, let Vk denote the volume of data (sayin Bytes), and let Wk denote the time taken to transfer the �le. At time t let N(t) denotethe number of transfers in progress. In the PS model, fN(t)g is the \queue" length process.Then the average �le transfer throughput is de�ned as� = limn!1 1n nXk=1 VkWk (14)16



For the PS model, letting (V;W ) denote the stationary random vector of the �le volume andthe corresponding transfer time, it is clear that� = E �XW �Even for the simple M/G/1 PS model, calculation of � is di�cult. However, in an experiment,estimation of � via its de�nition in Equation 14 is straightforward.Analytically, a more tractable measure is the average active session bandwidth share(see also [9]) de�ned as follows� = limt!1 1t R t0 1N(u)IfN(u)�1g du1t R t0 IfN(u)�1gdu (15)Letting �(n) denote the stationary probability of n �le transfers being in progress, it is easilyseen that � = 1� 1Xn = 1 �(n)nFor an M/G/1 PS queue, we have (independent of the particular �le size distribution)�(n) = (1� �)�nIt is then easily seen that,� = 1� 1Xn = 1 �(n)n = 1� �� ln 11� � (16)In general, for a given M/G/1 PS model, � and � are di�erent, and whereas � isinsensitive to �le size distribution, � is sensitive (see [10]). We have found, however, thatthese measures are quite close to each other. Thus we will use � when displaying experimentalresults, and � for the theoretical results from the PS model.Figure 4 shows � and � normalised to the link rate, and plotted against the linkoccupancy (�). The solid curve shows � obtained for the PS model, using Equation 16.The other curves show � obtained from the test-bed, for various �le size distributions; withreference to Tables 1, 2, 3, 4, and 5, we are basically plotting column 5 versus column 6. Theaverage �le size is 10KB, and the distributions studied are exponential, gamma (order 2),uniform, and Pareto (with � = 1:1; 1:2; 1:6). We notice that whereas for exponential, gamma,and uniform, the throughputs obtained from the PS model are close to those obtained fromthe experiment, for Pareto �le sizes the throughputs become progressively smaller as �approaches 1. We note that the droop in throughput for low loads is probably because of ameasurement problem. We are using the throughput measurements provided by the Linuxoperating system; when the throughputs are large, the �le transfer times are small, and thegranularity of the time measurement a�ects the results.The above throughput results should be viewed in light of the packet loss data shownin Tables 1, 2, 3, 4, and 5. Notice that packet loss rates are much higher for Pareto �le sizedistributions as compared to the light tailed distributions exponential and gamma. TCPreacts to packet losses by dropping its window, and hence the sending rate; thus packetlosses are detrimental to TCP throughput. 17
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THROUGHPUT vs LOAD: Different Distributions

Buffer Size = 32 KB
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Figure 4: Average fair bandwidth share per session from the PS model, and average sessionthroughput from the test-bed, plotted versus the link load.5 ConclusionsWe have studied the Processor Sharing queue as a model for TCP controlled bandwidthsharing at a single link. We related the departure process of the PS queue to the departureprocess of the TCP controlled ows from the link. We have shown that for service timedistributions with �nite second moment, the departure process of the PS queue does notdisplay long range dependence. For Pareto distributed service times, with tail parameter �,however, the departure process of the PS model is LRD, with H = 3��2 .We then conducted experiments on a test-bed with actual TCP code and a linkemulator. We made the following observations:� For Pareto �le size distribution with � = 1:1 the measured H parameter is close to0.95, as predicted by the theory.� For other �le size distributions the measured H parameter does not match very wellwith theory, but as the Pareto tail parameter, �, increases the H parameter decreases.� The measured throughputs for Pareto distributed �le sizes are sensitive to the param-eter �, the throughput decreasing as the distribution becomes more heavy tailed.� There are signi�cantly more packet losses with heavy tailed �le size distributions, thanwith light tailed ones.In conclusion, we can say that whereas the Processor Sharing model is a useful an-alytical tool for analysing bandwidth sharing for elastic sessions in packet networks, andit has some predictive capability even for TCP controlled ows, the PS model needs to be18



used judiciously. An important research e�ort will be to provide corrections to the resultsobtained from the PS model in order to better predict the performance of TCP controlledbandwidth sharing (see, for example, [9]).A Appendix: Proof of Theorem 2Proof: De�ne g(t) = f(t+ t0). We have g(t) > 0 for t > 0. Also~g(s) = 1Z0 e�st g(t)dt= e+st0 1Z0 e�s(t+t0) f(t+ t0) dt= est0 1Zt0 e�su f(u)du= est0� ~f(s)� t0Z0 e�su f(u)du�Now consider ~g(s)(A=s) = est0 ~f(s)(A=s) � est0 t0R0 e�su f(u)du(A=s)�!s!0+ 1Hence applying Theorem 5.3 from Widder [16], we havetZ0 g(u)du � At�( + 1) t!1Now consider, for t large enough,tR0 f(u)duAt�( + 1) = t0R0 f(u)du+ tRt0 f(u)duAt�( + 1)= t0R0 f(u)duAt�( + 1) + t�t0R0 g(v)dvA(t� t0)�( + 1) t(t� t0)�!t!1 119
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