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Abstract

We consider elastic sessions sharing a single bottleneck link; the sessions are flow
controlled by TCP. Sessions arrive randomly, in a Poisson process, request the transfer
of a randomly chosen volume of data (from some file size distribution), and then depart
after completion of the transfer. We first consider the Processor Sharing (PS) model for
this problem, and study the tail behaviour of the autocovariance of the aggregate flow
process in the link. We show that if the file size distribution is Pareto, with parameter
a, then the process is long range dependent with Hurst parameter 35“. This latter
result is similar to the one previous researchers have obtained by using the M/G/oc
model, which is inappropriate when the sessions are bottleneck constrained.

We then study the same scenario on a network test-bed in which TCP enforces the
bandwidth sharing. For Pareto distributed file sizes, with tail parameter 1 < a < 2, we
find that (i) the measured Hurst parameter of the aggregate traffic in the link matches
well with the analytical formula when « is close to 1, and (ii) buffer loss is excessive,
leading to lower session throughput than predicted by the PS model. We find that for
file size distributions with finite second moment the PS model predicts fairly well the
average throughput per session, and there is little sensitivity to the file size distribution.

*To appear in NCC 2000, New Delhi, January 2000.



1 Introduction

Several measurements on traffic in the Internet have shown that packet flow processes have
the property of long range dependence (LRD) ([13], [14]). Thus these processes are not
well modelled by the Poisson process, or even a Markov modulated process with a small
number of states. Since LRD has important consequences for congestion phenomena, and
hence network dimensioning, there have been efforts to explain long range dependence via
analytical models. For elastic sessions (which are our concern in this paper) the origins
of LRD have been traced to heavy tailed file sizes ([6]). If several sources transmit such
files, alternating between file transmission at a fized rate and idleness, then it has been
shown that the aggregate flow process is LRD. In the Internet, however, session throughputs
are constrained by network bottlenecks. The TCP protocol roughly attempts to share the
network bandwidth fairly between contending flows. Hence there is a need to understand the
LRD behaviour of aggregate flows in the Internet, keeping adaptive rate controlled bandwidth

sharing in mind.
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Figure 1: The network scenario considered in this paper.

In this paper we consider the network scenario shown in Figure 1. The clients are
downloading files from the server across the bottleneck link. Requests for file transfer arrive
in a Poisson process; the request sizes are independently and identically distributed with
some distribution. We study this scenario using an analytical model, and an experimental
test-bed.

We first use the processor sharing (PS) queue (see [12]) as a model for ideal bandwidth
sharing on the bottleneck link. Hence one of the themes of this work is also to investigate
the PS queue as a model for TCP controlled bandwidth sharing (see [15] for such use of
the PS model). The busy-idle process of the PS queue then models the aggregate packet
flow in the network (we justify this view in Section 2). The service time distribution in the
queue corresponds to the distribution of file sizes requested by the clients. We consider the
stationary version of the busy-idle process, and, using Laplace Transforms and a Tauberian

theorem, we show that if the file size distribution is Pareto with tail parameter «, then the



process is LRD with Hurst parameter H = %T" If the file size distribution has finite second
moment, then the process is not LRD. The above formula for the Hurst parameter was also
obtained earlier, but in the context of the M/G /oo model, which does not model bottleneck

constrained bandwidth sharing (see [14]).

We then use a test-bed to study how well the above theoretical results, obtained from
the PS model, hold when the sessions are flow controlled by TCP. We also study how well the
PS model predicts the TCP controlled session throughputs. In our network test-bed three
Linux PCs are used, one as the web server, one acting as the clients, and one serving as a
serial link emulator. As in the analytical model, the simulated transfer requests arrive in a
Poisson process, and request the transfer of files with independent and identically distributed

(i.i.d.) sizes.

Our experimental results show that for Pareto file size distribution with « close to 1,
the departure process of the bottleneck queue has an H parameter that matches well with

the formula H = ?”TO‘ Further, the H parameter decreases with increasing o.

We find that the PS model predicts the session throughputs fairly well when the file
size distributions have a finite second moment. Further, the average per session throughput is
only slightly sensitive to file size distribution’. For Pareto file size distribution, however, and
for the tail parameter a close to one, the PS model overestimates the session throughputs,
the error becoming larger as o approaches 1. We trace these observations to the fact that
TCP performance is sensitive to packet loss. We find that with heavy tailed file sizes, there

is greater buffer loss, and hence throughput suffers.

The most important related work is that of Heyman et al [9]. The authors study
a model comprising several hosts connected to a backbone link via low speed access links.
Each host alternates between downloading files and “thinking”. An analytical model is
developed and it is shown that the session throughputs are insensitive to the file size dis-
tributions. There is, however, no analytical study of LRD in the network traffic. Another
related reference is [3], where the authors provide asymptotic approximations for bandwidth

dimensioning using the model in [9].

Our work demonstrates the importance of considering heavy tailed file sizes in network
buffer sizing for TCP controlled elastic traffic, and relates the parameter of the Pareto file

size distribution to the Hurst parameter of the traffic in the network link.

The paper is organised as follows. In Section 2 we justify the use of the PS model, and

!Note that the (customer) average session throughput is sensitive to file size distribution even for the PS
model; it is the time average fair bandwidth share that is insensitive (see Section 4).



relate the aggregate network traffic to the busy-idle process of the PS queue. In Section 3
we analyse the stationary busy-idle process and develop results on the tail behaviour of its
autocovariance function. In Section 4 we provide the experimental results from a network
test-bed.

2 The Processor Sharing Model: Ideal Bandwidth Shar-
ing
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Figure 2: The actual flow of traffic in the network, and the processor sharing model.

Figure 2 shows a schematic of how traffic flows in the network shown in Figure 1. The
clients generate file transfer requests. After the requests reach the server, we can view the
files to be “queued” at the server, waiting as they are gradually transferred to the clients.
In the figure, the files have been shown broken up into fixed length packets. With ideal
bandwidth sharing, when there are n files, each file transfers its packets at %th of the link
rate. The network link carries the superposition of these rate controlled flows from each
file transfer. Thus, considering a fluid model, we can model the file transfer process, with
ideal bandwidth sharing, by a processor sharing queue model. The unsent fragments of the
files in the server, constitute the “customers” queued in the PS model (see the lower part of

Figure 2).

Notice, from the above discussion, that the aggregate flow in the network will be
related to the departure process of the PS model. There are, however, two aggregate flow
processes in our single link “network” (see Figure 2), one that flows into the link buffer,

and one that flows out of the buffer on to the link. One can reasonably argue that the



process entering the network buffer, and the network buffer’s behaviour, relate to a rough
approximation of the implicit feedback based fair bandwidth sharing, and are thus “internal”
to this fair sharing mechanism, whereas the process on the network link is akin to the
departure process of the PS model. The link alternates between carrying traffic at the full
link rate, and idle periods, and therefore the flow process on it would correspond to the busy-
idle process of the PS model. In the results of our test-bed experiments, we will estimate
the H parameter of this output process and compare the estimates with what is predicted
by the PS model.

The PS model assumes ideal bandwidth sharing, and does not explicitly model the
crude manner in which TCP attempts to adaptively share the link bandwidth. In the actual
network discrete packets flow and these need to be queued in the network buffers. With
TCP controlling the bandwidth sharing, there will be rate mismatches between the packet
arrival rate into the link and the link service rate. Hence buffers can fill up and lose packets.
Thus, if specific file size distributions result in greater packet loss, then one would expect
that the throughputs with TCP will not be the same as predicted by the PS model.

In the next section we show that with Pareto distributed file sizes the PS model
predicts that the aggregate traffic is LRD. In Section 4 we examine how well this result holds
in an experimental test-bed where the flows are TCP controlled. We also find that the PS
model overestimates the throughputs for Pareto file sizes, whereas it is a good approximation

for file size distributions with finite second moment.

3 Long Range Dependence of the Aggregate Bit Rate
Process

It is well known that the busy-idle process of an M/G/1 PS queue is the same as that of
any M/G/1 queue with a nonidling (“work conserving”) service discipline. Consider the
busy-idle process of such an M/G/1 queue. Let {X(¢),# > 0} denote a stochastic process
that is 1 when the queue is busy, and 0 when the queue is idle. We know (see, for example,

[11]) that {X (¢)} is an alternating renewal process [4].

Let A denote the rate of the Poisson arrival process. This corresponds to the arrival
rate of file transfer requests (see Figure 2). Let B denote the random variable for the work

brought by a customer, and b(s) its Laplace Stieltjes transform (LST)2. In the network

2We follow the convention that if Z is a random variable then EZ is its expectation, Z(-) denotes its
cumulative distribution function, z(-) its density (if it exists), Z(s) the LST of Z(-), and Z(-) the Laplace



context, this work is the file size to be transferred divided by the bit rate of the link. We
assume throughout that FB < oo. Let G denote the busy period random variable, and §(s)
its LST. Finally, as usual, we let p = AEB.

Except where explicitly noted, we consider the stationary version of the process
{X(t),t > 0}. Tt is well known that {X(¢)} is characterised as follows: X (0) = 1 with
probability p, and X (0) = 0 otherwise. If X(0) = 1, then the first 1-period of the process
has duration G., the excess life distribution of G i.e., Go(t) = 2= [5(1 — G(u))du. On the
other hand if X (0) = 0, then the first O-period is exponentially distributed with parameter
A. After the first period is obtained in this way, the process alternates between the states 0
and 1, staying in state 0 for a duration distributed as Exponential()), and staying in state
1 for a duration distributed as G(-).

Define
pe(t) = Prob(X(t)=11] X(0) =1)

and

Po(t) = Prob(X(t) = 1| X(0) =1 and ¢t = 0 is the start of an ordinary busy period)

3.1 The Autocovariance Function of {X(¢)}

As discussed in Section 2, we wish to study the autocovariance function r(7) of {X(¢)}; i.e.,
r(t) = EX()X(t+ 1) — p’ (1)
Clearly, since X (t) € {0, 1},

r(1) = p(pe(7) — p) (2)

A renewal argument yields the following equation (the superscript ¢ on a distribution denotes

the complementary distribution)

t—u

pe(t) = Go(t) + / / e M po(t — (u+v)) dv dG(u) (3)

where p,(t) is characterised by the following equation

t—u

polt) = G(t) + / / A polt — (u+v))dv dG(u) (4)

0

Transform (LT) of Z(-).



Taking Laplace Transforms in Equations 4 and 3, we obtain

Puls) — 1§(S)+( 4 )150(8)-9(8) (5)

s s+ A

) 1§e(s)+< A

Pe(s) = S s+ A

) uls) - 3e(5)

Obtaining p,(s) from Equation 5, and noting that g.(s) = 1S*Tgc(;8)7 we obtain

I 1—g(s)
pe(s) = - (1 CBG(s+ M1 - .&(s))))

(6)

Define z(s) = 1 — g(s). From Equation 1, and the fact that EG = 1ETBp, we get the Laplace

transform for r(t) as

e p) x(s)
s) == (1 CEB(s+ Ax(s))) (7)

Our aim is to now to study the properties of r(t) for large ¢ via its Laplace transform.

In order to apply certain Tauberian theorems (to be stated later) we first need to show
that r(t) is ultimately nonnegative, in the sense that there exits to such that r(¢) > 0,¢ > t,.
Define ¢.(t) = 1 —p.(t). Take X (0) =1, and let {7}, k > 1} denote the epochs at which busy
periods (or 1-periods) start in the process {X(¢)}. Let m,;(t) denote the renewal function
(see [18]) of the delayed renewal process {Ty, k > 1} (“delayed” because the first 1-period
has the distribution G.(-). The mean renewal time in this renewal process is EG + (1/\). It

is then easily shown that

1

pult) = 1= a0 ®)

where, 1. (t) is the renewal density. Taking transforms, we have

1 1

ﬁe(s) - E - X me,l(s) (9)

where m, 1 (s) is the LST of m, (¢). It can be shown that

A x(s)
sEG(s+ A x(s))

me,l(s) (10)

Notice that Equations 10 and 9 are consistent with Equation 6.



We show that r(t) is ultimately nonnegative by showing that 1, (t) increases to its

limit m For this we proceed as follows. Noting that m.;(s) is the LST of m, (%),

from Equation 10 we have

A (1 —9(s))
EG(s+ A1 —g(s)))

AMEGs — o(s))
EG(s + AM(EGs — o(s)))

o(s)
175EG

1+ EG (1 - 1(;();)

$SMe(s) =

If the o(s) term can be shown to be positive then it is clear that, ultimately,

1

e, (t) T m

In both the cases we study below (finite £B? and Pareto distribution) this turns out to be
true. Hence, ultimately, p.(t) | p, which implies (see Equation 2) that r(¢) is ultimately

nonnegative.

3.2 Two Tauberian Theorems

To study the asymptotics of r(¢) from its Laplace transform, we need slight generalisations
of two Tauberian theorem from Widder [16, Theorem 2.2, page 197; Theorem 5.3, page
209]. The generalisations are in replacing the nonnegativity of the function by its ultimate

nonegativity.

Theorem 1 If

1. ﬂg:/eﬂﬂﬂmn<x<m
0
2. f(t) >0 for t> tg

3. lim f(s)=A

s—0t
then o
/ Flu)du= A
0



Theorem 2 If3

for t> 1

1. f(s) = / e (1) dt,0 < & < o
0
0
A +
- s— 07, for some v > 0

then

O

The proofs of these results are simple derivations from the results of Widder[16]. We provide

the proof of Theorem 2 in Appendix A.

3.3 File Sizes with Finite Second Moment

Theorem 3 If 0 < EB? < oo then the autocovariance function r(t) is summable, i.e.,

o
/ r(u) du < oo
0

Proof: We have Equation 7

) (5
)= (1 )

In an attempt to apply Theorem 1, we consider

.1 z(s) .. EBs—(1-p)a(s)
Jm, S (1_ EB(SH:E(S))) = W TSEBG 1 ow()

Applying L’Hospital’s rule twice, we get

lim EBs — (1 —p) z(s) _ EB — (1= p)x'(s) |s-0+
s—0t  SEB(s + Ax(s)) EB(s+ Mx(s)) + sEB(1 4+ \2'(s)) |50t
(L 2)(5) |
EB(1+4+ A\2'(s)) + EB(1 4+ A\2'(s)) + sEB(Ax"(s)) |50+

3We use the usual notation a(t) ~ b(t),t — to to mean lim;_,;, % =1.



Since we are given that £ B? < oo, the equation continues as
(1—p) EG?
2EB (1/(1 7))
(1 p)? EB
2EB (1 - p)?
EB?
2EB(1 - p)
where the formula for EG? is taken from Kleinrock, Vol I [11]. Hence
L pEB2
1 s) =
S ) = Spg
Further, with 0 < EB? < oc, the argument at the end of Section 3.1 shows that r(¢) is
ultimately nonnegative. It follows, from Theorem 1 that
o0 pEB?
du =
/0 rw) du="EB
Notice that the expression has the familiar form of the mean residual service time in the
M/G/1 queue. O

Since r(t) is summable, it follows that when the file size distribution has a finite second
moment, then the aggregate process of (ideally) flow controlled elastic flows cannot be long-

range dependent (see [2]).

3.4 Pareto Distributed File Sizes

We now consider file size distributions given by

1 for 0 <2 <1
IB(m):{xa for > 1

where 1 < v < 2. For this distribution we have EB = -2~ and EB? = co. It is easily seen

a—1°
that b(s) is given by

b(s) =a-s* T'(—a,s)
where, I'(-,-) is the incomplete Gamma function®. Further, by using the series expansion of
the incomplete Gamma function (see [8, page 941]), we get

~ 0 (71)71 Sfa—l—n
b = U (—a) — ) 2
(5) @ { (ma) -2 n! (—a+n)
0 (_l)n Sn

= n! (—a+n) (11)

= as*T'(~a) —«

T(a,y) = fya e “ut! du

10



For the M/G/1 busy period we have the relationship [11]
g(s) = b(s + A1 — g(s))

Using Equation 11, and recalling that z(s) = 1 — g(s), we obtain

i) = 1=a > s (A0 =3 + T ()5 + X1 = ()"
0 = x(s)—aé %(S—l—)\x(s))"+aF(—a)(s+)\x(s))“
#1)(9) _ (yi %(s—l—)\m(s))"lOzF(a)(s—l-)\m(s))"‘l
ek = @D (T - 3 )
Tt follows, from Equation 7, that
i) = 2P0 1 (F(—a)(s+)\:r(s))"‘1—ni:2 (1);!((”’_*;4%;))"1) (12)

In order to apply Theorem 2, we establish the following Lemma.

Lemma 1 Forl < a < 2,

7(s) ~ p(1 = p)® V(a— 1) (-a) s > s— 0%

Proof: With Equation 12 in mind, we consider

$2-a) a1 s (D" (s A(s)" Y
- (F(—a)(s + Az (s)) Z:jg oY B ) _

s n! (—a+n) I'(—a)

I(-a) (M)ml) <l_§: (—1)" (s-l-)\.r(s))"‘")

n=2

Since 1 < a < 2, writing z(s) = EGs — o(s), as s — 07 we get the right hand side of the

equation to converge to
I'(—a) (1+AEG)Y

which, since EG = EB/(1 — p), becomes
L(~a) (1-p)t
Hence the result follows. O

11



We need to also establish that r(¢) is ultimately nonnegative. To apply the approach
at the end of Section 3.1 we need to show that the o(s) term there is postive. To show this
we proceed from the series expansion of z(s):

(="

o(s) = —aT(-a)(s+ Aals)" +a 3 wl (—a+n)

n=1

(s + Az(s))"

Taking only the lower order terms (noting that p = A=<, and z(s) = EGs + o(s)),

x(s)—px(s)—( @ >s — _al(=a) (13 >a+0(52)

a—1

It follows that
_ (a/la=1) al(za) o

z(s) = (ﬁ)s_m s 4+ o(s?)

al'(—a)

= SEG*W

s* + o(s?)

7 > 0 we are done, and () is ultimately nonnegative.

Since 1 < a < 2 and 22
(1-p)

We can now apply Theorem 2 to conclude that

/Utr(u) du ~ pll = p)(QF(O:;)(_a;) Dr(=a) t2= 5 x0 (13)

We can thus conclude that, as t — oo, the autocovariance function r(t) behaves as t~(@~1),

and hence (with 1 < a < 2) the process { X (t)} is long range dependent with Hurst parameter
H =352, Note that this formula is the same as that reported in [5], and in [14] (see also
[17]), where it was obtained by considering the M/G/oc model. The M/G/oc model assumes
that the network flows are constrained by access links, or the clients, or by some other means,
and the flows do not interact due to bandwidth sharing in the network link. The processor
sharing model, however, captures the interaction between flows that are constrained by a
bottleneck link. It is interesting that the same formula for the Hurst parameter carries over

to this more complex bandwidth sharing situation.

4 Experimental Results from a Network Test-Bed

4.1 The Network Test-Bed

Figure 3 shows the experimental setup that we have used to study the network scenario

of Figure 1. One machine generates file downloads from another machine that runs a web

12
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Figure 3: Experimental setup for emulation of the scenario in Figure 1. The Linux PC in
the middle emulates a wide area link. The buffer sizes, link speeds, and propagation delays
are configurable.

server. All the traffic between these machines passes (via Ethernet) through a third Linux
PC that acts as a link emulator. In the generic Ethernet driver of this machine we have
introduced some software (see [1]) that buffers packets in either direction, and then releases
them at a configurable speed. In general, this emulator can also introduce a “propagation”
delay, and introduce random losses; but we do not exercise these features in our experiments

reported in this paper.

4.2 FExperimental Procedure

We wish to experiment with file sizes of various distributions. For any given distribution,
we generate a set of 1000 random numbers from that distribution, and taking these as a
1000 file sizes, we create one file of each size and store it in the server machine. On the
client machine a program repeatedly requests for the transfer of a file randomly chosen from
among the 1000 files on the server. Between successive requests, the program “sleeps” for an
exponentially distributed time, thus modelling the Poisson “arrival” epochs of file transfer

requests.

The link speed in the emulator is set to the desired bit rate (128Kbps in all the results
reported here). We take the propagation delay to be zero. The buffer size on the emulator
is also set to the desired value (32KB for the results reported here).

The client machine runs a TCP packet capture program that records the TCP/IP
header, and the receipt epoch, of every packet delivered to the clients. Note that these
receipt epochs correspond to departure epochs from the network queue in Figure 2. Using
these packet traces we can study the second order characteristics of the network departure

process.

13



4.3 H Parameter of the Aggregate Departure Processes

From the packet trace provided by the packet capture program we obtain the time series of
the aggregate number of bytes in the network link departure process in 0.1 second intervals.
Let {B;} denote this time series. Since the aggregation intervals are of fixed length, the
{B} process is proportional to the rate process. Hence, { By} corresponds to the process
{X\} that was studied in Section 2. We estimate the H parameter of { By}, and compare it
with that predicted by the theory based on the PS model. The variance-time plot technique

is used to estimate H (see [2]).

We show the results from five such experiments in Tables 1, 2, 3, 4, and 5. The file
size distributions for these tables are, respectively, exponential, gamma (order 2), and Pareto
with a = 1.1,1.2,1.6, and with mean 10KB. In order to get the average of the 1000 sample
files for Pareto with a = 1.1 to be close to 10KB, we had to use a distribution with mean

12KB; this is because there is significant mass in the tail of this distribution.

Each table shows the configured link load (arrival rate x mean file size), the measured
H parameter at the link output, the number of packets lost, the number of bytes lost, the
measured average file transfer throughput, the measured link occupancy, and the number
of files transferred. The measured link occupancy is different from the configured load for
two reasons: the link carries header bytes (this causes the link occupancy to be higher than
that configured); when the request arrival rate is high (the interarrival times are small) the
UNIX sleep utility is inaccurate (this causes the actual offered load to be smaller than that

configured).

We infer from the analysis in Section 2 that for exponential and gamma distributions
we expect the H parameter to be 0.5, irrespective of the load, and for Pareto, with parameter
a we expect H = ?”Ta We observe from Tables 1 and 2, that for exponential and gamma
distributions H is about 0.5 for load 0.1, and increases to about 0.7 for load 0.9. From
Table 3, we observe that for Pareto with o« = 1.1 the H parameter varies between (.96 and
0.93, as against the theoretical value of 0.95. From Tables 4 and 5, we see that for Pareto,
and a = 1.2, the measured H parameter is in the range 0.94 and 0.89 (the theory yielding
0.9), and for o = 1.6 the measured H parameter is in the range 0.77 to 0.85 (the theory

yielding 0.7).

At the very least, it is clear from these measurements that the H parameter of the
departure process depends on the file size distribution. The closeness of match between
the theoretical and the measured Hurst parameters for a = 1.1 is striking, and supports
the application of the PS model results in Section 2 to this situation. For Pareto file size
distributions, the H parameter does decrease with increasing «, but the H values are higher
than predicted by theory. For file size distributions with finite second moments, the H

14



Offered H packets bytes Throughput Measured Total No.

load lost lost (Kbps) load of files
(as configured) transferred
0.1 0.49 0 0 13.11 0.10 555
0.2 0.57 11 16654 12.50 0.21 1136
0.3 0.58 17 24341 11.80 0.32 1689
0.4 0.61 30 43388 11.16 0.41 2216
0.5 0.60 61 86738 10.34 0.51 2742
0.6 0.60 124 184370 9.30 0.60 3248
0.7 0.59 299 441749 8.35 0.69 3701
0.8 0.67 870 1279408 6.71 0.79 4250
0.9 0.70 1951 2848090 4.93 0.88 4666

Table 1: Exponential file size distribution

Offered H packets bytes Throughput Measured Total No.
load lost lost (Kbps) load of files
(as configured) transferred
0.1 0.54 0 0 13.30 0.10 047
0.2 0.49 0 0 13.25 0.21 1112
0.3 0.53 0 0 12.76 0.31 1659
0.4 0.53 0 0 12.19 0.41 2191
0.5 0.57 b) 6742 11.46 0.51 2701
0.6 0.58 16 24224 10.53 0.60 3193
0.7 0.55 39 56014 9.38 0.69 3684
0.8 0.64 137 199986 8.18 0.78 4125
0.9 0.70 897 1310032 6.29 0.86 4556

Table 2: Gamma file size distribution

parameter is close to 0.5 only for low loads, but increases for higher loads.

Offered H packets bytes Throughput Measured Total No.
load lost lost (Kbps) load of files
(as configured) transferred
0.1 0.96 63 90305 10.81 0.13 579
0.2 0.94 104 150280 10.67 0.23 1180
0.3 0.94 161 228636 10.05 0.31 1754
0.4 0.93 263 379832 8.91 0.42 2318
0.5 0.95 648 907225 6.99 0.59 2851
0.6 0.95 863 1221730 5.41 0.71 3360
0.7 0.95 1420 2008299 4.24 0.80 3873
0.8 0.94 2006 2831271 3.38 0.85 4408
0.9 0.93 2305 3251933 2.76 0.89 4764

Table 3: Pareto file size distribution, a = 1.1

While the Hurst parameter is a useful, parsimonious quantification of long range de-
pendence in processes, it is also known that the estimation of H is fraught with difficulties.
We have chosen a simple estimation technique (the variance-time plot), for which there is the

15



Offered H packets bytes Throughput Measured Total No.

load lost lost (Kbps) load of files
(as configured) transferred
0.1 0.94 42 60858 11.68 0.13 565
0.2 0.89 94 138727 11.62 0.21 1157
0.3 0.91 163 235380 10.78 0.31 1718
0.4 0.91 256 365646 9.96 0.40 2265
0.5 0.94 549 788322 7.71 0.59 2781
0.6 0.94 928 1318624 6.33 0.69 3285
0.7 0.95 1497 2131505 4.81 0.79 3796
0.8 0.94 2065 2942136 3.80 0.85 4312
0.9 0.92 2896 4123049 2.97 0.90 4748

Table 4: Pareto file size distribution, o = 1.2

Offered H  packets bytes Throughput Measured Total No.
load lost lost (Kbps) load of files
(as configured) transferred
0.1 0.78 11 16654 13.65 0.11 595
0.2 0.79 64 96043 13.04 0.21 1133
0.3 0.81 128 189610 12.22 0.31 1688
0.4 0.77 170 255783 11.50 0.40 2216
0.5 0.83 398 586872 9.93 0.54 2738
0.6 0.85 622 911215 8.88 0.63 3243
0.7 0.85 914 1344548 7.59 0.72 3737
0.8 0.85 1463 2158562 6.10 0.81 4253
0.9 0.85 2580 3794063 4.59 0.88 4695

Table 5: Pareto file size distribution, o = 1.6

problem of determining where on the plot the asymptotic behaviour “starts”. Even more so-
phisticated estimators, such as the maximum likelihood based Whittle estimator, are known
to give widely different results for the same data depending on the modelling assumptions
made (see [2, page 118-119]). Further investigations are needed to better reconcile the above
test-bed results with the theory.

4.4 Average File Transfer Throughput

We first need to define some more notation. Consider several files being transferred over the
network, indexed by k = 1,2,.... For the kth file, let V} denote the volume of data (say
in Bytes), and let W}, denote the time taken to transfer the file. At time ¢ let N(¢) denote
the number of transfers in progress. In the PS model, {N(¢)} is the “queue” length process.
Then the average file transfer throughput is defined as

1 & Vi

7= lim — (14)
n—oc s Wk
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For the PS model, letting (V, W) denote the stationary random vector of the file volume and
the corresponding transfer time, it is clear that

()

Even for the simple M/G/1 PS model, calculation of 7 is difficult. However, in an experiment,
estimation of 7 via its definition in Equation 14 is straightforward.

Analytically, a more tractable measure is the average active session bandwidth share
(see also [9]) defined as follows

t
o walivasny du

o= lim 7
t=oo 2 fo inwy>1ydu

Letting m(n) denote the stationary probability of n file transfers being in progress, it is easily
seen that

(15)

- Loy
n =1

p
For an M/G/1 PS queue, we have (independent of the particular file size distribution)

m(n) = (1 - p)p"

m(n)

It is then easily seen that,

1— 1
2 n (16)
P L—p

o 7(n)
g = e =
TLEZ:I n
In general, for a given M/G/1 PS model, 7 and o are different, and whereas o is
insensitive to file size distribution, 7 is sensitive (see [10]). We have found, however, that

these measures are quite close to each other. Thus we will use 7 when displaying experimental
results, and o for the theoretical results from the PS model.

Figure 4 shows 7 and ¢ normalised to the link rate, and plotted against the link
occupancy (p). The solid curve shows o obtained for the PS model, using Equation 16.
The other curves show 7 obtained from the test-bed, for various file size distributions; with
reference to Tables 1, 2, 3, 4, and 5, we are basically plotting column 5 versus column 6. The
average file size is 10KB, and the distributions studied are exponential, gamma (order 2),
uniform, and Pareto (with « = 1.1,1.2,1.6). We notice that whereas for exponential, gamma,
and uniform, the throughputs obtained from the PS model are close to those obtained from
the experiment, for Pareto file sizes the throughputs become progressively smaller as «
approaches 1. We note that the droop in throughput for low loads is probably because of a
measurement problem. We are using the throughput measurements provided by the Linux
operating system; when the throughputs are large, the file transfer times are small, and the
granularity of the time measurement affects the results.

The above throughput results should be viewed in light of the packet loss data shown
in Tables 1, 2, 3, 4, and 5. Notice that packet loss rates are much higher for Pareto file size
distributions as compared to the light tailed distributions exponential and gamma. TCP
reacts to packet losses by dropping its window, and hence the sending rate; thus packet
losses are detrimental to TCP throughput.
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Figure 4: Average fair bandwidth share per session from the PS model, and average session
throughput from the test-bed, plotted versus the link load.

5 Conclusions

We have studied the Processor Sharing queue as a model for TCP controlled bandwidth
sharing at a single link. We related the departure process of the PS queue to the departure
process of the TCP controlled flows from the link. We have shown that for service time
distributions with finite second moment, the departure process of the PS queue does not
display long range dependence. For Pareto distributed service times, with tail parameter «,

however, the departure process of the PS model is LRD, with H = 3;“.

We then conducted experiments on a test-bed with actual TCP code and a link
emulator. We made the following observations:

e For Pareto file size distribution with v = 1.1 the measured H parameter is close to
0.95, as predicted by the theory.

e For other file size distributions the measured H parameter does not match very well
with theory, but as the Pareto tail parameter, «, increases the H parameter decreases.

e The measured throughputs for Pareto distributed file sizes are sensitive to the param-
eter a, the throughput decreasing as the distribution becomes more heavy tailed.

e There are significantly more packet losses with heavy tailed file size distributions, than
with light tailed ones.

In conclusion, we can say that whereas the Processor Sharing model is a useful an-
alytical tool for analysing bandwidth sharing for elastic sessions in packet networks, and
it has some predictive capability even for TCP controlled flows, the PS model needs to be
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used judiciously. An important research effort will be to provide corrections to the results
obtained from the PS model in order to better predict the performance of TCP controlled
bandwidth sharing (see, for example, [9]).

A Appendix: Proof of Theorem 2

Proof: Define g(t) = f(t + ty). We have g(¢) > 0 for ¢t > 0. Also

is) = [ et gt

Now consider
to

eso [ e 5 f(u)du
0

(A/57)

9(s) et f(s)

(A/s7)

(A/57)
—rss0+ 1L

Hence applying Theorem 5.3 from Widder [16], we have

¢
AtY

/ g(u)du ~ ———

0

t — o0
Iy +1)

Now consider, for ¢ large enough,

of f(u)du ;fo f(u)du —|—tft f(u)du
A7 AtY
[(y+1) T(y+1)
.tfo f(u)du t}to g(v)dv
0 0

A Y AG )y p
Py +1) (t—to)




Hence

AtY

f(u)du ~ T+ D)

o .
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