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Optimal Association of Stations and APs in an IEEE 802.11 WLAN
Anurag Kumar† and Vinod Kumar†

Abstract— We propose a maximum utility based formulation
for the problem of optimal association of wireless stations (STAs)
with access points (APs) in an IEEE 802.11 wireless local area net-
work. Each STA can associate with one or more APs at differ-
ent physical bit rates. Each such association yields certain STA
throughputs, depending on the MAC scheduling used. We use sim-
ple formulas for the throughputs obtained by the STAs in each pos-
sible association, for two MAC scheduling policies (namely, ran-
dom polling, which is an approximation to the DCF mechanisms
in IEEE 802.11, and proportional fair sharing). We then evalu-
ate the quality of an association by summing the utilities of these
throughputs, where the utility is the logarithm of the throughput.
Then we seek the sum utility maximising association. In this pa-
per, we develop the problem formulation, and provide the optimal
association results for some simple cases.

Keywords: wireless LANs, utility maximisation, proportional
fairness, random polling,

I. INTRODUCTION

In an IEEE 802.11 WLAN, a station (STA) can be in the
range of several access points (APs), and can associate with
each one of these at a certain maximum physical bit rate, de-
pending on radio channel conditions. For example, let us con-
sider 4 STAs in the vicinity of 2 APs, such that 2 of the STAs
can associate with either of the APs at 11 Mbps and the other 2
can associate with either of the APs at 2 Mbps. Evidently sev-
eral associations are possible. For example (i) both the STAs
that can associate at 2 Mbps do so with one AP and the other 2
STAs associate with the other AP, or (ii) with each AP we as-
sociate 1 STA at 11 Mbps and another at 2 Mbps. Is there any
reason to prefer one of these associations over the other, and if
so what is the optimal association? This is the problem that we
consider in this paper. Our work anticipates the future possibil-
ity of a sophisticated association protocol that will facilitate the
implementation of such an optimal association, but we do not
pursue this matter in this paper.

Our approach is the following. When several stations asso-
ciate with an AP at various rates then the medium access con-
trol mechanism determines the time average throughputs that
each one of the stations obtains. Thus, given several APs and
STAs, an association between them can be characterised by the
throughputs obtained by each of the STAs. We use a utility
function to evaluate the “value” of the individual throughputs.
Then the global “value” of the association is taken as the sum
of the individual STA utilities. The optimal association is the
one that achieves the maximum sum utility over all the possible
associations.

In this paper the above problem is formulated as an optimisa-
tion problem with 0-1 variables, a nonlinear objective function
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(i.e., for a given association, the objective is the sum of the loga-
rithm of the rates obtained by each STA), and linear constraints
on the 0-1 variables. We develop the formulation, and motivate
the form of the throughput formulas and the log utility. Then we
show that in two special cases a linear relaxation of the problem
can be solved and the solution provides important insights. We
also provide numerical results from a general example.

The problem that we address can also be placed in the context
of the research on bandwidth sharing in wired networks (see,
for example, Chapter 7 of [2] for a survey of such research).
The important difference is that, whereas in wired networks the
topology (which is akin to the association) is a given, in wire-
less networks we have some flexibility in being able to optimise
over the topology as well. During the preparation of this final
manuscript, it has been brought to our attention that a very sim-
ilar approach has also been reported in [1].

II. THE OPTIMAL ASSOCIATION PROBLEM

There is a wireless local area network (WLAN) with n Ac-
cess Points (APs), indexed 1 ≤ j ≤ n. It is assumed that the
AP placement and channel allocation are such that the interfer-
ence between cochannel APs can be ignored. Hence each AP
and its associated stations (STAs) work as a single isolated BSS,
which we call a cell. There are m STAs, indexed by 1 ≤ i ≤ m.
STA i can be associated with AP j at the physical bit rate rij ,
where rij ∈ C, a finite rate set. For example, in IEEE 802.11b,
C = {1, 2, 5.5, 11} Mbps. If STA i cannot be associated with
AP j because even the lowest rate in C is not sustainable be-
tween them then we define rij = 0. We define R as the rate
matrix with rij as elements; thus R is an m × n matrix.

We denote by m(j,k) the number of STAs that can associate
with AP j at rate Ck ∈ C. Then m(j) :=

∑

Ck∈C m(j,k) is the
number of STAs that can be associated with AP j; i.e., m(j) is
the number of positive entries in the jth column of R.

If STA i can be associated with AP j, i.e. rij 6= 0, then we
define a 0-1 variable aij . An association is an assignment of
a 0 or 1 value to each of the aij . We express an association
compactly as a 0-1 matrix A which is necessarily 0 everywhere
except for the elements ij for which rij > 0. A has m rows
and n columns, the rows corresponding to STAs and columns
to APs.

Not every such A will be feasible. Because each STA must
be associated with exactly one AP, we have for all i, 1 ≤ i ≤ m,

n
∑

j=1

aij = 1 (1)

i.e., the sum of each row of a feasible A is 1.
We will develop a performance measure for evaluating the

quality of an association. Let us denote the set of all associ-
ations in a given problem by A. Let Ω(A) denote a quality
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measure for the association A (see Section III). Then the op-
timal association problem is to find an association, A∗, such
that

A∗ = argmax
A∈A

Ω(A) (2)

and the corresponding quality measure is Ω(A∗).
Let us define some additional notation. Given an association

A, let us denote by mj,k, 1 ≤ j ≤ m and k such that Ck ∈
C, the number of STAs that are associated with AP j at rate
Ck. Then mj :=

∑

Ck∈C mj,k is the number of STAs that are
associated with AP j. Note that mj,k =

∑m

i=1 aij · I{rij=Ck},
∑m

i=1 aij = mj , and
∑n

j=1

∑m

i=1 aij = m. Clearly mj,k ≤

m(j,k).

III. MEASURES OF ASSOCIATION PERFORMANCE

Consider an IEEE 802.11 cell, comprising mj STAs associ-
ated with AP j, and assume that there is no interference from
any other cell. In this paper we measure the quality of this as-
sociation in terms of the up-link UDP bulk transfer throughput
obtained by the STAs when their MAC queues are saturated.
We do this so as to obtain a simple objective function. More
complex traffic scenarios in each cell can be modelled but they
will yield complex formulas that may only be possible to eval-
uate numerically. All the packet lengths are assumed to be the
same, denoted by L bits.

We denote by θSC(A) the throughput vector for an asso-
ciation A and with the MAC scheduling SC. We consider
two MAC schedules: random polling (RP) and proportional fair
scheduling (PF); thus SC will be either RP or PF. The elements
of θSC(A) are denoted by θSC,i(A), 1 ≤ i ≤ m.

Given an association A, let Cj denote the set of rates of the
STAs associated with AP j, each rate appearing as many times
in Cj as the number of STAs associated at that rate. Now for a
MAC scheduling policy SC the individual throughputs of the
STAs will be given as follows. For STA i such that aij = 1

θSC,i(A) = τ(Cj , rij)

where τSC(Cj , r) is the throughput of a node that is associated
at rate r and is in a cell with the associated STAs comprising
the rate set Cj . Thus the throughput of a node depends only on
the set of rates of stations that are associated with the same AP
and its own rate (for a justification see, for example, [3]).

We also denote the measure of association performance for
schedule SC and association A as ΩSC(A) = f(θSC(A));
in the following sections we will develop the form of the func-
tion f(·). Note that ΩSC(A) is a scalar function of throughput
vector θSC(A).

A. Random Polling Access – Cell Performance

Consider now AP j. For simplicity of notation in this section,
index the STAs associated with AP j by i, 1 ≤ i ≤ mj , and
these are associated at rate ri, 1 ≤ i ≤ mj . The set Cj is this
set of rates, with each rate appearing as many times as there
are STAs associated at that rate. It can be observed from the

analysis of the standard IEEE 802.11 Distributed Coordinated
Function (DCF) access mechanism in [3] that the aggregate up-
link throughput has the form

1
1

mj

∑mj

i=1
1
ri

+ hmj

(3)

where hmj
depends only on mj , the IEEE 802.11 DCF pa-

rameters, and the packet length L. Notice that if ideal ran-
dom polling was used to schedule transmissions from the STAs,
and if one packet was transmitted from each STA at each poll,
then the aggregate up-link throughput would have the following
form,

TRP (Cj) :=
mj

∑mj

i=1
1
ri

(4)

The formula in Equation (3) differs because of the overhead
term hmj

. The ideal polling formula is obtained by reducing
the overheads to 0. For simplicity in developing the association
algorithm, we will adopt TRP (Cj) as the measure of aggregate
throughput of the cell when STAs with the capacity set Cj are
associated with an AP. The throughput per node is then given
by

τRP (Cj) :=
1

∑mj

i=1
1
ri

(5)

the throughput being the same for all the nodes.

B. Motivating the Quality Measure for Comparing Associa-
tions

We motivate the quality measure we will use by an example.
There are 4 STAs and 2 APs; 2 STAs can connect to either AP
at 2 Mbps and the other 2 STAs can connect to either AP at,
say, 10 Mbps. There are 5 possible associations, denoted by
Ai, 1 ≤ i ≤ 5, in Table I. The two 2 Mbps STAs can be
associated either one to each AP or both to one of the APs. For
each such association of the 2 Mbps STAs, the 10 Mbps STAs
can be associated one to each AP or both to one of the APs.
This yields the 5 distinct associations shown in Table I. Since
the throughput depend only on the rates between the associated
STAs and APs the identity of the STAs that associate with each
AP are irrelevant; only the rates matter.

TABLE I
THE POSSIBLE ASSOCIATIONS OF 4 STAS WITH 2 APS IN THE EXAMPLE.

A AP1 AP2
A1 10, 2 10, 2
A2 2 10, 10, 2
A3 10 10, 2, 2
A4 10, 10 2, 2
A5 – 10, 10, 2, 2

Table II then shows the values of θRP,i(A) and ln θRP,i(A)
per node for each node. Also shown in the last column are
∑

i θRP,i(A) and
∑

i ln θRP,i(A) for each association. We can
use this example to compare three measures (see also Chapter
7 of the book [2]).
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TABLE II
PERFORMANCE MEASURES FOR THE ASSOCIATIONS IN THE EXAMPLE

WITH 4 STAS AND 2 APS.

Node → 10 10 2 2 Σ
AP1 AP2 AP1 AP2

θRP,i(A1) 1.67 1.67 1.67 1.67 6.67
ln θRP,i(A1) 0.51 0.51 0.51 0.51 2.04

AP2 AP2 AP2 AP1
θRP,i(A2) 1.43 1.43 1.43 2.00 6.29

ln θRP,i(A2) 0.36 0.36 0.36 0.69 1.76
AP1 AP2 AP2 AP2

θRP,i(A3) 10.0 0.91 0.91 0.91 12.72
ln θRP,i(A3) 2.30 -0.095 -0.095 -0.095 2.02

AP1 AP1 AP2 AP2
θRP,i(A4) 5.00 5.00 1.00 1.00 12.0

ln θRP,i(A4) 1.61 1.61 0.00 0.00 3.22
AP2 AP2 AP2 AP2

θRP,i(A5) 0.83 0.83 0.83 0.83 3.33
ln θRP,i(A5) -0.18 -0.18 -0.18 -0.18 -0.73

1) Max-Min Fair (MMF) rates: A rate vector is MMF if
there is no other vector for which the rate of some node,
say i, is higher without the rate of some other node, say
j, that has a smaller or equal rate than i, being made
lower. Consider Association A4 (see Table I). Table II
shows that the 10 Mbps nodes obtain an average through-
put of 5 Mbps and the 2 Mbps nodes obtain an average
throughput of 1 Mbps. In Association A1 the through-
puts of the 2 Mbps nodes are increased to 1.67 Mbps,
while the throughputs of the 10 Mbps nodes are reduced
to 1.67 Mbps. It can be seen that Association A1 is MMF.

2) max
∑m

i=1 θRP,i(A): This is provided by Associa-
tion A3

3) max
∑m

i=1 ln θRP,i(A): This is provided by Associa-
tion A4

Notice that the MMF association yields equal rates but low
throughputs for all the nodes and also a low aggregate through-
put. The approach of maximising the aggregate throughput
yields very unfair rates, substantially penalising one of the
10 Mbps nodes. The third approach yields a high aggregate
throughput and also a certain fairness between nodes with the
same physical link rates.

With the above discussion in mind, we propose to evaluate
the quality of an association A by the measure

ΩSC(A) =

m
∑

i=1

ln θSC,i(A)

where θSC,i(A) is the rate obtained by node i in the association
A. Thus we now have the form of the function f(θSC(A))
mentioned earlier in this section.

With these ideas we see immediately that the association per-
formance measure for RP is written as

ΩRP (A) =

n
∑

j=1

mj ln
1

∑

Ck∈C mj,k
1

Ck

= −

n
∑

j=1

mj ln

(

∑

Ck∈C

mj,k

1

Ck

)

(6)

C. Proportionally Fair Access
Notice that with random polling all nodes associated with

an AP obtain the same time average throughput irrespective of
their physical link rates. Thus if one STA with low speed ac-
cess is associated with an AP that otherwise has STAs with high
speed access, then the throughputs of all the latter STAs will be
pulled down to values less than the physical bit rate of the STA
with low speed access. This is clearly not a desirable situation.
One solution is to not let the STA with low speed access asso-
ciate with an AP that is already handling STAs with high speed
access. This is not a viable option if network coverage is such
that there is no other AP that this STA can associate with. The
alternative is to somehow modify channel access so that STAs
obtain time average throughputs that are proportional to their
physical bit rates. We will now show that this desirable objec-
tive arises naturally owing to the log utility formulation.

Now consider the performance measure

ΩSC(A) =

m
∑

i=1

ln θSC,i(A)

=

n
∑

j=1

m
∑

i=1

I{aij=1} ln τSC(Cj , rij)

We are interested in maximising ΩSC . It is reasonable to ask
whether the MAC scheduler can itself be chosen so as to in-
crease ΩSC . So consider the term corresponding to an AP (say,
AP 1) in the right hand side of the previous equation. Suppose
m1 STAs, 1 ≤ i ≤ m1, are associated at rates in the set C1 with
AP 1. The MAC schedule allocates a fraction φi of the time to
STA i. Now consider the problem

max

m1
∑

i=1

ln τi

subject to τi ≤ φiri

m1
∑

i=1

φi = 1

τi ≥ 0, φi ≥ 0, 1 ≤ i ≤ m1.

Again, for simplicity, we have ignored multiple access over-
heads in this formulation. It can be shown that the optimal so-
lution is φi = 1

m1

, 1 ≤ i ≤ m1, and τi = 1
m1

· ri. This is called
proportionally fair scheduling; notice that the throughputs are
proportional to the physical link rates. We define

τPF (Cj , r) =
1

|Cj |
· r,

where, of course, |Cj | = mj , and hence we get

ΩPF (A) =

n
∑

j=1

m
∑

i=1

(

I{aij=1}. ln

(

rij

mj

))

(7)

or, equivalently,

ΩPF (A) =

n
∑

j=1

∑

Ck=C

(

mj,k · ln

(

Ck

mj

))

(8)
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Proportionally fair scheduling has also been called time fairness
in the literature.

IV. OPTIMAL ASSOCIATION: ANALYSIS AND SPECIAL
CASES

In this section we analyse some special cases of the associa-
tion problem.

A. Random Polling

Using the form of the objective function in Equation 6, we
can write the optimal association problem for random polling
as

min

n
∑

j=1

(

∑

Ck∈C

mj,k

)

ln

(

∑

Ck∈C

mj,k

1

Ck

)

(9)

subject to mj,k =

m
∑

i=1

aijI{rij=Ck}

n
∑

j=1

aij = 1 for all i

aij ≤ I{rij>0}

aij ∈ {0, 1}

Example IV.1:
C = {C1}, m

(j,1) = m, for all j, 1 ≤ j ≤ n: This means that
all STAs can associate with any of the APs at the one rate C1.
Without loss of generality, let us take C1 = 1. The optimisation
problem (9) then simplifies to

min

m
∑

j=1

mj ln mj

subject to
n
∑

j=1

mj = m

mj ∈
� +

This simplification can be seen directly, since each STA can
associate with every AP.

Let us now divide the objective function inside and outside
the ln by m, and the constraints by m (where we recall that m

is the number of nodes). This amounts to scaling the objective
by a known positive constant, and subtracting a constant. This
yields the following relaxed problem whose solution (appro-
priately scaled and shifted) will provide a lower bound to the
above min problem, and hence an upper bound to the original
max problem defined in (2).

min

n
∑

j=1

xj ln xj (10)

subject to
n
∑

j=1

xj = 1

xj ≥ 0

The following result is easily proved.
Lemma IV.1: Given hj ≥ 0, 1 ≤ j ≤ n, the func-

tion
∑n

j=1 xj ln hjxj is a convex function in its argument
(x1, ..., xn) for xj ≥ 0, 1 ≤ j ≤ n.

It follows that (10) is a standard convex programming prob-
lem with linear constraints and it is necessary and sufficient that
the optimum solution is a KKT point. Taking µ ≥ 0 to be the
Lagrange multiplier for the single equality constraint, we obtain
the Langrangian function

Λ(x1, · · · , xn, µ) =

n
∑

j=1

xj ln xj + µ





n
∑

j=1

xj − 1





Differentiating Λ(x1, · · · , xn, µ) with respect to each xj and
setting equal to zero we obtain

xj = e−(µ+1)

from which we conclude that the optimal association is given
by

xj =
1

n

for 1 ≤ j ≤ n; i.e., the STAs must be equally divided over
the APs. Also note that if m is divisible by n then we have
an integer solution, and the relaxed problem solves the original
integer problem.

Example IV.2:
C = (C1, C2, · · · , Cn), m(j,j) = m, for all 1 ≤ j ≤ n: This

means that all STAs can associate with AP j at rate Cj . There
are as many rates as there are APs. This could model a situation
in which the nodes are in a cluster and there are several APs. All
the nodes can associate with the nearest AP at one rate, with
an AP further away at a lower rate, etc. Now the optimisation
problem (9) simplifies to

min

n
∑

j=1

xj ln

(

xj

1

Cj

)

subject to
n
∑

j=1

xj = 1

xj ≥ 0

Again we have a convex programming problem with linear con-
straints and we seek a KKT point. As in the previous example,
it is easily shown that the solution has the form

xj =
Cj

∑n
j′=1 Cj′

i.e., the allocations to the APs are proportional to the physi-
cal rates achievable to the APs. If there are two APs and two
rates, e.g., 5.5 Mbps and 11 Mbps, the optimal association is
to assign twice as many STAs to the AP with which they can
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sustain 11 Mbps as to the other AP (with which they can only
sustain 5.5 Mbps). Again if the solution of this relaxed problem
is integral, then we also have the solution to the original integer
problem.

Note that the load is not balanced across the APs in any
sense, and hence “load balancing” is not always the correct
solution. The number of STAs assigned to the APs are unequal,
and the aggregate throughput at each AP is the physical link
rate sustained to that AP (of course, assuming our simplified,
overhead-free model).

B. Proportionally Fair Access

With proportionally fair access, for a given association A we
can write using Equation 8

ΩPF (A) =

n
∑

j=1

∑

Ck∈C

mj,k ln
Ck

mj

Dividing by m and multiplying inside the ln by m, the right
side of the equation becomes

n
∑

j=1

∑

Ck∈C

xj,k ln
Ck

xj

where xj,k is the fraction of nodes with bit rate k assigned to
AP j, and xj is the fraction of nodes assigned to AP j. This
objective function has to be maximised over a constraint set.
Remark: It can be seen that, even with this objective, the two
special problems in the previous section have the same form and
hence they have the same solutions. Thus even if we enforce
proportional fairness the following holds:

1) If all STAs can associate with all APs at the same rate
then distribute the STAs equally over the APs.

2) If all STAs can associate with each AP at the same rate,
but with different APs at different rates then distribute the
STAs over the APs in proportion to the rates they achieve
to the APs.

V. A GENERAL EXAMPLE

In order to demonstrate a more general situation, we consider
a simple association problem with four STAs and four APs with
the possible associated rates given in Table III (i.e., this is the
matrix R). Table IV provides the results obtained by using the
Branch-and-Bound method. This example problem was solved
using the versatile optimisation package, LINGO from LINDO
SYSTEMS [4]. The optimal association is shown in the first
group of rows in Table IV; STA i, 1 ≤ i ≤ 4, is associated with
AP j, 1 ≤ j ≤ 4. We also show the value of the throughput
θRP,i obtained by STA i, the values of ln θRP,i,

∑4
i=1 θRP,i

and
∑4

i=1 ln θRP,i; observe that 7.8867 is the optimal value of
ΩRP .

The default association algorithm in implementations asso-
ciates an STA with an AP with which it has the strongest signal
and hence the highest rate. Table IV also shows the calculation
for two such associations. The second group of rows corre-
spond to the association STA 1 → AP 1, STA 2 → AP 2,

TABLE III
EXAMPLE: MATRIX OF MAXIMUM LINK RATE BETWEEN STAi AND APj

Access Points → AP1 AP2 AP3 AP4

Stations ↓
STA1 11 11 2 11
STA2 11 11 2 2
STA3 2 5.5 2 5.5
STA4 2 2 2 11

TABLE IV
COMPARISON OF SOME ASSOCIATIONS FOR THE EXAMPLE IN TABLE III

STA i → STA 1 STA 2 STA 3 STA 4
∑

AP j AP 1 AP 2 AP 3 AP 4
θRP,i 11 11 2 11 35

ln θRP,i 2.3979 2.3979 0.693 2.3979 7.8867
(optimal)

AP j AP 1 AP 2 AP 2 AP 4
θRP,i 11 3.667 3.667 11 29.334

ln θRP,i 2.3979 1.2993 1.2993 2.3979 7.3944
AP j AP 1 AP 1 AP 4 AP 4
θRP,i 5.5 5.5 3.667 3.667 18.334

ln θRP,i 1.7047 1.7047 1.2993 1.2993 6.0080

STA 3 → AP 2, STA 4 → AP 4, and the third group cor-
respond to the association STA 1 → AP 1, STA 2 → AP 1,
STA 3 → AP 4, STA 4 → AP 4. Of course, these associations
perform worse than the optimal ones shown in first group.

VI. CONCLUSION

In this paper we have taken the first steps in studying the
problem of optimal association of STAs and APs in a WLAN.
We have developed a formulation of the problem and have pro-
vided solutions for some simple cases. In particular, we have
shown that the sometimes assumed objective of “load balanc-
ing” may not always be the correct solution.

Much work remains to be done on this problem. Insights
are needed into the solution of the association problem which
is a problem with 0-1 variables, a nonlinear objective, and lin-
ear constraints. In practice, STAs simply associate with the AP
from which the received signal is the strongest. In order to im-
plement a globally optimal association for a WLAN, a central
system will need to know the matrix R (which can be achieved
if each STA provides its signal and noise measurements to the
system), and then the calculated optimal association will need
to be enforced. Additionally, there will be the issue of STAs
leaving and new ones joining.
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