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Abstract— We develop an approach for resource management
for stream sessions based on measurements at the sources. The
results in this paper assume that (i) the sessions are carried in
an edge-to-edge virtual path (VP) or label switched path (LSP),
that (ii) weighted fair queueing (WFQ) is used at each hop of the
LSP, with one queue being used for all the traffic from this LSP,
and that (iii) the stream sources are statistically equivalent; e.g.,
they could be packet voice sessions between two locations ofan
enterprise.

The approach is based onmeasurement based optimal source
shaping. We formulate and solve the problem of selection of
source parameters based on minimising the allocated bandwidth
in the network, for a specified probability of violating an end-
to-end delay bound;the end-to-end delay includes the shaping and
packetisation delays. Our network model includes a multihop
path, with WFQ at each hop. We use a statistical model for the
leaky bucket shapers, and worst case delay bounds for the net-
work with WFQ servers. Our approach yields an optimal leaky
bucket (LB) rate parameter ��, and the optimal sum of the shaper
buffer and leaky bucket depth(Bs + �). We propose and study a
stochastic approximation algorithm for on-line estimation of ��.
For fluid traffic and lossless multiplexingin the network, we find
that a linear cost function in the network bandwidth and buffer is
minimised by using the LB rate�� and token bucket depth� = 0.
With these results, our approach for managing the bandwidthof
the LSP is for each source to initially request peak bandwidth,
and then renogotiate the reservation as it learns its optimal rate,��.

We provide simulations results with on-off sources, including
packet voice models, to show the bandwidth reduction possible
by optimal shaping. The reduction in bandwidth relative to peak
rate depends on the relative values of the end-to-end delay bound
and the source burst duration. We then use simulations to explore
statistical gain with lossy multiplexing, for packet voice sources,
when the LB rate is�� and a positive value of� is used.

Keywords—quality of service (QoS), resource management for Internet
QoS, optimal shaping, connection admission control, parameter renegoti-
ation, stochastic approximation, QoS for packet voice

I. I NTRODUCTION

In this paper we are concerned with the scenario depicted
in Figure 1 where a number of statistically identicalstream
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Fig. 1. The network scenario under consideration.

sources at one edge router of a packet network need to be trans-
ported to another edge router. An example of such a situation
could be packet voice calls between two locations of an enter-
prise interconnected by the Internet or an intranet. Interactive
stream traffic, such as packet telephony, requires an end-to-end
delay guarantee; for example, for packet telephony the require-
ment can be that the mouth-to-ear (MtoE) delay is less than
200ms with a probability exceeding 95%.

In order to guarantee some quality of service to a stream ses-
sion in the Internet, one convenient approach is to route the ses-
sion along a definite path along which resources are reserved at
session initiation. Such a facility is provided by the Resource
reSerVation Protocol (RSVP; see [1]). RSVP allows the source
end-point of each session to reserve resources along the path to
its destination. This requires per session end-to-end signalling;
in addition, each router along the path of a session has to main-
tain a soft-state for the session. This soft-state is maintained by
repeated exchange of PATH and RESV messages between the
end-points of the session. It is evident that the approach of
using RSVP for each session (or microflow) can lead to exces-
sive signalling traffic and state-maintenance overheads in the
routers.

An obvious alternative is to handle stream sessions as aggre-
gates rather than as individual microflows. Such an approach
has been discussed recently in the context of MultiProtocol
Label Switching (MPLS); see [2]. The approach is to use an
extension of RSVP (RSVP-Tunneling Extension; see [3]) that
can be used to set a Label Switched Path (LSP) (with spec-
ified resource allocations) between two edge-routers. In this
paper we assume that such a protocol is available, and further
that Weighted Fair Queueing (WFQ) is used by the routers at
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Fig. 2. The network model, showing the end-to-end LSP. Each router hop is modelled as a WFQ node. One queue at each hop is assigned to the LSP.

each hop along the path. At each hop, one queue in the WFQ
scheduler is assigned to all the traffic in this LSP. Once such
an LSP is set up, soft state will be maintained in the routers
for the LSP, without need for per flow state maintenance. No-
tice that since the entire LSP is represented as one queue in
the WFQ schedulers, the scheduling overhead is also reduced
as compared to WFQ with per session queues. We can antici-
pate that the protocol for setting up the LSP will also include
support for increasing or decreasing its allocated bandwidth as
the stream sessions within it arrive or depart. Such a feature
is automatic in RSVP, as each PATH message can potentially
carry new traffic parameters1.

Next is the question of determining an efficient bandwidth
allocation for the LSP so that the stream sources it carries meet
their desired end-to-end delay QoS. It is well known that for ef-
ficient resource allocation to bursty stream sources in an inte-
grated services packet network, it is important that each source
describes itself to the network in terms of some statistical pa-
rameters, and thenshapesitself to conform to its declared pa-
rameters. A standard procedure that is used for this purpose
is the Leaky Bucket (LB) algorithm [4]. There is, however,
the important question of how a source determines its leaky
bucket parameters. An on-line source (i.e., not stored; e.g., a
packet voice phone call, or a live video broadcast) would need
to estimateits LB parameters. In general, even for a stationary
source these parameters would not be unique. What should be
the criterion for choosing a specific set of parameters?

In this paper we develop an approach to determine a set of1An alternate approach could be to make a soft reservation of some bulk
bandwidth when the LSP is first set up. This soft reservation only prevents
this bandwidth from being given away by the network to otherguaranteed
bandwidth flows. The network would then begin to levy a soft leasing charge
for this bulk bandwidth. Firm reservation of bandwidth, andhence appropri-
ate allocation of WFQ weights at the routers, would only be done when stream
sessions actually arrive to be carried by the LSP. End-to-end signalling would
then set up these weights. The network would then appropriately levy a per
session charge as new calls are set up; this charge would depend on session du-
ration. Arriving sessions would be blocked after the LSP exhausts its original
soft bandwidth allocation.

optimal leaky bucket parameters, and measurement based es-
timation of these parameters. The optimality is in the sense of
minimising network resources, while meeting the QoS objec-
tives for the sessions.

We consider the network scenario shown in Figure 1. There
are n sources, assumed to be statistically identical (e.g.,
voice sources using the same coding and silence suppression
scheme). Each source is shaped by a LB, and then the sources
are multiplexed at the network edge node. Such a situation
would arise, for example, between the packet voice “PBXs”
of two enterprise locations connected by the Internet or an in-
tranet. We assume that there is a high speed interconnection
between the voice sources and the network edge router. In
particular, the voice ports could be integrated into the edge
router, in which case the shapers would be on a processor in
the router voice card, and the interconnection medium would
be the router’s system bus.

Motivated by the above discussion, the detailed model that
we work with is shown in Figure 2. The source outputs are
modelled as being fluid. Each source is shaped by a LB, and
then packetised. The LB has a token rate�, token bucket depth�, and a source buffer thresholdBs, exceedance of which re-
sults in violation of the end-to-end delay bound2. The LSP
traversesK WAN links, and hence encountersK + 1 routers.
The WAN link rates arer0; r1; : : : ; rK�1. TheK + 1th router
is a WAN-LAN router; assuming a high-speed interconnection
between the WAN edge and the sinks of the stream sources,
we takerK =1 (see Figure 2). When there aren sources the
WFQ weights at each node are set up so that the rate allocated
to the LSP isnC; hereC, the per source capacity required,
has to be determined. The shaper parameters, taken together
with the QoS requirements, determine the network resource
requirements; i.e.,C and the node buffer requirements.

We are interested in choosing the shaper parameters�; �
andBs so as to minimise the network resources required for2Bs does not represent a finite buffer; the LB source buffer is taken as infi-
nite.
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providing the desired QoS. The network resources comprise
the reserved network link capacity,nC, and the buffers at the
nodes. It is these network resources that are scarce and ex-
pensive (the memory on the router’s WAN link interface card
has to be of a much higher speed than that required for source
shaping in a client computer, or on a voice card in the router),
and hence we consider the minimisation of network capacity
and buffer requirements. The QoS constraint is that theshap-
ing delay (in the source shaper buffer)plus the total end-to-end
multiplexing delaycan exceedTe�e only with a small proba-
bility q. We call this theQoS Violation Probability (QVP).

With the above problem in mind, in this paperwe first as-
sume that network multiplexing is lossless. Hence the QoS
(end-to-end delay ofTe�e) is violated only if the shaper buffer
builds up to such an extent that the end-to-end delay exceedsTe�e. We determine the values of�; �;Bs so as to minimise
the network capacity required to handle the stream flows with
lossless multiplexing. This approachcharacterises an optimal��. The required value ofC = ��. We then developa measure-
ment based method for on-line estimation of��. The method
makes fairly general assumptions about the source model. We
then provide some analytical and simulation results for on-off
Markov modulated sources. Working with an on-off Markov
modulated model for voice we show how�� varies withTe�e.
We then fix the token rate as��. Noting that for stream traffic
a packet that arrives after the delay bound is as bad as a lost
packet, we next consider lossy multiplexing in the edge node
of the network. The QVP is split between loss due to excessive
delay and buffer overflow in the edge node. We provide sim-
ulation results with the on-off voice source model that show
the additional improvement in resource utilisation possible by
lossy multiplexing.

There are four notable references that are related to our work
in this paper. In [5] the authors study the problem of finding
an optimal sustainable rate parameter based on network buffer-
bandwidth cost considerations. They do not, however, consider
any delay constraint, as we do in our paper. Another related pa-
per is [6]. The objectives of the research reported in this paper
are similar to ours, i.e., to choose optimal leaky bucket param-
eters subject to a QoS constraint. The approach and results are
different, however. Whereas in [6] the author only considers
delay in the LB buffer, we consider the problem of choosing
LB parameters under an end-to-end delay constraint. We de-
rive the LB parameters that minimise the network bandwidth
required. In addition, we demonstrate the efficacy of a stochas-
tic approximation based technique for estimating the optimal
sustainable rate parameter, and for tracking slow changes in the
source statistics. Another related work is reported in [7]. The
authors minimise a network cost function, but have only put a
constraint on the shaping delay. Also their network cost is sim-
ply the capacity required for a given network buffer, whereas
we have considered the capacity-buffer tradeoff.

This paper is organized as follows. In Section II, we review
the leaky bucket shaper. In Section III we develop the end-
to-end delay QoS requirement. In Section IV, we formulate
and solve the problem of finding the optimal sustainable rate
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Fig. 4. A single server queuing system, with service rate� and infinite buffer,
that is equivalent to the(�; �) leaky bucket shaper from the QVP (see text)
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parameter�� in the model of Figure 2. We show that for a
fluid source model, lossless multiplexing and a linear buffer-
bandwidth cost function,�� and� = 0 are the optimal LB
parameters. In Section V, we provide an on-line estimation
scheme to determine��. In Section VI we show how�� can be
analytically estimated. Section VII provides extensive numer-
ical results, including simulation results for an on-off packet
voice model, and for lossy multiplexing. We conclude in Sec-
tion VIII. Two proofs are provided in the Appendix.

II. THE LEAKY BUCKET SHAPER: A REVIEW

Figure 3 shows the leaky bucket (LB) controller/shaper, and
the associated notation that we shall use. We shall not con-
cern ourselves with peak rate control,assumingthat the input
is already peak rate controlled to the rateR (e.g., a PCM voice
coder, with activity detection, would emit bits at 64Kbps dur-
ing active periods). The processesS(t) andW (t) shown in
Figure 3 are to be viewed as fluid rate processes. The processW (t) is packetised before being offered to the network (see
Figure 2). We note here that while in the analysis we assume a
fluid model at the input to the LB, the simulations will be done
with the source generating discrete fixed length blocks (e.g.,
voice coders emit code frames).

When there is data in the LB source buffer, since tokens are
arriving at the rate�, the buffer is depleted at the rate�. If
the source buffer level exceedsBs, and since the source would
not lose its own data, we will view this as a QoS violation;
i.e., Bs does not represent a memory limitation, but a delay
bound ofBs� . Thus our view is that the source buffer “behind”
the LB is infinite but the buffer level exceedsBs with a small
probability; QoS Violation Probability (QVP). This idea will
be formally developed in Section III.

With reference to Figure 3, defineX(t) = X1(t)�X2(t)+
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with probability 1 at least one is positive. The QVP is then justP (X > Bs + �), whereX is the stationary random variable
for fX(t)g. For a fluid model, the queue shown in Figure 4
is equivalent to the leaky bucket shown in Figure 3 from the
QVP point of view (see also [8], [4]). Thus for a given�, the
QVP depends on� andBs only through their sum. We will
use the notationps to denoteP (X > Bs + �); the subscripts is mnemonic for “source”. WritingB := Bs + �, for fixedps we denote theB vs� tradeoff function bygps(�) = B. Lethps(�) denote the inverse ofgps(�) (an example ofhps(�) is in
Figure 5).

III. T HE END-TO-END DELAY QOS REQUIREMENT

We recall the end-to-end model of the LSP (or VP) from Fig-
ure 2. It is assumed that then sources are statistically equiv-
alent, that they are peak rate controlled toR, and are shaped
by the LBs with the same shaper parameters� and�. De-
fineLmax as the maximum packet length from the packetisers.
Each link is shared by other sessions apart from the above con-
sidered stream sessions; defineVmax as the maximum packet
length over all links and over all sessions. Since all sessions
will carry best-effort traffic as well, typicallyVmax will be the
maximum TCP segment size; e.g., 1500 bytes.

We have assumed that WFQ (or PGPS [9]) scheduling is
used at each link. It is then well known that from the point of
view of the LSP, each link can be modeled as alatency rate
server(see [10], and [11]). Since the WFQ weights at each
link are chosen such the minimum service rate for the traffic in
the LSP isnC, hopi; 0 � i � K has a minimum service curve
with ratenC and latency�i. It is easily seen from Figure 2 that�i =8<: Lmax� + Vmaxri for i = 0LmaxnC + Vmaxri for i 2 f1; 2; : : : ;K � 1gLmaxnC for i = K (1)

Note that hop0 includes the packetiser.
It is also well known that the tandem of latency rate servers

above, is equivalent to a latency rate server with ratenC and
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Fig. 6. Upper bound on delaydmax, and on queue lengthbmax, forn (�; �; R) controlled processes when served by a latency-rate service

element with ratenC and latency�.

latency� =PKi=0 �i. The (worst case) envelope of the super-
position of then LB controlled processes is given byE(t) = min fnRt; n� + n�tg (t � 0) (2)

We seek a bound on the network delay after the source shaper.
If an arrival process with envelopeE(t) is served by a net-

work element with minimum service curveG(t), the upper
bound on delay is given by (see [11])dmax(E;G) := inff� � 0 : G(u)�E(u� �) � 0; 8u � 0g

(3)
For the above envelopeE(t), and a latency-rate server of la-
tency� and ratenC, it is easy to verify (see Figure 6) that
there is a finite delay bound only ifC � �, and then the upper
bound on the packetiser and network delay is given bydnetwork � n�nC �nR� nCnR� n� �+ �
i.e., dnetwork � �C �R� CR� � �+ KXi=0 �i
Substituting the values of�idnetwork � �C �R� CR� � �+ Lmax� + Vmaxr0 +K�1Xi=1 �LmaxnC + Vmaxri �+ LmaxnC

We now turn to the delay in the shaper. There is nonzero
delay in the shaper only if fluid from the source arrives to find
the LB source buffer nonempty. When there is fluid in the
LB source buffer it is drained at the rate�. With reference to
Figure 3, denote byX1 the stationary random variable for the
amount of fluid in the LB source buffer. It follows that the
delay in the LB is bounded byX1� . Note that this bound is a
random variable.

Thus the end-to-end delay is bounded byX1� + Lmax� + �C �R� CR� � �+K �LmaxnC �+ K�1Xi=0 Vmaxri (4)
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Define, H := K �Lmaxn �
Then from Equation 4 the end-to-end delay bound is written
as: X1� + Lmax� + �C �R� CR� � �+ HC + K�1Xi=0 Vmaxri (5)

For a given paththe propagation delay is a constant. So sub-
tract it from the given maximum allowed end-to-end delay and
define the resultant value asTe�e. Now Vmaxri is a constant
term in Equation 4 (i.e., it does not depend on the design pa-
rameters�; C; � etc.), so we defineT := Te�e � K�1Xi=0 Vmaxri
Finally, based on the above delay bound we can write our QoS
requirement asProb�X1� + Lmax� + �C �R� CR � � �+ HC > T� � q (6)

whereq is the QVP. Since we have been working with delay
bounds, this is a conservative representation of our original
QoS requirement. We will use this as it leads to a tractable
analysis.

We now recall the notation and concepts introduced in Sec-
tion II. Notice that, for some given�, such thatT > �,
the requirementProb(X1� + � > T ) � q is equivalent toProb(X > (T ��)� + �) � q (here the random variableX
is as defined in the last paragraph of Section II). Recalling thatB = Bs+�, this requirement is satisfied by takinggq(�) = B,
withB � (T��)�+�. Hence the QoS specification in Equa-
tion 6 is met if we require thatgq(�) = B andB � �T ��Lmax� + �C �R� CR� � �+ HC �� �+ �

(7)

This finally will be the QoS requirement that we will work
with.

IV. SHAPING FORM INIMUM BANDWIDTH ALLOCATION

WITH LOSSLESSMULTIPLEXING

We now formulate the problem of obtaining the LB param-
eters that minimise the per source bandwidthC while meeting
the above developed QoS requirement without loss in the net-
work. Noting that, for lossless multiplexing, it is necessary
thatC � � (see Section III), we consider the following opti-
misation problem.
Optimisation Problem P1:min(B;�;�) C

subject to: C � �gq(�) = BB � �T ��Lmax� + �C �R� CR� � �+ HC �� �+ �� � 0; and0 � � � B
Problem P1 can be rewritten in a more convenient form. The

inequality in Equation 7 can be rearranged to obtainC �1 +�T � B � � + Lmax� ��R� �� �� � R+H �R� �� �
So forT � �B��+Lmax� = Bs+Lmax� �

andR � �, we obtain

the following lower bound onC,C � R+ �R��� �H1 + �T � B��+Lmax� ��R��� �
Note that the conditionT � Bs+Lmax� is necessary; it comes
from the constraint on delay in the shaper buffer and in the
packetizer. Consider now the following optimisation problem.
Optimisation Problem P2:min(B;�;�) C = max8<:�; R+ �R��� �H1 + �T � B��+Lmax� ��R��� �9=;

(8)
subject to: B � � + Lmax� � TB = gq(�)� � 0; and 0 � � � B

Lemma IV.1:The optimal values of problems P1 and P2 are
the same.
Proof: Let C1 and C2 be the optimal values of P1 and
P2; let �i; �i; Bi; i 2 1; 2 denote the corresponding op-
timising variables. Note that�1; �1; B1 are feasible for
Problem P2. Observe from Problem P1 thatC1 =max��1; R+�R��1�1 �H1+�T�B1��1+Lmax�1 ��R��1�1 ��. HenceC1 � C2. It

is also easily seen thatC2; �2; �2; B2 are feasible for Prob-
lem P1, and henceC2 � C1. HenceC1 = C2, as was required
to be proved.2
The solution to Problem P2 is provided by the following theo-
rem.

Theorem IV.1:For gq(�) a convex and decreasing function
andH+LmaxR < T , the optimal value of the Problem P2 is the
unique�� that solves the equationT��H � Lmax = gq(�) (9)

Further, the optimalB� = T���H�Lmax, and0 � � � B�.
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Proof : See Appendix I. The geometry of the solution is de-
picted in Figure 7. Note that while the solution precisely fixesB�, the value of� is determined only to an interval; this is
because, as discussed in Section II, the probability of the LB
exceeding a buffer level depends on� andBs only through
their sumB. 2
Discussion of Theorem IV.1: The only assumption we have
used is that the functiongq(�) is convex and decreasing. Ob-
serve that the optimal token rate�� depends on the source pro-
cess, the QVPq, the maximum allowed end-to-end delayTe�e,
the fixed propagation delay, the number of hopsK in the path,
the number of sessionsn sharing that path, the total capacity
of each server on that path (i.e.,ri; 0 � i � K � 1), Vmax andLmax. In practice, the network path parameters (K, Vmax,Lmax, and theris) can be obtained at the source when RSVP-
TE sets up the LSP. The number of sessions sharing the path,n, can be obtained if several statistically identical raw voice
sources, generated from analog phones, are being shaped and
multiplexed at a VoIP PBX. Thus there is a possibility that�� can be determined by the source in real-time by making
measurements. We have proposed and studied an approach
for measurement based estimation of the optimal token rate in
Section V.

Observe from Figure 7 that ifH+LmaxR > T , i.e.,H+LmaxT > R, then this problem does not have a solu-
tion. Note that as the value ofTe�e or total server capacityri; 0 � i � K � 1, decreases the value ofT and hence the
slope ofB = T� � H � Lmax decreases. This makes the
value of�� increase (see Figure 7). The increase in the num-
ber of hops or maximum packet lengthLmax, increases the
valueH and so the value of��. If the number of sessions
being multiplexed is increased then the value of�� decreases
because of decrease in the value ofH . Also observe that for
optimal value of per source capacityC = ��, if the source
is shaped by(�; ��); 0 � � � T�� � H � Lmax, to en-
sure a lossless service to the shaped source at the multiplexer,
we must use a buffer corresponding tobmax in Figure 6 (with� = �0 = Lmax� + Vmaxr0 ).
The function gq(�) : With reference to Figure 4, an impor-
tant approximation approach to determine the service rate�,

so that the overflow probabilityProb(X > B) < q, is to use
the asymptotic approximation developed in [12]. Such an ap-
proach would be particularly applicable, for example, to VBR
voice sources for which an on-off Markov model with expo-
nential state sojourn-time is a standard model. Details about an
analytical approach to estimate the value�� are given in Sec-
tion VI. Here if we write the negative of the slope of the tail of
theln(P (X > B)) vsB curve as�(�), then the approach [12]
is to design the shaper by taking�(�) = � ln qB (10)

Hence with this approach, we havegq(�) = � ln q�(�) (11)

Lemma IV.2:If the source process is a Markov modulated
fluid process, then the functiongq(�), as defined in Equa-
tion 11, is convex and decreasing.
Proof: The proof based on results in [12] is provided in [13].2
Minimum Cost Lossless Multiplexing: If n statistically iden-
tical sources, each shaped according to (�,�,R) are being mul-
tiplexed in a lossless manner in the LSP path shown in Fig-
ure 2, then for a per source bandwidth allocation ofC, the total
network buffering required is given by (see Figure 6;� � 0 is
as defined in Section III):bmax = ( � + � � if � � �R��(R�C)�(R��) + C � if � < �R��
For lossless multiplexingC � �, hence observe thatbmax �� �. Note also that, for any given values of� andC, bmax is
minimised by taking� = 0. Thus if we takeC = � = ��,
then� = 0 minimises the required buffering in the network,
i.e., bmax = �� �. Also, for the caseLmax = 0 (fluid model
for traffic in the network), we can consider the linear buffer-
bandwidth cost function
C + �bmax (where
 and� are the
per unit cost of capacity and buffers, respectively;
 > 0 and� > 0) over all choices of the shaper parameters, and under
the QoS constraint: end-to-end delay� Te�e with QVP= q.
It is then easy to infer that the cost function is minimized for
leaky bucket parameters� = 0 and� = ��. Note that for a
fluid source we interpret� = 0 to mean that all fluid arrival
from a source queues up at its shaper buffer, and is served at
the rate� (i.e., as the fluid “tokens” arrive). In practice, with a
packetized source,� needs to be at least the maximum packet
size.

V. M EASUREMENTBASED ESTIMATION OF ��
We use theRobbins–Monro (RM)stochastic approximation

algorithm to obtain the optimal value of�, i.e.,�� (see [14]).
The RM algorithm addresses the problem of finding the root
of a function when we can only observe the function values
corrupted by noise. It is an iterative algorithm that uses noisy
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measurements of the function for given values of the argument,
and iteratively obtains an estimate of the root.

Consider a functionf(�), whose root�� needs to be found.
Suppose that, given the argument� we can observef(�) + v
wherev is measurement noise. In the RM algorithm, at thekth
iteration, the current estimate�k is updated as follows�k+1 = �k � ak(f(�k) + vk+1) (12)

wherefakg is a “gain” sequence. For a suitably nice functionf(�), sufficient conditions for the convergence of the RM algo-
rithm are [14]: (i) The gain coefficient sequenceak should be
such that

P1k=0 ak = 1 and
P1k=0 a2k < 1; (ii) conditions

on noise: for allk � 0 E(Vk+1j�0; (vi; �i); 1 � i � k) = 0
andE(V 2k+1j�0; (vi; �i); 1 � i � k) < s2, for somes2 finite.
In the model of Figure 4, withX the stationary queue length,
definep(�;B) = P (X > B). Then we defined(�;B) asd(�;B)=� ln p(�;B) + ln q (13)

whereq is the desired QVP. Then, recalling Theorem IV.1,
our problem is to find the root�� of the functionf(�) =d(�; T� � H � Lmax). An update interval is chosen (we
study the effect of choices of this interval in Section VII),p(�k; T �k�H�Lmax) is measured in thekth interval (details
about measuring the loss probability are given below), and then
a new value�k+1 is computed according to the RM algorithm
in Equation 12. In the RM algorithm we have found it useful
to take the gain sequence to be of the formak = R(k + J)(� ln q)D (14)

with J an integer, andD a real number.J andD can be used
to control the transient behaviour and the convergence of the
algorithm. Also,R (the peak rate) and�ln(q) are used to
scale the gain properly. It is easy to verify that

P1k=0 ak =1
and

P1k=0 a2k < 1. The conditions on the noise sequence
hold approximately. The first condition requires the measure-
ment to be conditionally unbiased. It can be argued that if
we obtain the estimate of packet loss using the Virtual Buffer
technique that we will describe below, the measurements are
asymptotically unbiased as the measurement interval becomes
large. Also, we are making a heuristic modification to take
care of unbounded values. Whenever we encounter a zero loss
(leading to an unbounded function value), the function value
is artificially bounded (e.g., by taking the loss to be a small
nonzero value a few orders of magnitude smaller thanq). This
modification ensures that the RM algorithm steps are executed
only on bounded values of the function. Hence the conditional
second moment of the observationsusedby the RM algorithm
is bounded.
Measuring p(�k; T �k �H �Lmax): Since the target QVP of
interest can be very small, we need to use special techniques to
measurep(�k; T �k�H�Lmax), a rare event probability. We
have used a virtual buffer approach based on large deviation
asymptotics (see [15]).

log P(X > B)

B
0

ηS (  )

S (  )

B 2

higher loss

low loss φ

B 1

η ρ

ρ

Fig. 8. Scaling the arrival process and the service rate by� scales the asymp-
totic slope oflnP (X > B) by 1=�, thus increasing the probability of
exceedance of a buffer level.

φ
φ S

S B

B1

3

φρk

kρ

B2
φρk

φ S

the virtual buffer system for
calculating   *ρ

after renegotiation
ρ   updated

ρ

σ

W(t)
to the network

B s

S(t)
Source

Fig. 9. A virtual buffer system for estimating��. Three virtual buffers at
each sourceS(t), are used to obtain an estimate of� ln p(�k; T �k �H�Lmax), which is used for finding the next iterate of�� using the RM
algorithm. The actual LB parameters are updated only periodically after
renegotiation.

We use an affine approximation forln p(�;B) (see [16] and
[17]). Writing �S(�) as the negative of the asymptotic slope
of theln p(�;B) vs.B curve (the subscriptS denotes that fact
that the sourceS(t) feeds the buffer), we approximateln p(�;B) � lnP (S > �)� �S(�)B
where the random variableS is the marginal of the source
rate processfS(t)g. Also, it is easy to see that if the source
is scaled by a positive multiplier� (i.e., each arrival actually
brings� arrivals) ��S(��) = �S(�)� ;
i.e., scaling the source and the service rate results in an asymp-
totic slope that is scaled by1=� (see [18]). The usefulness of
this for measurement of small overflow probabilities is shown
in Figure 8. For example, with� = 4 an overflow probabil-
ity of 10�5 becomes roughly10�54 , thus making a rare event
relatively frequent. With this we can write the approximation
as ln p(�;B) � lnP (S > �)� ���S(��)B
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Hence iflnP (S > �) and��S(��) can be estimated, we can
then approximateln p(�; T��H � Lmax) �lnP (S > �)� ���S(��)(T��H � Lmax) (15)

Virtual buffers in the source can now be used to measure the
termslnP (S > �) and��S(��), using the arrangement shown
in Figure 9. The scaled source is fed to two virtual buffers
(B1 andB2) that are served by��k; since the approxima-
tion for ln p(�;B) has a linear form with slope���S(��),
this yields an estimate of��S(��k). The bufferless com-
ponentB3 (= 1 for a discrete source) yields an estimate oflnP (S > �k). Equation 15 is then used to get a measure-
ment ofln p(�k; T �k � H � Lmax). Details of the approach
are available in a technical report [19] by the authors.

VI. A N ANALYTICAL ESTIMATE OF �� FOR A 2-STATE

MMFP

In order to verify the measurement based approach de-
scribed in Section V it is important to be able to analytically
estimate�� in some cases. While the measurement based ap-
proach is more general, here we use standard asymptotic tech-
niques for estimating�� in the case of a Markov Modulated
Fluid Process (MMFP).

With reference to the notation introduced in Section V we
need to solve the equationln p(�; T��H � Lmax) = ln q
for � = ��. We will use a linear approximation forln p(�;B),
i.e., ln p(�;B) = ��s(�)B
where �s(�) is the negative of the asymptotic slope of thelnP (X > B) vs.B curve, whereX is the stationary queue
length in the model of Figure 4. With this approximation we
need�� that solves��s(�) = ln qT��H � Lmax (16)

Since the linear approximation ofln p(�;B) ignores the small
buffer behaviour, this approach will overestimate��.

For a Markov Modulated Fluid Process (MMFP) feeding a
queue with a constant rate server, the functional relation be-
tween the asymptotic slope,z, of lnP (X > B), and the ser-
vice rate� is well known; see [12]. Suppose the MMFP is
characterized by(M;~�) whereM is the irreducible generator
matrix (transition rate matrix) of the controlling Markov chain.
The source with state spaceS generates fluid at the constant
rate�s when in states 2 S; let~� = ��1; �2; : : : ; �jSj�. Define

the matrix� = diag(~�). Then for givenz, the corresponding� is the maximum real eigenvalue of the matrix
��� 1zM�.

Let the generator matrixM for a two state MMFP source be
given by M = � �� �� �� �

and~� = [�1 �2]. The eigenvalues of the matrix
��� 1zM�

are solutions of the following equation:�2z2 � ��J1z2 + J2z	+ J3z2 + J4z = 0 (17)

where,J1 = �1+�2; J2 = �+�; J3 = �1�2; J4 = ��2+��1
Returning to the problem of estimating��, from Equation 16

it is clear that we needz = ln qT��H � Lmax = k�� l (18)

wherek = ln qT andl = H+LmaxT . Substituting this value ofz
in Equation 17 we get the following quadratic equation in�:�2(k � J2)� �(J1k � J2l � J4) + (J3k � J4l) = 0 (19)

We obtain the value of�� from the above equation using the
following theorem.

Theorem VI.1:The desired value of optimal token rate�� is
the larger of the two roots of Equation 19.
Proof : See Appendix II.2

Now in Equation 18,k < 0. So�� is given by the following
larger of the two roots of Equation 19.�� = (J4 � J1k + J2l)2(J2 � k) +p(J4 � J1k + J2l)2 + 4(J2 � k)(J3k � J4l)2(J2 � k)
For an on-off MMFP by setting�1 = 0 and�2 = R (peak
rate) in the above equation,J1 = R; J2 = �+ �; J3 = 0; J4 = �R
and we get�� = R (�� k) + l (�+ �)2 (�+ � � k) +q[R (�� k)� l (�+ �)]2 � 4Rkl�2 (�+ � � k) (20)

wherek = ln qT andl = H+LmaxT .

VII. SIMULATION RESULTS

A. Results for a 2-State On-Off Source

We first consider the on-off source used in [20], [13]. The
process has a mean on-time of53 time units and a mean off-
time of 52 time units. The other parameters are: peak rateR
= 170 packets/unit time, delay boundTe�e = 5 time units, and
QVP q = 10�5. If we take the unit of time to be 10ms, and 48
bytes of payload per packet (ATM cell), then these parameters
will correspond to a mean on-time of 16.67ms, mean off-time
of 25ms, peak rate of about 6.5 Mbps, mean rate of 2.6 Mbps,
and delay constraint of 50ms.
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Fig. 10. Optimal token rate�� vs the number of hops curve for link capacity of (a) 200 Kbits/unit time and (b) 70 Kbits/unittime. For three different values of

number of sessions the curves in (a) are overlapping.
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Fig. 11. The bufferB� vs the number of hops curve for link capacity of (a) 200 Kbits/unit time and (b) 70 Kbits/unittime.

For the estimation of�� the gain sequence parameters (see
Equation 14) used are:J = 3 andD = 4. The virtual buffer
valuesB1 = 2B3 andB2 = B2 are used along with scaling
factor� = 4.

The total capacity of each link (i.e.,ri) is 200 Kbits/unit
time. So for unit time of 10ms the link rate is 20 Mbps. We
consider aK hop path in a network of PGPS servers. We have
assumedVmax corresponding to a TCP packet of maximum
size 1500 bytes. Withri = 200 Kbits/unit time this gives an
additional delay of 0.06 time units. Thus for unit time of 10ms,
PGPS service system introduces an additional delay of 0.6ms.
Figure 10(a) and (b) show the values of�� obtained from sim-
ulation and from the approximate analysis, for link capacities
200Kbits/unit time and 70Kbits/unit time. Results are shown
for the number of sessionsn = 1; 2; and 3 for 200Kbits/unit
time; onlyn = 1 is possible with 70Kbits/unit time.

Observe that the value of�� increases with the increase in

number of hops but it does not change much with the number
of sessions. The analysis results and the simulation results for
three different values of number of sessions are almost sim-
ilar and so the three different graphs are overlapping in Fig-
ure 10(a). The primary effect of change in number of hops
comes through the addition ofVmaxri terms in Equation 4. This
term takes care of the additional delay introduced by PGPS
servers and it adds up as the number of hops traversed by a
session is increased. So the end-to-end delay budgetT de-
creases and the value of�� increases (see Figure 7). The effect
of change in number of hops or change in number of sessions
through theH term is negligible. In Figure 10(a) the increase
in �� with increase in the number of hops is not very signifi-
cant because of the high link capacity of 200Kbps/unit time (20
Mbps). As shown in the Figure 10(b) with the increase in the
number of hops the value of�� increases faster for a smaller
link capacity of 70Kbits/unit time (7Mbps).
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Note that the analytically obtained values and those obtained
from the simulation are quite close. As expected, the analysis
over-estimates the value of��. For the parameters chosen for
these experiments, for 200Kbits/unit-time, for three sessions
and a five hop path the optimal LB rate,�� is about 140 pack-
ets/unit time, i.e., almost 18% saving in the bandwidth require-
ment compared to the peak rate of 170 packets/unit time.

The value of bufferB� decreases as the number of hopsK
increases (see Figure 11). For a given number of hops if the
number of sessions is increased then becauseB� = T���H�Lmax, even though the value of�� remains almost constant,
the decrease in theH term increases the value ofB� slightly,
and this effect is visible in Figure 11(a). Since the value of��
increases withK more rapidly for a smaller capacity link, the
value ofB� decreases more rapidly for a smaller capacity link
as shown in Figure 11(b).

B. Results for Packet Voice

A single voice source with silence removal is well repre-
sented by a two-state process. Telephony speech consists of an
alternating sequence of active, ortalk-spurt, intervals, typically
averaging 0.4-1.2 second in length, followed by silence (inac-
tive) intervals averaging 0.6-1.8 second in length. To a reason-
ably good approximation, the sojourn times in the two states
may be assumed to be exponentially distributed. This gives
rise to a two state Markov modulated source process, with the
source emitting data at the peak rate ofR packets/second while
in talk-spurt and no data generation while in silence.

We take a packetization time of 20ms. So the voice source
generates a periodic stream of packets at the peak rateR = 50
packets/second while in talk-spurt. The speech parameters
which we have used for our analysis and simulation purpose
are the following (see [21], [22], [23], [24]). The mean talk
spurt length� = 400ms and mean silence length� = 600ms.
Thus the average voice activity factor is 40%. Usually the
voice activity factor lies between 35% to 48%. PCM coding
with sampling rate of 8KHz and 8 bits/sample gives a bit-rate
of 64 Kbps. Usually a packet loss fraction up to 0.1%- 1% is
found to be acceptable. Instead of dropping whole packets if
only selected bits of the packets are dropped then a loss frac-
tion up to 10% is also found to be acceptable (see [22]).

B.1 Lossless Multiplexing for Voice Packets

With Te�e= 100ms,ri = 2Mbps,Vmax = 1500 bytes (corre-
sponds to the usual maximum TCP packet size),q = 1%,� =
400ms,� = 600ms, and the peak rateR = 50 packets/second,
we show the optimal token rate�� vs number of hops, for dif-
ferent values of the number of sessions (n = 1; 10; 30) in Fig-
ure 12(a). For the estimation of�� the gain sequence parame-
ters used are:J = 6 andD = 2. Here since we are operating in
the small buffer region we do not need the arrangement shown
in Fig 9; we can directly measure the loss probability. Observe
that the value of�� is only slightly smaller than the peak rate
of the source. As shown in Figure 13(a) the maximum buffer
requirement for lossless multiplexing withTe�e = 100ms is
also very small, i.e., 3.5 packets. With lossless multiplexing,

there is not much saving in bandwidth in this case as the value
of Te�e is much smaller than the burst duration.

Observe from Figure 12(a) and Figure 13(a) that for number
of sessionsn = 1 and end-to-end delay requirement of 100ms
the source can traverse at most two hops. For the number of
hopsK > 2, H+LmaxT > R (see Figure 7), i.e., the end-to-end
delay bound cannot be satisfied (at least using the worst case
delay bounding approach used in this paper).

If we relax the maximum allowed end-to-end delay for
the voice source, e.g., say 1 second for a streaming lecture
transmission then, as shown in Figure 12(b),�� � 36 pack-
ets/second compared toR = 50 packets/second, i.e., there is
a 28% saving in the required network bandwidth for lossless
multiplexing. As shown in the figure the value of�� does
not increase much with the increase in number of hops. Simi-
larly for different values of number of sessions, except for then = 1, the curves of�� vs number of hops are overlapping.
Similar kind of results are shown for bufferB� vs number of
hops in Figure 13(b), where the value ofB� is 28 to 35 pack-
ets as compared to 1.5 to 3.5 packets for an end-to-end delay
of 100ms.

Effect of Measurement Period
The effect of measurement period on the convergence of the�� estimation algorithm is shown in Figure 14. The plots are

for n = 20;K = 5, with Te�e = 1 sec; the algorithm gain
parameters areJ = 6 andD = 2. There are two columns
of plots in the figure; the first column shows the iterates of�
and the second column shows the measured values of the delay
violation probability. As the update time period is increased
the measurements are less noisy. We could obtain a reasonable
convergence in 3-4 iterations for a measurement period of 10
seconds.

Remark on Renegotiation:With reference to the discussion in
the Introduction, we can expect that a protocol such as RSVP-
TE can be used to renegotiate theaggregate raterequired by
the sources as the measurement updates proceed and better es-
timates of�� are obtained at each source. The soft-state of
RSVP-TE provides the possibility that PATH messages can
carry the aggregate rate requirements of the sources being mul-
tiplexed into the LSP, and thus will serve as renegotiation re-
quests.

B.2 Lossy Multiplexing for Packet Voice

Motivated by the result in Section IV, it is reasonable for
the source to use a token rate of�� for each of the sources.
For lossless multiplexing, and an end-to-end delay constraint
of Te�e with a QVP= q, the source can use any� such that0 � � � T���H�Lmax; thenBs = T���H�Lmax��,
and the network sets the per source bandwidth toC = ��.
Thus this approach does not yield a unique value of� (if the
linear buffer-bandwidth cost function is used then, for a fluid
model,�� = 0 minimises such cost, as explained at the end
of Section IV). Clearly, a positive� would facilitate statistical
multiplexing, andif a packet loss probability comparable to
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Fig. 12. Optimal value of�� vs number of hops for maximum allowed end-to-end delay of (a)100ms and (b) 1 second, for an on-off voice source.
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Fig. 13. The bufferB� vs number of hops for maximum allowed end-to-end delay of (a)100ms and (b) 1 seconds for an on-off voice source.
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capacity for a multiplexer loss probability of 1%. Plots areshown for
various numbers of multiplexed sources. Along each curve the value of�
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the QVP3 is permitted then the network resource requirement
could be reduced.We denote the loss probability in the first
network node bypm.

First consider the single hop case,K = 1, and a fluid model;
i.e.,H = 0; Lmax = 0 and we get the model of our earlier pa-
per [20]. The input to the shaper is a two-state MMFP. When
this kind of a fluid source is fed to the shaper, the output pro-
cess is approximated by a three state MMFP (see [12]). To
analytically estimate the value of the per source capacity re-
quired at the multiplexer, we use an asymptotic approximation
with the three state MMFP as the input source; see [13]. We
use this analysis without giving its details here, owing to space
constraint. Since we are considering a fluid model we haveB� = T��. We takeTe�e = 40ms,ps = 1%, pm = 1%,� = 400ms,� = 600ms and peak rateR = 50 packets/second
for voice packets. For the above voice parameters the effec-
tive bandwidth approach gives the per source capacity vs the
per source buffer requirement curves as shown in Figure 15.
These curves are obtained as follows. Note that for each value
of �; 0 < � < T��, the network delay permitted for the source
is ��� . Hence, with� fixed at a value in the range, the per source
capacityc(�) is found such that probability of the multiplexer
buffer exceeding�nc(�)�� is pm (see [20]).

We obtain the results for number of sessionsn ranging from
10 to 50. In Figure 15, for a given value ofn as the value
of � is increased from 0 toT�� the value of per source ca-
pacity requirement decreases from the value��, and the value
of per source buffer requirement increases. The value of op-
timal token rate is��= 48.95 packets/second. For� = 0 the
required capacity is equal to��; thus there is not much band-
width saving if lossless multiplexing is used. Denote the mini-
mum value of the per source required capacityC, correspond-
ing to� = T�� byCmin. Observe that, with lossy multiplex-
ing, for the case ofn = 50,Cmin = 31 packets/second andB�
= 1.2 packets. Thus, there is 38% saving in the bandwidth
requirement with a correspondingly very small buffer require-
ment. These results are indicative of theadditional bandwidth
savings if optimal shaping is combined with lossy multiplexing.
With these curves, we can ask the question ofminimising a
linear capacity-buffer cost function for lossy multiplexing. For
each value ofn the optimal per source buffer and per source
capacity will be found to lie on one of these curves; the corre-
sponding value of�; 0 � � � T�� will be the optimal token
bucket size, thus yielding the optimal LB parameters(��; ��);
these ideas have been developed in [20], [13].

Finally, we report the results of a simulation study with
packet voice, optimal shaping and lossy multiplexing. We con-
sider the parameters:Te�e = 100ms and 1sec,ps = 1%, pm
= 1%,� = 400ms,� = 600ms and peak rateR = 50 pack-
ets/second for voice packets. We take the link capacityri equal
to 2Mbps; there areK = 5 hops andVmax = 1500bytes.
We first determine the value of��; this limits � to 0 � � �T�� � H � Lmax. We set� = T�� � H � Lmax, the max-3Note that if we think of a packet that is delayed more thanT as being
equivalent to packet loss, then a packet loss ratio ofq at the network node still
yields a QVP of1� (1 � q)2 � 2q � q for q small.
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Peak n �� (pps) B (pkts) Cmin (pps) BufferBm (pkts)
Rate anal sim anal sim �max anal sim anal sim
(pps)
50 5 49.22 48.56 1.44 1.40 1 46.47 45.47 6.52 4.36

10 48.97 48.56 1.93 1.90 2 42.09 39.31 15.85 15.24
15 48.88 48.10 2.09 2.03 2 38.96 36.41 23.94 21.49
20 48.84 48.10 2.17 2.12 2 36.61 34.64 31.24 27.40

TABLE I

RESULTS FOR PACKETISED ON-OFF VOICE SOURCES: ANALYSIS AND SIMULATION RESULTS FOR OPTIMAL TOKEN RATE�� , B = Bs + �, AND PER

SOURCE REQUIRED CAPACITYCmin , AND BUFFERBm , AT THE MULTIPLEXER WITH � = �max . PARAMETERS: Te�e = 100MS, ps = 1%, pm = 1%,K = 5 HOPS, Vmax = 1500BYTES, AND Clink = 2 MBPS.

Peak n �� (pps) B (pkts) Cmin (pps) BufferBm (pkts)
Rate anal sim anal sim �max anal sim anal sim
(pps)
50 5 36.41 34.54 33.32 31.50 31 25.77 23.08 116.46 101.92

10 36.30 34.49 33.71 31.96 32 23.14 20.96 213.04 186.46
15 36.27 34.36 33.84 32.00 32 22.15 20.24 308.02 280.62
20 36.25 34.28 33.91 32.01 32 21.62 19.67 402.60 365.14

TABLE II

RESULTS FOR PACKETISED ON-OFF VOICE SOURCES: ANALYSIS AND SIMULATION RESULTS FOR OPTIMAL TOKEN RATE�� , B = Bs + �, AND PER

SOURCE REQUIRED CAPACITYCmin , AND BUFFERBm , AT THE MULTIPLEXER WITH � = �max . PARAMETERS: Te�e = 1SEC, ps = 1%, pm = 1%,K
= 5 HOPS, Vmax = 1500BYTES, AND Clink = 2 MBPS.

imum value�max; this will result in the minimum possible
value ofC, the per source capacity. We then determine the
value ofC andB by analysis and simulation. The analytical
results reported are from the approximations discussed above
(Cmin is obtained by using the 3-state Markov model for the
LB output, as also discussed above in this section). The vir-
tual buffer technique as developed earlier in the paper is used
in the simulation. In this simulation we are feeding the LB
by a packetized source process, and we have rounded off the
value of� to the nearest integer value. Hence,�max in the
tables denotes the maximum possible integer value for�, and
correspondingly the minimum value of the per source capacity
is denoted byCmin. The results obtained through simulations
for different values ofn are summarized in Tables I and II. No-
tice that withTe�e = 1sec, we get a substantial reduction in�� (�� is about 49 withTe�e = 100ms, but reduces to about
36 forTe�e = 1sec), and also since larger values of� can be
usedthe additional reduction in network capacity from statis-
tical multiplexingis also greater (Cmin is about 36 to 47 forTe�e = 100ms, but drops to about 21 to 26 forTe�e = 1sec).

VIII. C ONCLUSION

In this paper, we have considered statistically identical, peak
rate controlled, and leaky bucket shaped sources feeding a mul-
tiplexer. For a shaping plus multiplexing delay constraint, and
constraint violation probability, we have considered lossless
multiplexing in the network, and have formulated an optimi-
sation problem that leads to a network bandwidth minimising

choice for the token rate parameter (�). For the optimal sus-
tainable rate parameter so obtained, we have studied a stochas-
tic approximation technique for on-line computation of this pa-
rameter at the source.

We showed that for a stringent end-to-end delay requirement
(meaning that the delay bound is small compared to the source
burst duration), as in the case of packet telephony, the optimal
token rate�� is only slightly less than the peak rate. But if we
relax our end-to-end delay requirement for the voice source,
e.g., say 1 second for a streaming lecture transmission, then
using optimal shaping we obtained 28% reduction in the band-
width requirement. Since in the case of stringent end-to-end
delay requirement we could not get much capacity gain using
optimal shaping and lossless multiplexing, we experimented
with lossy multiplexing. For the lossy multiplexing case we
showed that there is a significant reduction in the bandwidth
requirement (relative to the peak rate) as the value of� is in-
creased from 0 toT�� �H � Lmax. This reduction in band-
width is more if the end-to-end delay bound is large compared
to the source burst duration.

The homogeneous source and QoS (sameT andq) model
is appropriate for IP telephony sources being multiplexed at
an “IP PBX”. Further work is needed to relax the assumption
of source homogeneity, and the requirement that all the sources
need the same QoS. Our treatment of the statistical QoS case in
this paper is entirely by simulation; recent results on statistical
analysis with LB shaped sources can be used to develop an
analysis for lossy multiplexing as well.
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APPENDIX

I. PROOF OFTHEOREM IV.1

Proof: Using the objective function first we obtain the condi-
tion for the following inequality to hold� � R + �R��� �H1 + �T � B��+Lmax� ��R��� �
i.e., 1 � R (� +H)� �H�� + (T��B � Lmax + �) (R� �)
SinceT � �B��+Lmax� = Bs+Lmax� �

andR � �, we have�� + (T��B � Lmax + �) (R � �) � R (� +H)� �H
from which we getT� � B +H + Lmax
Thus, independent of�, � > R(1+H� )��(H� )1+(T�B��+Lmax� )(R��� ) forB < T��H�Lmax. Recall thathq(�) is the inverse function
of gq(�) as discussed in Section II. Sincegq(�) is decreasing
and convex, the same properties also hold forhq(�). Now �
andB are related by� = hq(B), and�� is defined by the solu-
tion of � = hq(T��H�Lmax), i.e.,B� = T���H�Lmax.
Sincehq(B) is decreasing inB, Thq(B) > B + H + Lmax
for B < (T�� � H � Lmax). Thus, for� = hq(B), we can
write (see Figure 16; see also Figure 7),C(B) =8>>>>>><>>>>>>: hq(B)

if B < (T�� �H � Lmax)R(1+H� )��(H� )1+(T�B��+Lmax� )(R��� )
if B � (T�� �H � Lmax)

(21)
We see that theC vs B curve is just thehq(B) curve up toB� = T�� �H � Lmax, and is hence decreasing up toB� =T�� � H � Lmax. We will now show that forB > T�� �H �Lmax, C(B) = R(1+H� )��(H� )1+(T�B��+Lmax� )(R��� ) � ��. This will

establish the result.
Notice that forB � T�� �H � Lmax, andB = gq(�), we

haveB � (T��H�Lmax) as can be seen from Figure 7. Also
we have, from the constraints, thatB+Lmax�T� � � � B. It
can then be shown that (some detailed algebraic manipulations
are needed), forB � T�� �H � Lmax andR � �,R �1 + H� �� � �H� �1 + �T � B��+Lmax� ��R��� � �R �1 + H+LmaxB �� � �H+LmaxB �1 + TB (R� �)
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Fig. 16. Capacity requirementC at multiplexer (first network node) as a
function of total bufferB at the shaper.�r is the mean rate of the source.
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Fig. 17. The maximum real eigenvalueg1(z) is a concave decreasing function
of z, while f(z) is a convex increasing function ofz. The other eigen-
value, i.e.,g2(z), is shown to be concave decreasing but it can be of any
shape which satisfies the conditiong1(z) > g2(z); 8z 2 (�1; 0].

Hence it suffices to show that, forB � T�� �H � Lmax,R �1 + H+LmaxB �� � �H+LmaxB �1 + TB (R � �) � ��
But this follows since, by the convex decreasing nature ofgq(�), we have, for�r < � < ��, andB = gq(�) (see Figure 7),T�� �H � LmaxR� �� � BR� �) RB + (R� �)(H + Lmax)B + T (R� �) � ��) R �1 + H+LmaxB �� � �H+LmaxB �1 + TB (R� �) � ��
In Figure 16 the increasing solid curve to the right ofB� =T�� � H � Lmax is a sketch of the lower bound toC, i.e.,R(1+H+LmaxB )��(H+LmaxB )1+ TB (R��) . Note that the conditionB� =T�� �H � Lmax > 0 implies H+LmaxT < �� < R.

II. PROOF OFTHEOREM VI.1

Proof: It is shown in [12] that there exists a real eigenvalue,
sayg1(z), of the matrix

��� 1zM�, such that ifg(z) is any
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other eigenvalue then Re(g(z)) < g1(z). For a 2-state MMFP,
we denote the maximal real eigenvalue byg1(z) and the real
part of the other eigenvalue byg2(z). So we haveg1(z) > g2(z); for all z 2 (�1; 0] (22)

Since the maximal real eigenvalue of the nonnegative, irre-
ducible matrix

��� 1zM� is a strictly concave decreasing
functionof z [12], we haveg1(z1) > g1(z2) 8 z1; z2 such thatz1 < z2 (23)

Now from the asymptotic slope constraint shown in Equa-
tion 18,z = k��l , wherek = ln qT andl = H+LmaxT . Definef(z) = kz + l. Observe thatk < 0 andf(z) is astrictly con-
vex increasing functionof z; z 2 (�1; 0], as shown in Fig-
ure 17, where sketches ofg1(z) andg2(z) are also shown. Here�� � g1(z) � �̂, where�� is the mean rate and̂� is the peak rate
of the source process. It is clear thatf(z) will intersectg1(z)
at a unique point, sayz1. If f(z) does not intersectg2(z) (as
an example ifg2(z) < 0 8z 2 (�1; 0]) then we have unique
root g1(z1) of Equation 17 with asymptotic slopez1 and we
are done. Consider the other case thatf(z) intersectsg1(z) atz1 andg2(z) at z2. It is now easily seen that, with the proper-
ties off(z) andg1(z) described above, the only possibility is
thatz1 > z2, as shown in Figure 17. Theng1(z1) = f(z1) > f(z2) = g2(z2) (24)

Thus we haveg1(z1) > g2(z2) and the larger root corresponds
to the maximal real eigenvalueg1(z) with z = z1, the inter-
section point ofg1(z) with f(z). 2
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