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Abstract—The general problem we consider is the analysis of
a model in which there are several routes in a network, on each
route elastic flows arrive randomly according to some arrival pro-
cess, and each flow transfers a finite volume of data sampled from
some distribution. We are interested in computing a measure of
average flow throughput on each route, for a given bandwidth
sharing mechanism. Such models arise in problems of network
dimensioning and traffic engineering.

In this paper, we assume Poisson arrivals of file transfer re-
guests on each route, the transfer volumes are fluid and arbi-
trarily distributed. At each instant the network shares the band-
width among the ongoing flows according to the max-min fair
bandwidth sharing mechanism, i.e.,Instantaneous Max-Min Fair
(IMMF) sharing. The measure of performance we consider is the
time average bandwidth obtained by flows on each route. We pro-
pose a heuristic algorithm for obtaining an approximation for this
performance measure for arbitrary routes in an arbitrary net-
work topology. Simulations with various network topologies are
used to evaluate the proposal. In spite of its simplicity, we find
that the approximation works quite well in a variety of topologies
that we have studied.

I. INTRODUCTION

Traffic engineering of networks requires effective models
that can predict the performance seen by end users. An im-
portant performance measure is the average throughput of
flows belonging to a particular route. Most studies related
to throughput analysis ([1], [2], [3]) have assumed persistent
flows, i.e., the flows transfer an infinite amount of data. In re-
ality, new sessions start, transmit some finite number of pack-
ets and then close their connections. Hence the consideration
of aflow arrival process and random transfer volumesin mod-
eling elastic flows in a network is important. In this situation,
the throughputs of the flows in a route depend on the random
number of ongoing transfers on the various routes, and on the
network topology.

Inthework presented here, we consider an arbitrary network
topology with fixed routes. On each route, we assume that
transfer requests, or flows, arrive in a Poisson process. Each
request is for the transfer of a random volume of data, and
the sequence of transfer volumes are independent and identi-
caly distributed. We assume that instantaneous max-min fair
(IMMF) sharing is achieved in the network; i.e., at each instant
of time the rate obtained by a flow on a route is its max-min
fair share given the ongoing flows at that time. Such models
have been proposed in [4], [5], and [6]. We adopt the average

bandwidth share of the flows on different routesin the network
as our performance index. In this modeling framework, our
contribution is an algorithm to approximately calculate the av-
erage bandwidth share of flows on each route. Simulations for
different network topologies have been performed to evaluate
this proposal.

In ATM networks, elastic flows are carried on the ABR
(availablebit rate) service, and the bandwidth sharing objective
isto achieve max-min fairness. If the bandwidth-delay product
is small compared to the flow durations then the ABR control
loops would converge relatively quickly compared to the time
scales of variation of the number of flows on the routes, and
approximately IMMF sharing would hold (see, for example,
[7D).

In aninternet, bandwidth sharing is achieved by TCP's end-
to-end adaptive window mechanism. Recent research has sug-
gested that TCP's AIMD rate control, based on packet-loss
feedback, is equivalent to a bandwidth sharing objective called
F% fairness [8]. It has been shown in [9] that TCP Vegas
achieves proportional fairness; see aso [10]. In some sim-
ple situations (simple topologies or a single bottleneck for
each route) proportional fairnessis equivalent to max-min fair-
ness. Further, TCP can be viewed as a whole class of adaptive
window based algorithms, and the bandwidth sharing that is
achieved depends on the network feedback and source adapta-
tion. With this point of view, it can be seen that with appro-
priate feedback from routers TCP can actually achieve max-
min fairness ([11]). Each link computes its MMF parameter
n, | € L (the set of al links) (see [7]), and marks packets
passing through it with probability e=*", for some o« > 0.
For large « it follows that the total marking probability along
route r is approximately e« ™iner. m where L, is the set of
all links carrying route r (see also [12]). Thus each source on
route r effectively learns min, ¢, n; (its fair rate), measures
the round trip time along the path and adjusts its window ac-
cordingly (seeaso [13]).

Some prior literature related to our work is the follow-
ing. The importance of traffic engineering models with non-
persistent flows has been highlighted in [14]. In [4] the au-
thors consider the same stochastic model as we do, and for
exponentially distributed transfer volumes they provide an er-
godicity condition for the process of the number of flows on
each route. The fairness objectives considered are: max-min
fairness, weighted max-min fairness and proportional fairness.
These results are generalised in [5] to a broad class of fairness
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Fig. 1. A backbone network showing bidirectional links, and several routes
on which finite volume flows arrive randomly; also shown are routes (i j),
(@i,k) and (i,l).

objectives, of which max-min fairnessis a special case. Com-
putational results are provided for some simple topologies. In
[6] abandwidth sharing objective called “min bandwidth shar-
ing” isintroduced, and atechnique is studied for performance
analysis with this policy in large networks with certain struc-
ture. The papers[4], [5], and [6] all make the assumption that
the bandwidth shares adjust instantaneously as flows arriveand
depart. This can be expected to be a good approximationto the
actual network behaviour when the delay-bandwidth product
is small relative to the transfer volumes.

There are afew papers on performance models of TCP con-
trolled bandwidth sharing, with finite volume flows. Simple
single link networks are studied via product form queueing
models in [15] and [16]. A detailed model for an additive-
increase and multiplicative-decrease congestion control proto-
col, with session arrivals and departures is provided in [17].
An iterative technique for networksis proposed in [18].

The difficulty of exact computation of performance in our
model has been recognised in [19] and [20]. In the latter thesis
some approximations are provided for simple topologies.

Il. THE MODEL AND NOTATION

Network and Traffic Model: We consider a backbone packet
network of a service provider or an enterprise, and assume that
this backbone network is the bottleneck for the traffic it car-
ries. There are several fixed, unidirectional routes between the
edge routers. The source router of each of these routes sees a
random arrival process of initiations of the transfer of random
volumes of data to the destination router of the route. We de-
pict this scenario in Figure 1. For a route with source node i
and destination node j, A; ; istherate of arrival of flowsfrom¢
to j. Each bidirectional link of the network is represented as a
pair of separate unidirectional links carrying traffic in opposite
directions, i.e., we think of the network as a directed graph as
shown in Figure 1. In this work when we use the term “link”
we mean a unidirectional link.

Modeling assumptions: Flow arrival instants on each route
congtitute a Poisson process; the transfer volumes are inde-
pendent and identically distributed and are independent of the
arrival process. The Poisson approximation for the arrival pro-

cess of file transfer connection initiations has been found to be

reasonablein [21]. It may also be reasonable to model the ini-

tiations of web sessions as a Poisson process, considering that

the backbone sees arrivals from alarge number of independent

users. Further, the Poisson flow initiation model is mathemat-

ically tractable and has been used by several researchers ([4],

[5]). We assume that the network bandwidth is shared among

theflowsat timet in the IMMF fashion, as defined in theintro-

duction. Note that for the case of asingle link, IMMF reduces

to bandwidth sharing in the Processor Sharing manner.
Theorem 3.1 of [4] and Theorem 1 of [5] state that the vector

random process of the number of flows on the various routes

convergesin distribution if the total offered bit rate on any link

is less than the link capacity; in [5] it is also asserted that this

result holds for arbitrary transfer volume distribution.

Notation: In a network with R fixed routes and a fixed set £

of L links, we use the following notation.

R: set of all routesin the network; |[R| = R

A-. rateof flow arrivalsonrouter € R

V.. random variable denoting the transfer volumes on route r,

r € R; it hasmean E(V;)

C;: the capacity of link j € L

pl: normalised load on link j from route r that uses link j;

ie,pl = AB(Vr)

N, (t);r € R: " the number of flows in route  at time ¢

(N1, N»...NR): stationary random vector for {N,(t) : r €

R}

m(ny,ne..npg): stationary distribution of (N1, N»...Ng)

In the case of a single link network with a single route (or

single “class’), we use this notation without the subscripts and

superscripts. The notation also appliesto asinglelink network

with several routes (or classes).

I1l. THE PERFORMANCE MEASURE
A. Sngle Class Traffic on a Link

On a single link, of bit rate C', IMMF bandwidth sharing
reduces to an M/G/1 processor sharing model. There are vari-
ous measures of flow throughput (refer [17] for a detailed de-
scription). We consider the time averaged bandwidth share per
ongoing flow, conditioned on there being at |east one flow, as
our performance measure. Thiswas introduced in [20] and is
defined as,

t ¢
i Jo may linwy>oydu
T t
Jo Iinvwy>0ydu

t—00

1 ifN(u)>0
0 otherwise
o has been found to approximate the average flow throughput
well while being computationally tractable [17]. For p < 1 it
is easy to see that,

D

where It n(w)>0y = . On asingle link,

% mn)
S @

g =
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For the M/G/1 PSmodel 7(n) = (1 — p)p™ and hence,
o 1—p 1
— ==l ln— 3
C p S P 3
Since 7 isinsensitive to the distribution of V', soiso.

B. Multi-Class Traffic on a Link

When multiple routes share alink we view the link as being
shared by multiple traffic classes. Defing, n = n; + ns +
...... + ng. The steady state distribution of (N, Ns....Ng) is
given by [22]

R 5
m(ni,n2...ng) = (1—p)n! H % @

r=1

where p = ZZB: 1 pi- The time average per flow bandwidth
shareof classr,i.e, o.,r € R, isdefined asthe time averaged
rate per ongoing flow, conditioned on there being at least one
classr flow. Hence,

e
Jo e Live(wy >0y du

()

o, := lim
t—o0

t
Jo T, (>0 du

where N'(u) = > cx Ni(u), i.e, thetotal number of flows at
time v on this link. Note the difference between ¢, and o as
defined earlier for single class traffic. For p < 1,

c
E(”ly”Z:----nR):nr>0 (n1+n2+....4+ng) 71'(’[7,1 ’ n2""nR)

Z(nl,nz,....nﬂ):nr>0 7T(TL1,’I7,2, ...,nR)

or =

and we can easily simplify thisto (details are givenin [23]),

1-p)1 - p, 1—p,
od=n) p)ln( r ©)
pr I-p
where p, = > ycr.iz, pi- Note that when there is only one
class of traffic, g3 = 0, py = p and Equation 6 yields oy =
C+£In(1L5), whichisthe same as o, as expected.

O, =

IV. APPROXIMATELY CALCULATING o, IN A NETWORK

We define the per flow bandwidth share of a route in a net-
work as the time averaged IMMF rate per flow belonging to a
particular route, conditioned on there being at least one flow
active on that route. Denoting thisby o ,., we see that

t
Jo T (W), (wy>0rdu
t
Jo Lin, (w03 du

(")

or = lim
t—o0

where z,.(u) is the max-min fair rate of a flow in route r in
the network at time w; this, of course, depends on the vector
(N1(u), No(u),- -+, N,.(u)). To get a closed form expression
for o,. in anetwork we need to know the stationary distribution
of the number of flows in different routes. This is a difficult
problem to solve ([6], [19], [20]). We, therefore, propose a
heuristic algorithm to obtain ., r € R.

A. Motivation: Obtaining o, Recursively on a Sngle Link

Consider again a single link, and let, o (C; p1, p2, .---PR)
denote o, with total link capacity C' and normalized load p;
onroutej, 1 < j < R. Asshown above,

o (C; p1, p2, ---PR)
C(l_P)(l_P_k) ln(l_p_k) (8)
Pk L—p

with i = S0y 4 P

Theorem IV.1: Consider a given indexing of the R routes.
Thenfor k € {1,2...R}
o (C; p1, p2, -pr) = o (C(1 -
|
The proof of this theorem involvestrivial checking (see [23]).
The above theorem implies the following recursive approach
for calculating o, 1 < k < R, onasinglelink, paraleling the
approach for persistent flows (asin [24]).
Recursive algorithm on a single link: Fix an indexing
of the routes k,1 < k£ < R. Then compute oy =
o1(C;p1,p2,....or). The average bandwidth share of the
flows in route 1 is given by 0. The total bandwidth utilised
by route 1 is C'p; (unlike persistent flows this does not depend
on the bandwidth shares of the other routes). Using the above
theorem, we can then computeos = o2 (C'(1—p1); p2, ----pR)-
Thus at each step the link capacity is reduced by the amount
taken up by the routes examined until that step and the band-
width shares of flows in the remaining routes are computed
assuming that the remaining routes share the reduced link ca-
pacity.

k—1
Zi:l Pi); Pk» Pl+1---PR)

B. Algorithmfor Approximate Calculation of o,. in a Network

In this recursive algorithm we determine average bandwidth
share of asingle route in each iteration. We remove this route
from the topology and adjust the capacity of the links carrying
this route. Hence on every iteration the route-link incidence
matrix (defined below) and the remaining capacity of the links
changes.

B.1 Additional Notation Used

R™): total number of remaining routes in the network in iter-
ation k. Initialy, R(© = R.

+(¥): thelth element of thisvector isthe remaining capacity of
link I € L of the network (say 7\*’) in iteration k; i.e., v =
gy Initidly, 1 = ¢, Vi€ L.

A®): the route-link incidence matrix in iteration k; i.e.,

AW = [0l r|x 1)) Where,

() _ [ 1 ifrouteiiscrossinglink j
% T 0 otherwise

y: the rth element of this vector is the approximation to the
average per flow bandwidth share o, for route r € R in the
network
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pgf(’“): load on link j due to route i normalized to the remain-
inglinkcapacityiniteraﬁionk;pg(k) =MBV) ieR,jeL

g

suchthat a{f) =1

af (k). average bandwidth share of route i on link j consider-
ing link 5 inisolation, in iteration k

B.2 Algorithm

Wetake arouter inthe network and consider the set of links
carrying this route. We calculate o, considering each link [
separately (e.g., for router onlink [ thisis ). This computa-
tion is repeated for al the routes. We now take the minimum
of al 0!, Vr € R,VI € L. We assign this minimum value as
the average bandwidth share of the corresponding route. Now,
this route, say rg, is removed from the routing topology and
the capacities of all thelinksthat carry thisroute is reduced by
Ao EV,,. The above procedureis repeated to find the average
bandwidth shares of all the routes. At the kth step, £ > 1, the
algorithm works as follows
Step (1): We consider each link of the topology separately
and calculate o7 ¥ 1) Thus, in this step, while calculating the
average bandwidth shares we consider each link and the routes

init inisolation. Hence, o/ * ™), i.e., the average bandwidth

shares of flowsinroutei over link j, whenlink j is considered
aloneis given as (see Equation 6)

r=1:al" =1
(1~ Ef:1:r¢i,a£§’”:1 /’Z(k_l))
pl Y
M 1- Zf:l:r¢i,a£§*1)=1 pi(kil)
1- Zf:mi’;*l)ﬂ i
9)
Step (2): Wefind
okt = min{ag(kfl), Vi e RYj € L with agffl) =1}

We say that route nj_; is bottlenecked in link my_; in some
average sense; i.e., the throughput of this route is determined
by link my_;. Now we assign this value to ¢,,, _, ,i.e., the
average bandwidth share of routenj_; is approximated as

— Mk-1
¢nk—1 - Unk,l

Step (3): Thisroute nyi_; isnow removed from the network.
Necessary changesare madein the route-link incidence matrix,
and a new route-link incidence matrix A*) is formed.

{

a%-cfl)

0

Vi € RandVj € L such thati # nj_1
otherwise

(k)

a;;

and R*) = R(k=1) _ 1,
We reduce the capacity of each link in the network over
which the route ny,_; flows by an amount of A, _, E(Vj,_,)-

Nk—1
Thus, v = {7\";j € L} issuch that
L WY Ny E(Vi, ) Vjsuchthatal M =1
J S otherwise

Step (4): k is incremented, and steps (1) to (4) are repeated
until no more routes remain.

V. COMPARISON OF ANALYSISWITH SIMULATIONS
A. Simulation Setup

We have compared the results of our analysis with a simu-
lation of the fluid model whose analysis we are approximat-
ing. A network topology with some fixed routes is chosen.
We simulate the arrivals of flows on each route, the random
transfer volumes, and the ideal IMMF bandwidth sharing. In
the simulation we have considered two distributions of trans-
fer volumes. exponential distribution, and hyper-exponential
distribution matched to a Pareto distribution. Note that the ap-
proximateanalysisisinsensitiveto the distribution of thetrans-
fer volumes. Thisis, of course, known to be exact for asingle
link.

B. Example 1: A Line Network

Route 1
Route 2
A
256 Kbps 128 Kbps
256 Kbps 128 Kbps

Fig. 2. A two link, low speed network topology with two routes.

300

Route 1-Analysis
alysis

o - Route 2— Analy.

Average Bandvidth Shae n K
n N N

Fig. 3. Average bandwidth share vs. arrival rate for the network shown in
Figure 2 ; exponentialy distributed flow volumes.

Figure 2 shows a simple low speed network, with two links
intandem, and two routes. Thearrival rates of flowsto both the
routes are taken to be the same. The plot of average bandwidth
shares (with expontialy distributed flow volumes having mean
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Route 2 — Analysis
Route 1 — Analysis

Route 2 — Simulation
Route 1 — Simulation

[

250

Average Bandvidth Share in Kbps
n " N
g 1 3
g g g

a
-}

0.1 0.2 0.3 0.4
Arrival rate of file transfer requests on any route

6.7

Fig. 4. Average bandwidth share vs. arriva rate for the network shown in
Figure 2; flow volumes distributed as amixture of 7 exponentials matched
with a Pareto distribution.

25 Kbytes) isshownin Figure 3. Observethat aflow on route 1
can get ashare of at most 128 Kbpswhile on route 2 aflow can
get at most 256 Kbps. Notice that when the arrival rates go to
0, as expected, the flows on each route do get these maximum
possible shares. The bandwidth shares drop asthe arrival rates
increase. At the arrival rate of 0.64 flows per second the links
saturate and the bandwidth shares become zero.

Figure 4 showsresultsfor a heavy tailed distribution of flow
volumes. We take the flow volumeas V' = 25 ZKbytes, where
Z hasthe Pareto distribution with complementary distribution
givenby F°(z) = (14+bz) %, witha = 2.2andb = .8333 (i.e,
with mean 1). In the simulation we approximate this heavy-
tailed distribution with amixture of 7 exponential distributions
(see [25] for this Pareto distribution and this approximation).
We get a hyper-exponential distribution with mean 0.9559 ap-
proximating the Pareto distribution; we use the same mean vol-
ume (0.9559 x 25Kbytes) in the analysis. Note that since the
mean of the flow volumesis less than 25K bytes, in Figure 4 at
the arrival rate of 0.64 the bandwidth shares are not zero.

We observe from Figures 3 and 4 that the analysis and the
simulations match very well, thus supporting our heuristic.

C. Example 2: A Mesh Network

16

15

Fig. 5. A mesh network with 9 links and 16 routes. All links are of bandwidth
1Mbps. The numbers in the circles indicate link numbers, the others are

route numbers.

We take an arbitrary mesh network with 9 links and 16
routes as shown in Figure 5. The simulation and analysis re-

Average Bandwidth Share in KBps
4
1
1
'
'

o 01 0.7 0.8 0.9

0.4 0.5 0.6
File Transfer Request Arrival rate

Fig. 6. Average bandwidth shares of flows on routes 1,2,3, and 4, in Kbps vs.
arrival rate, for the mesh network in Figure 5; exponentially distributed file
sizes

Average Bandwidth Share in Kbps
’

) 0.1 0.2 0.3 0.7 ) 0.9 1

0.4 0.5 0.6
File transfer request arrival rate

Fig. 7. Average bandwidth shares of flows on routes 14,15, and 16, in Kbps
vs. arriva rate for the mesh network shown in Figure 5; exponentialy
distributed file sizes

sults are plotted in Figure 6 and Figure 7. The arrival rates of
flows on @l the routes are taken to be the same, and the mean
file sizes on al the routes are equal (25Kbytes, exponentialy
distributed). The capacity of all the links is 1IMbps. Here we
show the result for a subset of the routes in the network (see
[26] for al the simulation results).

Note that the algorithm overestimates the bandwidth share
in every case, but is a good approximation. For most of the
routes the error is less than 10%, with worst case error being
25% (route 15 in Figure 7).

Route 1: Analysis JN <%
Route 1 — Simulation -~ -
Route 2 — Analysis = =4
Route 2 — Simulation N

ROute 3 — Analysis N

Route 3 — Simulation

Route 4 — Analysis
Route 4 — Simulation

Average bandwidth share in Kbps

0.2 CE) 0.7 0.8 0.9 1

0.2 0.5 0.6
Arrival rate of file transfer requests

Fig. 8. Average bandwidth share in Kbps of flows on routes 1,2,3, and 4 vs.
arrival rate for the mesh network shown in Figure 5; file sizes distributed
as amixture of 7 exponentials matched to a Pareto distribution.

We also show analysis and simulation results using a heavy

tailed flow volume distribution (a mixture of 7 exponentials
as described above in Section V-B) in Figure 8 and Figure 9.
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Route 14 — Analysis ~

Route 15 — Simulation S B
Route 15 — Analysis
Route 16 — Simulation
Route 16 — Analysis

0.2 0.3 0.7 0.8 0.9 1

0.4 0.5 0.6
Arrival rate of file transfer requests

Fig. 9. Average bandwidth share in Kbps of flows on routes 13,14,15, and
16 vs. arrival rate for the mesh network shown in Figure 5; file sizes
distributed as amixture of 7 exponentials matched to a Pareto distribution.

Results are shown for routes 1, 2, 3, 4, 13, 14, 15 and 16.
Note that the approximation does as well asfor the exponential
distribution, and is till an upper bound.

VI. CONCLUSION

We have considered amodel comprising a network topology
with fixed routes, on which elastic flows arrive randomly and
transfer random volumes of (fluid) data, while sharing the net-
work in an instantaneous max-min fair fashion. With certain
statistical assumptions we have provided a heuristic technique
for computing the time average bandwidth shares obtained by
the flows on each route. Simulations show that our analysis
provides a good approximation. In our current work we are
addressing several questions that flow from this paper:

1. Can such a model be directly useful for modelling elastic
flows in internets, with certain restrictions, such as very small
bandwidth delay products, and high speeds?

2. Does the analysis provably provide an upper bound to ¢,
for every router € R?

3. Canthe analysisof asinglelink carrying severa classes of
TCP controlled traffic be extended in a similar way (asin this
paper) to model an entire network?
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