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Abstract —The general problem we consider is the analysis of
a model in which there are several routes in a network, on each
route elastic flows arrive randomly according to some arrival pro-
cess, and each flow transfers a finite volume of data sampled from
some distribution. We are interested in computing a measure of
average flow throughput on each route, for a given bandwidth
sharing mechanism. Such models arise in problems of network
dimensioning and traffic engineering.

In this paper, we assume Poisson arrivals of file transfer re-
quests on each route, the transfer volumes are fluid and arbi-
trarily distributed. At each instant the network shares the band-
width among the ongoing flows according to the max-min fair
bandwidth sharing mechanism, i.e.,Instantaneous Max-Min Fair
(IMMF) sharing. The measure of performance we consider is the
time average bandwidth obtained by flows on each route. We pro-
pose a heuristic algorithm for obtaining an approximation for this
performance measure for arbitrary routes in an arbitrary net-
work topology. Simulations with various network topologies are
used to evaluate the proposal. In spite of its simplicity, we find
that the approximation works quite well in a variety of topologies
that we have studied.

I. INTRODUCTION

Traffic engineering of networks requires effective models
that can predict the performance seen by end users. An im-
portant performance measure is the average throughput of
flows belonging to a particular route. Most studies related
to throughput analysis ([1], [2], [3]) have assumed persistent
flows, i.e., the flows transfer an infinite amount of data. In re-
ality, new sessions start, transmit some finite number of pack-
ets and then close their connections. Hence the consideration
of a flow arrival process and random transfer volumes in mod-
eling elastic flows in a network is important. In this situation,
the throughputs of the flows in a route depend on the random
number of ongoing transfers on the various routes, and on the
network topology.

In the work presented here, we consider an arbitrary network
topology with fixed routes. On each route, we assume that
transfer requests, or flows, arrive in a Poisson process. Each
request is for the transfer of a random volume of data, and
the sequence of transfer volumes are independent and identi-
cally distributed. We assume that instantaneous max-min fair
(IMMF) sharing is achieved in the network; i.e., at each instant
of time the rate obtained by a flow on a route is its max-min
fair share given the ongoing flows at that time. Such models
have been proposed in [4], [5], and [6]. We adopt the average

bandwidth share of the flows on different routes in the network
as our performance index. In this modeling framework, our
contribution is an algorithm to approximately calculate the av-
erage bandwidth share of flows on each route. Simulations for
different network topologies have been performed to evaluate
this proposal.

In ATM networks, elastic flows are carried on the ABR
(available bit rate) service, and the bandwidth sharing objective
is to achieve max-min fairness. If the bandwidth-delay product
is small compared to the flow durations then the ABR control
loops would converge relatively quickly compared to the time
scales of variation of the number of flows on the routes, and
approximately IMMF sharing would hold (see, for example,
[7]).

In an internet, bandwidth sharing is achieved by TCP’s end-
to-end adaptive window mechanism. Recent research has sug-
gested that TCP’s AIMD rate control, based on packet-loss
feedback, is equivalent to a bandwidth sharing objective called
F h
A fairness [8]. It has been shown in [9] that TCP Vegas

achieves proportional fairness; see also [10]. In some sim-
ple situations (simple topologies or a single bottleneck for
each route) proportional fairness is equivalent to max-min fair-
ness. Further, TCP can be viewed as a whole class of adaptive
window based algorithms, and the bandwidth sharing that is
achieved depends on the network feedback and source adapta-
tion. With this point of view, it can be seen that with appro-
priate feedback from routers TCP can actually achieve max-
min fairness ([11]). Each link computes its MMF parameter
�l; l 2 L (the set of all links) (see [7]), and marks packets
passing through it with probability e���l , for some � > 0.
For large � it follows that the total marking probability along
route r is approximately e��minl2Lr �l , where Lr is the set of
all links carrying route r (see also [12]). Thus each source on
route r effectively learns minl2Lr �l (its fair rate), measures
the round trip time along the path and adjusts its window ac-
cordingly (see also [13]).

Some prior literature related to our work is the follow-
ing. The importance of traffic engineering models with non-
persistent flows has been highlighted in [14]. In [4] the au-
thors consider the same stochastic model as we do, and for
exponentially distributed transfer volumes they provide an er-
godicity condition for the process of the number of flows on
each route. The fairness objectives considered are: max-min
fairness, weighted max-min fairness and proportional fairness.
These results are generalised in [5] to a broad class of fairness
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Fig. 1. A backbone network showing bidirectional links, and several routes
on which finite volume flows arrive randomly; also shown are routes (i,j),
(i,k) and (i,l).

objectives, of which max-min fairness is a special case. Com-
putational results are provided for some simple topologies. In
[6] a bandwidth sharing objective called “min bandwidth shar-
ing” is introduced, and a technique is studied for performance
analysis with this policy in large networks with certain struc-
ture. The papers [4], [5], and [6] all make the assumption that
the bandwidth shares adjust instantaneously as flows arrive and
depart. This can be expected to be a good approximation to the
actual network behaviour when the delay-bandwidth product
is small relative to the transfer volumes.

There are a few papers on performance models of TCP con-
trolled bandwidth sharing, with finite volume flows. Simple
single link networks are studied via product form queueing
models in [15] and [16]. A detailed model for an additive-
increase and multiplicative-decrease congestion control proto-
col, with session arrivals and departures is provided in [17].
An iterative technique for networks is proposed in [18].

The difficulty of exact computation of performance in our
model has been recognised in [19] and [20]. In the latter thesis
some approximations are provided for simple topologies.

II. THE MODEL AND NOTATION

Network and Traffic Model: We consider a backbone packet
network of a service provider or an enterprise, and assume that
this backbone network is the bottleneck for the traffic it car-
ries. There are several fixed, unidirectional routes between the
edge routers. The source router of each of these routes sees a
random arrival process of initiations of the transfer of random
volumes of data to the destination router of the route. We de-
pict this scenario in Figure 1. For a route with source node i
and destination node j, �i;j is the rate of arrival of flows from i

to j. Each bidirectional link of the network is represented as a
pair of separate unidirectional links carrying traffic in opposite
directions, i.e., we think of the network as a directed graph as
shown in Figure 1. In this work when we use the term “link”
we mean a unidirectional link.
Modeling assumptions: Flow arrival instants on each route
constitute a Poisson process; the transfer volumes are inde-
pendent and identically distributed and are independent of the
arrival process. The Poisson approximation for the arrival pro-

cess of file transfer connection initiations has been found to be
reasonable in [21]. It may also be reasonable to model the ini-
tiations of web sessions as a Poisson process, considering that
the backbone sees arrivals from a large number of independent
users. Further, the Poisson flow initiation model is mathemat-
ically tractable and has been used by several researchers ([4],
[5]). We assume that the network bandwidth is shared among
the flows at time t in the IMMF fashion, as defined in the intro-
duction. Note that for the case of a single link, IMMF reduces
to bandwidth sharing in the Processor Sharing manner.

Theorem 3:1 of [4] and Theorem 1 of [5] state that the vector
random process of the number of flows on the various routes
converges in distribution if the total offered bit rate on any link
is less than the link capacity; in [5] it is also asserted that this
result holds for arbitrary transfer volume distribution.
Notation: In a network with R fixed routes and a fixed set L
of L links, we use the following notation.
R: set of all routes in the network; jRj = R

�r: rate of flow arrivals on route r 2 R

Vr: random variable denoting the transfer volumes on route r,
r 2 R; it has mean E(Vr)

Cj: the capacity of link j 2 L
�jr: normalised load on link j from route r that uses link j;
i.e., �jr =

�rE(Vr)

Cj

Nr(t); r 2 R: the number of flows in route r at time t
(N1; N2:::NR): stationary random vector for fNr(t) : r 2

Rg

�(n1; n2:::nR): stationary distribution of (N1; N2:::NR)
In the case of a single link network with a single route (or
single “class”), we use this notation without the subscripts and
superscripts. The notation also applies to a single link network
with several routes (or classes).

III. THE PERFORMANCE MEASURE

A. Single Class Traffic on a Link

On a single link, of bit rate C, IMMF bandwidth sharing
reduces to an M/G/1 processor sharing model. There are vari-
ous measures of flow throughput (refer [17] for a detailed de-
scription). We consider the time averaged bandwidth share per
ongoing flow, conditioned on there being at least one flow, as
our performance measure. This was introduced in [20] and is
defined as,

� := lim
t!1

R t
0

C
N(u)

IfN(u)>0gduR t
0
IfN(u)>0gdu

(1)

where IfN(u)>0g =

�
1 if N(u) > 0

0 otherwise
. On a single link,

� has been found to approximate the average flow throughput
well while being computationally tractable [17]. For � < 1 it
is easy to see that,

� =

P
1

n=1 C
�(n)

n

�
(2)
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For the M/G/1 PS model �(n) = (1� �)�n and hence,

�

C
=

1� �

�
ln

1

1� �
(3)

Since � is insensitive to the distribution of V , so is �.

B. Multi-Class Traffic on a Link

When multiple routes share a link we view the link as being
shared by multiple traffic classes. Define, n = n1 + n2 +

:::::: + nR. The steady state distribution of (N1; N2::::NR) is
given by [22]

�(n1; n2::::nR) = (1� �) n!

RY
r=1

�nrr
nr!

(4)

where � =
PR

i=1 �i. The time average per flow bandwidth
share of class r, i.e., �r; r 2 R, is defined as the time averaged
rate per ongoing flow, conditioned on there being at least one
class r flow. Hence,

�r := lim
t!1

R t
0

C
N(u)

IfNr(u)>0gduR t
0
IfNr(u)>0gdu

(5)

whereN(u) =
P

r2RNr(u), i.e., the total number of flows at
time u on this link. Note the difference between �r and � as
defined earlier for single class traffic. For � < 1,

�r =

P
(n1;n2;::::nR):nr>0

C
(n1+n2+::::+nR)

�(n1; n2::::nR)P
(n1;n2;::::nR):nr>0

�(n1; n2; :::; nR)

and we can easily simplify this to (details are given in [23]),

�r = C
(1� �)(1� ��r)

�r
ln(

1� ��r

1� �
) (6)

where ��r =
P
8i2R:i6=r �i. Note that when there is only one

class of traffic, ��1 = 0, �1 = � and Equation 6 yields �1 =

C 1��
�

ln( 1

1��
), which is the same as �, as expected.

IV. APPROXIMATELY CALCULATING �r IN A NETWORK

We define the per flow bandwidth share of a route in a net-
work as the time averaged IMMF rate per flow belonging to a
particular route, conditioned on there being at least one flow
active on that route. Denoting this by �r, we see that

�r := lim
t!1

R t
0
xr(u)IfNr(u)>0gduR t
0
IfNr(u)>0gdu

(7)

where xr(u) is the max-min fair rate of a flow in route r in
the network at time u; this, of course, depends on the vector
(N1(u); N2(u); � � � ; Nr(u)). To get a closed form expression
for �r in a network we need to know the stationary distribution
of the number of flows in different routes. This is a difficult
problem to solve ([6], [19], [20]). We, therefore, propose a
heuristic algorithm to obtain �r; r 2 R.

A. Motivation: Obtaining �r Recursively on a Single Link

Consider again a single link, and let, �k(C; �1; �2; ::::�R)

denote �k with total link capacity C and normalized load �j
on route j, 1 � j � R. As shown above,

�k(C; �1; �2; ::::�R)

= C
(1� �)(1� ��k)

�k
ln(

1� ��k

1� �
) (8)

with ��k =
PR

i=1:i6=k �i.
Theorem IV.1: Consider a given indexing of the R routes.

Then for k 2 f1; 2:::Rg

�k(C; �1; �2; ::::�R) = �k(C(1�
Pk�1

i=1 �i); �k; �k+1:::�R)

2

The proof of this theorem involves trivial checking (see [23]).
The above theorem implies the following recursive approach
for calculating �k; 1 � k � R, on a single link, paralleling the
approach for persistent flows (as in [24]).
Recursive algorithm on a single link: Fix an indexing
of the routes k; 1 � k � R. Then compute �1 =

�1(C; �1; �2; ::::�R). The average bandwidth share of the
flows in route 1 is given by �1. The total bandwidth utilised
by route 1 is C�1 (unlike persistent flows this does not depend
on the bandwidth shares of the other routes). Using the above
theorem, we can then compute �2 = �2(C(1��1); �2; ::::�R).
Thus at each step the link capacity is reduced by the amount
taken up by the routes examined until that step and the band-
width shares of flows in the remaining routes are computed
assuming that the remaining routes share the reduced link ca-
pacity.

B. Algorithm for Approximate Calculation of �r in a Network

In this recursive algorithm we determine average bandwidth
share of a single route in each iteration. We remove this route
from the topology and adjust the capacity of the links carrying
this route. Hence on every iteration the route-link incidence
matrix (defined below) and the remaining capacity of the links
changes.

B.1 Additional Notation Used

R(k): total number of remaining routes in the network in iter-
ation k. Initially, R(0) = R.

(k): the lth element of this vector is the remaining capacity of
link l 2 L of the network (say 
(k)l ) in iteration k; i.e., 
(k) =

[

(k)

l ](1�jLj). Initially, 
(0)l = Cl; 8l 2 L.
A(k): the route-link incidence matrix in iteration k; i.e.,
A(k) = [a

(k)

ij ](jRj�jLj) where,

a
(k)

ij =

�
1 if route i is crossing link j
0 otherwise

 : the rth element of this vector is the approximation to the
average per flow bandwidth share �r for route r 2 R in the
network
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�
j(k)

i : load on link j due to route i normalized to the remain-

ing link capacity in iteration k; �j(k)i =
�iE(Vi)



(k)

j

; i 2 R; j 2 L

such that a(k)ij = 1

�
j(k)

i : average bandwidth share of route i on link j consider-
ing link j in isolation, in iteration k

B.2 Algorithm

We take a route r in the network and consider the set of links
carrying this route. We calculate �r considering each link l
separately (e.g., for route r on link l this is �lr). This computa-
tion is repeated for all the routes. We now take the minimum
of all �lr; 8r 2 R;8l 2 L. We assign this minimum value as
the average bandwidth share of the corresponding route. Now,
this route, say r0, is removed from the routing topology and
the capacities of all the links that carry this route is reduced by
�r0EVr0 . The above procedure is repeated to find the average
bandwidth shares of all the routes. At the kth step, k � 1, the
algorithm works as follows
Step (1): We consider each link of the topology separately
and calculate �j(k�1)i . Thus, in this step, while calculating the
average bandwidth shares we consider each link and the routes
in it in isolation. Hence, �j(k�1)i , i.e., the average bandwidth
shares of flows in route i over link j, when link j is considered
alone is given as (see Equation 6)

�
j(k�1)

i = 

(k�1)

j (1�

RX
r=1:a

(k�1)

rj
=1

�j(k�1)r )

�

(1�
PR

r=1:r 6=i;a
(k�1)

rj
=1
�
j(k�1)
r )

�
j(k�1)

i

� ln

0
@1�

PR

r=1:r 6=i;a
(k�1)

rj
=1
�
j(k�1)
r

1�
PR

r=1:a
(k�1)

rj
=1
�
j(k�1)
r

1
A

(9)

Step (2):We find

�mk�1
nk�1

= minf�
j(k�1)

i ; 8i 2 R 8j 2 L with a(k�1)ij = 1g

We say that route nk�1 is bottlenecked in link mk�1 in some
average sense; i.e., the throughput of this route is determined
by link mk�1. Now we assign this value to  nk�1

,i.e., the
average bandwidth share of route nk�1 is approximated as

 nk�1
= �mk�1

nk�1

Step (3): This route nk�1 is now removed from the network.
Necessary changes are made in the route-link incidence matrix,
and a new route-link incidence matrix A(k) is formed.

a
(k)

ij =

�
a
(k�1)

ij 8i 2 R and 8j 2 L such that i 6= nk�1
0 otherwise

and R(k) = R(k�1) � 1.
We reduce the capacity of each link in the network over

which the route nk�1 flows by an amount of �nk�1
E(Vnk�1

).

Thus, 
(k) = f

(k)

j ; j 2 Lg is such that



(k)

j =

(


(k�1)

j � �nk�1
E(Vnk�1

) 8j such that a(k�1)nk�1j
= 1



(k�1)

j otherwise

Step (4): k is incremented, and steps (1) to (4) are repeated
until no more routes remain.

V. COMPARISON OF ANALYSIS WITH SIMULATIONS

A. Simulation Setup

We have compared the results of our analysis with a simu-
lation of the fluid model whose analysis we are approximat-
ing. A network topology with some fixed routes is chosen.
We simulate the arrivals of flows on each route, the random
transfer volumes, and the ideal IMMF bandwidth sharing. In
the simulation we have considered two distributions of trans-
fer volumes: exponential distribution, and hyper-exponential
distribution matched to a Pareto distribution. Note that the ap-
proximate analysis is insensitive to the distribution of the trans-
fer volumes. This is, of course, known to be exact for a single
link.

B. Example 1: A Line Network

Route 2
Route 1

256 Kbps                                 128 Kbps

256 Kbps                                 128 Kbps

Fig. 2. A two link, low speed network topology with two routes.
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Fig. 3. Average bandwidth share vs. arrival rate for the network shown in
Figure 2 ; exponentially distributed flow volumes.

Figure 2 shows a simple low speed network, with two links
in tandem, and two routes. The arrival rates of flows to both the
routes are taken to be the same. The plot of average bandwidth
shares (with expontially distributed flow volumes having mean
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Fig. 4. Average bandwidth share vs. arrival rate for the network shown in
Figure 2; flow volumes distributed as a mixture of 7 exponentials matched
with a Pareto distribution.

25 Kbytes) is shown in Figure 3. Observe that a flow on route 1
can get a share of at most 128 Kbps while on route 2 a flow can
get at most 256 Kbps. Notice that when the arrival rates go to
0, as expected, the flows on each route do get these maximum
possible shares. The bandwidth shares drop as the arrival rates
increase. At the arrival rate of 0.64 flows per second the links
saturate and the bandwidth shares become zero.

Figure 4 shows results for a heavy tailed distribution of flow
volumes. We take the flow volume as V = 25ZKbytes, where
Z has the Pareto distribution with complementary distribution
given byF c(z) = (1+bz)�a, with a = 2:2 and b = :8333 (i.e.,
with mean 1). In the simulation we approximate this heavy-
tailed distribution with a mixture of 7 exponential distributions
(see [25] for this Pareto distribution and this approximation).
We get a hyper-exponential distribution with mean 0:9559 ap-
proximating the Pareto distribution; we use the same mean vol-
ume (0:9559� 25Kbytes) in the analysis. Note that since the
mean of the flow volumes is less than 25Kbytes, in Figure 4 at
the arrival rate of 0.64 the bandwidth shares are not zero.

We observe from Figures 3 and 4 that the analysis and the
simulations match very well, thus supporting our heuristic.

C. Example 2: A Mesh Network
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1516
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Fig. 5. A mesh network with 9 links and 16 routes. All links are of bandwidth
1Mbps. The numbers in the circles indicate link numbers, the others are
route numbers.

We take an arbitrary mesh network with 9 links and 16

routes as shown in Figure 5. The simulation and analysis re-
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Fig. 6. Average bandwidth shares of flows on routes 1,2,3, and 4, in Kbps vs.
arrival rate, for the mesh network in Figure 5; exponentially distributed file
sizes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

File transfer request arrival rate

Av
era

ge
 B

an
dw

idt
h S

ha
re 

in 
Kb

ps

Route 14 − Analysis
Route 14 − Simulation
Route 15 − Analysis
Route 15 − Simulation
Route 16 − Analysis
Route 16 − Simulation

Fig. 7. Average bandwidth shares of flows on routes 14,15, and 16, in Kbps
vs. arrival rate for the mesh network shown in Figure 5; exponentially
distributed file sizes

sults are plotted in Figure 6 and Figure 7. The arrival rates of
flows on all the routes are taken to be the same, and the mean
file sizes on all the routes are equal (25Kbytes, exponentially
distributed). The capacity of all the links is 1Mbps. Here we
show the result for a subset of the routes in the network (see
[26] for all the simulation results).

Note that the algorithm overestimates the bandwidth share
in every case, but is a good approximation. For most of the
routes the error is less than 10%, with worst case error being
25% (route 15 in Figure 7).
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Fig. 8. Average bandwidth share in Kbps of flows on routes 1,2,3, and 4 vs.
arrival rate for the mesh network shown in Figure 5; file sizes distributed
as a mixture of 7 exponentials matched to a Pareto distribution.

We also show analysis and simulation results using a heavy
tailed flow volume distribution (a mixture of 7 exponentials
as described above in Section V-B) in Figure 8 and Figure 9.
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Fig. 9. Average bandwidth share in Kbps of flows on routes 13,14,15, and
16 vs. arrival rate for the mesh network shown in Figure 5; file sizes
distributed as a mixture of 7 exponentials matched to a Pareto distribution.

Results are shown for routes 1, 2, 3, 4, 13, 14, 15 and 16.
Note that the approximation does as well as for the exponential
distribution, and is still an upper bound.

VI. CONCLUSION

We have considered a model comprising a network topology
with fixed routes, on which elastic flows arrive randomly and
transfer random volumes of (fluid) data, while sharing the net-
work in an instantaneous max-min fair fashion. With certain
statistical assumptions we have provided a heuristic technique
for computing the time average bandwidth shares obtained by
the flows on each route. Simulations show that our analysis
provides a good approximation. In our current work we are
addressing several questions that flow from this paper:
1. Can such a model be directly useful for modelling elastic
flows in internets, with certain restrictions, such as very small
bandwidth delay products, and high speeds?
2. Does the analysis provably provide an upper bound to �r
for every route r 2 R?
3. Can the analysis of a single link carrying several classes of
TCP controlled traffic be extended in a similar way (as in this
paper) to model an entire network?
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