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Fixed Point Analysis of the Saturation Throughput
of IEEE 802.11 WLANs with Capture
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Abstract— In this paper we study the performance of a single
cell IEEE 802.11 WLAN with the possibility of frame capture at
the receiver. In [9], we studied in detail the performance of single
cell IEEE 802.11e WLANs under ideal channel conditions (with-
out capture, fading or frame error), using a fixed point framework
developed in [7]. Here, we extend the work presented in [9] to
model WLANs with capture. We provide a basic framework to
analyse capture. We then obtain the fixed point equations for the
infrastructure model. We show that these equations accurately
explain some experimental observations. Then we provide con-
ditions under which the system has a unique and balanced fixed
point solution corresponding to the competing stations even with
capture.
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equation, capture

I. INTRODUCTION

In [9], we studied the saturation throughput analysis of sin-
gle cell IEEE 802.11e type networks with nonhomogeneous
nodes. We considered an ideal channel, without capture, fad-
ing or frame error. According to the model, a node succeeds in
reserving the channel for its transmission, only if no other node
attempts in the same slot. Simultaneous transmissions always
result in all the transmissions being corrupted, i.e., we worked
with the pure collision model. However, in practice, the power
levels of different transmissions as heard at the receiver are dif-
ferent, due to path loss, shadowing and fading. Hence, it is
possible that the receiver is able to receive one of the simulta-
neous transmissions successfully, i.e., one of the nodes is able to
capture the receiver. This is particularly true when spread spec-
trum communication is used, as is the case in the IEEE 802.11b
physical layer.

In this paper, we extend the analysis in [9] to include the
possibility of capture at the receiver. We consider a single
cell model with IEEE 802.11e type nodes; i.e., the nodes use
Distributed Coordination Function (DCF) with possibly differ-
ent back-off parameters (we do not, however, model the AIFS
mechanism in this paper). Every transmission is heard by ev-
ery other node, i.e., there are no hidden nodes in the system. We
consider an infrastructure model, wherein, each node has traffic
only with the access point (a similar framework can be devel-
oped for the ad hoc model, but the system becomes intractable,
as an ad hoc model with capture would allow multiple recep-
tions simultaneously). Also, we assume that all the nodes have
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at least one packet to transmit at any time (saturation throughput
analysis).

An important concern in [9] is the importance of the unique-
ness of the solution of the fixed point equation, as it was ob-
served therein that when several fixed points exist then the fixed
point analysis does not capture the steady state system perfor-
mance. Hence, in this paper, in addition to formulating the fixed
point equations with capture, and showing that the fixed point
is balanced (in the sense that all the coordinates of the vector
fixed point are the same), we also provide a uniqueness result.

A. Literature Survey

There have been a number of analytical and simulation stud-
ies modeling the performance of IEEE 802.11e networks un-
der the pure collision assumption (refer [9] and [7]). However,
there is very little and partial work studying the effect of cap-
ture for IEEE 802.11 networks. The study of the effect of cap-
ture on slotted ALOHA systems dates back to the 1980’s. In
[2], the capture probability in a Slotted ALOHA system with
poisson traffic for a Rayleigh fading channel was obtained, for
coherent and incoherent addition of signals. Lau and Leung
generalised the study of capture phenomenon using different
capture models and spatial distribution of nodes in [4]. A sim-
ilar study was done in [1] as well. [10] obtained the through-
put of Slotted ALOHA in a Nakagami fading channel. In [6],
the capture probability of an access point (AP) in a channel
with Rayleigh fading, shadowing, and near far effects is ob-
tained and they derived the throughput and packet delay for
the various protocols with CSMA/CA system under simplis-
tic assumptions. [5] developed a framework to analyse IEEE
802.11 systems with hidden nodes and capture. However, the
model was mathematically intractable. Based on the Markov
chain model proposed by Bianchi ([3]) and the general capture
analysis for wireless systems, Velkov and Spasenovski studied
the performance of IEEE 802.11 WLANs with capture in [12],
[13] and [14]. They partially analyze the system for a homo-
geneous system of nodes (similar backoff parameters and equal
capture probabilities). However, due to complex modeling as-
sumptions, they do not analyze the system completely and use
values obtauned from simulation in their analysis. Using the
simplification proposed in [7] and [9] to model IEEE 802.11e
WLANs, in this paper we provide a general framework using
which we are able to completely characterise the system with
capture. Together with [9], the analysis of IEEE 802.11 sys-
tems using the fixed point framework becomes more complete
and tractable. Also, using our approach we are able to model
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the asymmetry in backoff parameters as well as capture proba-
bilities in IEEE 802.11e WLANs, which has not been attempted
earlier.

II. THE GENERALISED BACK-OFF MODEL

There are n IEEE 802.11e nodes, indexed by i, 1 ≤ i ≤
n. In [7], the authors consider a generalisation of the back-
off behaviour of the nodes, and define the following back-off
parameters (for node i)

Ki := At the (Ki + 1)th attempt either the packet being at-
tempted by node i succeeds or is discarded

bi,k :=The mean back-off (in slots) at the kth attempt for a
packet being attempted by node i, 0 ≤ k ≤ Ki

We call a system of nodes with identical (non-identical)
back-off parameters as homogeneous (nonhomogeneous).
Remark: IEEE 802.11e permits different backoff parameters to
differentiate channel access obtained by the nodes in an attempt
to provide QoS. The above definitions capture the possibility of
having different CWmin and CWmax values, different expo-
nential back-off multiplier values and even different number of
permitted attempts.

It has been shown in [7] that under the decoupling assump-
tion, introduced by Bianchi in [3], the attempt rate of node i

(conditioned on being in back-off (see [7])) for given collision
probability γi is given by,

Gi(γi) :=

1 + γi + γ2
i · · · + γKi

i

bi,0 + γibi,1 + γ2
i bi,2 + · · · + γk

i bi,k + · · · + γKi

i bi,Ki

(1)

In [7] it was shown that, for every i, Gi(γi) is monotone de-
creasing with γi if the bi,k are nondecreasing with k.

III. FIXED POINT EQUATION WITHOUT CAPTURE

We now review the basic fixed point equations from [9]. Fo-
cusing on the back-off and attempt process of node i, and being
given the collision probability γi, the attempt rate is provided by
Gi(γi) in Equation 1. It is important to note that in the present
discussion all rates are conditioned on being in the back-off pe-
riods; i.e., we have eliminated all durations other than those in
which nodes are counting down their back-off counters. As ex-
plained in [7] this suffices to obtain the collision probabilities.
Now consider a nonhomogeneous system of n nodes. Let γ be
the n-dimensional vector of collision probabilities of the nodes.
With the slotted model for the back-off process and the decou-
pling assumption, the natural mapping of the attempt probabil-
ities of other nodes to the collision probability of a node for an
ideal channel without frame error or capture is given by

γi = Γi(β1, β2, . . . , βn) := 1 −

n
∏

j=1,j 6=i

(1 − βj)

where := is, as usual, read as “is defined to be.” Now we can, in
turn, write the attempt probabilities in terms of collision prob-
abilities as βj = Gj(γj). Hence we can expect that the equi-
librium behaviour of the system will be characterised by the
solutions of the following system of equations. For 1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))

We write these n equations compactly in the form of the fol-
lowing multidimensional fixed point equation.

γ = Γ(G(γ)) (2)

Since Γ(G(γ)) is a composition of continuous functions it
is continuous. We thus have a continuous mapping from [0, 1]n

to [0, 1]n. Hence by Brouwer’s fixed point theorem there exists
a fixed point in [0, 1]n for the equation γ = Γ(G(γ)).

Consider the ith component of the fixed point equation, i.e.,

γi = 1 −
∏

1≤j≤n,j 6=i

(1 − Gj(γj))

or equivalently,

(1 − γi) =
∏

1≤j≤n,j 6=i

(1 − Gj(γj))

Multiplying both sides by (1 − Gi(γi)), we get,

(1 − γi)(1 − Gi(γi)) =
∏

1≤j≤n

(1 − Gj(γj))

Thus a necessary and sufficient condition for a vector of colli-
sion probabilities γ = (γ1, · · · , γn) to be a fixed point solution
is that, for all 1 ≤ i ≤ n,

(1 − γi)(1 − Gi(γi)) =

n
∏

j=1

(1 − Gj(γj)) (3)

where the right-hand side is seen to be independent of i.
Define Fi(γ) := (1 − γ)(1 − Gi(γ)). From Equation 3 we

see that if γ is a solution of Equation 2, then for all i, j, 1 ≤
i, j ≤ n,

Fi(γi) = Fj(γj) (4)

Notice that this is only a necessary condition. For example, in
a homogeneous system of nodes, the vector γ such that γi = γ

for all 1 ≤ i ≤ n, satisfies Equation 4 for any 0 ≤ γ ≤ 1, but
not all such points are solutions of the fixed point Equation 2.

Definition III.1: Balanced fixed point: We say that a fixed
point γ (i.e., a solution of γ = Γ(G(γ))) is balanced if γi = γj

for all 1 ≤ i, j ≤ n;
Studying the above (and similar) system of equations for

IEEE 802.11e type networks, in [9], we showed that there exists
a unique fixed point solution for the equations. We also showed
that the function F (·) is one-to-one for typical values of IEEE
802.11e parameters. Also, we observed that the unique fixed
point of the system charactersises the actual performance very
well.
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Fig. 1. Example System: A 3 node system with two STAs and an AP. UDP
traffic is sent from the STAs to the AP (no downlink traffic). The sending rate
is such that the STA MAC queues are saturated.

IV. CAPTURE PHENOMENON

Capture in wireless systems is a well-studied phenomenon
and different models have been proposed to analyze such sys-
tems. Consider a scenario with n transmitters competing for a
common receiver. The system is time-slotted and the transmit-
ters attempt with some probability at each slot (this corresponds
to a Slotted ALOHA system as well as a single cell IEEE 802.11
WLAN without hidden nodes).

Under the vulnerability region model for capture, a compet-
ing node successfully captures the receiver if no other node
transmits (simultaneously) from within a distance zr from the
receiver, where r is the distance of the tagged node from the
receiver and z is called the capture ratio. Under the interfering-
power model for capture, the receiver captures the frame of the
tagged node only if the frame’s detected power sufficiently ex-
ceeds the joint interfering power of the other contenders by z,
capture parameter. For example, it has been shown in [8] that,
for slotted ALOHA protocol in the presence of Rayleigh fading
and log-normal shadowing, the conditional capture probability
of a tagged node with n other contending nodes is given by,

Pc(rt|ξ, r) =

n
∏

i=1

1

1 + zeξi−ξt( ri

rt

)−η

where t is the tagged node, ri is the distance of node i from the
common receiver, ξi models the log-normal shadowing for node
i and η is the power loss exponent. The capture probability and
the throughput of a Slotted ALOHA system is then calculated
by integrating over ξ and the spatial distribution of the nodes.
When the system is power controlled, i.e., when the mean re-
ceived power is the same for every node, the above expression
simplifies to,

Pc =

(

1

1 + z

)n

(5)

V. FIXED POINT EQUATIONS WITH CAPTURE: AN
EXPERIMENTAL EXAMPLE

In this section, we will develop the general fixed point frame-
work by starting with a simple experiment involving capture.
Figure 1 shows the experimental setup involving three nodes:

Experiment No. γ1 γ2 c1 c2

1 0.061 0.0084 0.0279 0.8623
2 0.061 0.0038 0.0301 0.3827

TABLE I
RESULTS OF THE CAPTURE EXPERIMENT. EACH ROW CORRESPONDS TO A

DIFFERENT RELATIVE PLACEMENT OF THE DEVICES.

2 stations (STAs) and an access point (AP). The actual exper-
imental setup involved three Orinoco 802.11b Wireless Client
Adapter with firmware version 8.72; see [11] for complete de-
tails. UDP traffic is set up from node 1 to node 0 and from
node 2 to 0 (there is only uplink traffic). It was ensured that
the nodes 1 and 2 always had packets in their buffer to transmit
(corresponding to the saturation throughput case). All the nodes
had identical backoff parameters (b0 = 16, p = 2, K = 7).
The collision probabilities and the capture probabilities were
obtained using the experimental set up and are provide in Ta-
ble I; 95% confidence intervals were also obtained but are not
reported here. The two rows in the table correspond to dif-
ferent placements of the STAs in relation to the AP. Let ci be
the probability that node i captures the receiver when both the
nodes transmit simultaneously. In the table, γi and ci are the
collision probability and capture probability of node i. Under
a pure collision model, the collision probabilities of both the
nodes should be the same, and capture probabilities should be
0.

Now we provide a fixed point analysis of the above experi-
mental observations. Using the decoupling assumption of the
attempt process of the nodes and the constant collision proba-
bility assumption (see [7] and [3]), we have the following equa-
tions for the collision probability of the nodes,

γ1 = (1 − c1)β2

γ2 = (1 − c2)β1

where βi = Gi(γi). For this example we have, Gi(·) = G(·).
Rewriting the above equations, we have,

(1 − γ1) = (1 − (1 − c1)β2)

(1 − γ2) = (1 − (1 − c2)β1)

Multiplying suitably, we get,

(1 − γ1)(1 − (1 − c2)β1) = (1 − (1 − c1)β2)(1 − (1 − c2)β1)

(1 − γ2)(1 − (1 − c1)β2) = (1 − (1 − c2)β1)(1 − (1 − c1)β2)

Hence the fixed point solution must satisfy

(1 − γ1)(1 − (1 − c2)β1) = (1 − γ2)(1 − (1 − c1)β2)

Since 0 ≤ ci ≤ 1 and since we know that Fi(·) is one-to-
one (for IEEE 802.11 parameters, see Section III), we see that
(1 − γ1)(1 − (1 − c2)β1) and (1 − γ2)(1 − (1 − c1)β2) are
one-to-one. Hence we can show that there exists a unique fixed
point solution for this system (we will defer such analysis until
next section). Solving numerically for (γ1, γ2) in the above
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equations, using the values of c1 and c2 from Table I, we get
the following values for the collision probability.

1) γ1 = 0.0603 and γ2 = 0.008 with c1 = 0.0279 and
c2 = 0.8623

2) γ1 = 0.0584 and γ2 = 0.0362 with c1 = 0.0301 and
c2 = 0.3827

Comparing them with the observed collision probability values
in Table I we see that the fixed point analysis captures the per-
formance quite well.

VI. FIXED POINT ANALYSIS OF THE INFRASTRUCTURE
MODEL WITH CAPTURE

In the infrastructure model for the WLAN, all the competing
STAs communicate only with the AP. We will first consider the
case where there is only reverse traffic (from the STAs to the
AP).

Consider n homogeneous nodes with Gi(γ) = G(γ) for all
1 ≤ i ≤ n, where G(·) is defined as

G(γ) =
1 + γ + γ2 + . . . + γK

b0(1 + pγ + p2γ2 + . . . + pKγK)

We recall that the significance of this function is that when the
collision probability at node i is γi, then its attempt rate βi is
G(γi). We assume that the function G(γ) is monotone decreas-
ing and the function F (γ) := (1 − γ)(1− G(γ)) is one-to-one
and decreasing (these conditions are satisfied for IEEE 802.11
back-off parameters, see [9]).

Assumptions: (i) We assume that all the nodes have a com-
mon destination which can receive packets (this does not pre-
vent the receiver from sending CTS or MAC acknowledge-
ments). (ii) At present our general equations are restricted to
the situation in which the channel propagation effects are spa-
tially homogeneous with respect to all the nodes. Hence, we in-
clude a constant probability rk that a tagged node will capture
the channel when it contends with k other transmitters. While
the fixed point equations can be written down for more general
situations, their analysis becomes intractable.

Then, assuming that the attempt probabilities of the nodes
are βj , 1 ≤ j ≤ n, the collision probabilities are given by

γ1 = Γ1(β1, · · · , βn) = 1 − (
∏

i6=1

(1 − βi)

+r1

∑

i6=1

βi

∏

j 6=(1,i)

(1 − βj)

+r2

∑

i6=1,j>i

βiβj

∏

k 6=(1,i,j)

(1 − βk)

+ · · ·) (6)

Rearranging the above equation and multiplying by (1 − β1),
and writing β1 = G(γ1) in the left hand side, we get,

(1 − γ1)(1 − G(γ1)) =
∏

i

(1 − βi)(1 + r1

∑

i6=1

βi

(1 − βi)

+r2

∑

i6=1,j>i

βi

(1 − βi)

βj

(1 − βj)
+ · · ·)

Similary, for node 2, we have,

(1 − γ2)(1 − G(γ2)) =
∏

i

(1 − βi)(1 + r1

∑

i 6=2

βi

(1 − βi)

+r2

∑

i 6=2,j>i

βi

(1 − βi)

βj

(1 − βj)
+ · · ·)

Subtracting the above two equations, we get,

(1 − γ1)(1 − G(γ1)) − (1 − γ2)(1 − G(γ2)) =
∏

i

(1 − βi)(r1(
β2

(1 − β2)
−

β1

(1 − β1)
)

+r2(
β2

(1 − β2)
−

β1

(1 − β1)
)
∑

j>2

βj

(1 − βj)
+ · · ·)

Consider the L.H.S. of the above equation. If γ1 < γ2, then
F (γ1) = (1−γ1)(1−G(γ1)) > (1−γ2)(1−G(γ2)) = F (γ2)
(since F (·) is one-to-one and also decreasing). Hence, L.H.S.
is greater than 0 . On the other hand, in R.H.S.

∏

i(1−βi) ≥ 0,
r1, r2 ≥ 0. If γ1 < γ2, then β1 = G(γ1) > G(γ2) = β2

and hence β1

(1−β1)
> β2

(1−β2)
, implies, the R.H.S. is negative.

Since the nodes are identical, the reverse argument holds di-
rectly. Hence, γ1 = γ2. In other words, for any two nodes i, j,
1 ≤ i, j,≤ n, γi = γj or the fixed point solution for the system
is balanced. Let us denote this common value by γ.

A. Uniqueness of the Balanced Fixed Point

Now, with the above observation that the fixed point solution
is balanced, it follows as well that the attempt probabilities βi

are all equal; denote the common value by β. The collision
probability function now simplifies to

Γ(β) =

n−1
∑

k=1

(n − 1)!

((n − 1) − k)!k!
βk(1 − β)n−1−k(1 − rk)

Then the fixed point equation becomes γ = Γ(G(γ)). To es-
tablish uniqueness, and knowing that G(·) is nonincreasing, it
suffices to show that Γ(·) is nondecreasing in its argument.

We will show that if rk are nonincreasing with k, then Γ(β) is
nondecreasing with β, which will establish that the fixed point
is unique.

Since the binomial distribution for (n−1) “trials” with “suc-
cess” probability β is the convolution of (n − 1) Bernoulli dis-
tributions each with success probability β, and the Bernoulli
distribution is obviously stochastically increasing with β, it fol-
lows that the binomial distribution is stochastically increasing
with β. Hence Γ(β) is the expectation of an increasing function
of k (i.e., (1−rk)) with respect to the binomial distribution that
is stochastically increasing with the parameter β. Hence, Γ(β)
increases with β, and we have a unique fixed point.

Remarks VI.1:
1) In the spatially homogeneous case, the condition that the

capture probability rk decreases with k is reasonable to
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expect. As discussed in Section IV for the case where the
nodes are power controlled, rk = 1

(1+z)k for a Rayleigh
fading channel. Here rk strictly decreases with k.

2) [7] provides the equations relating the system through-
put with the attempt rates (or collision probability) of the
nodes. Hence, the collision probability analysis provided
here completely characterises the system throughput as
well.

B. With Downlink Traffic

Now, we will include the case where there is downlink traf-
fic from the AP to the STAs as well (this completely charac-
terises the infrastructure model). Let 0 corresponds to the AP
and 1 ≤ i ≤ n correspond to the base stations. Using spatial
homogeneity, as before, we have, for all 1 ≤ t ≤ n,

γt = Γt(β1, · · · , βn) = 1 − (1 − β0)(
∏

i6=t

(1 − βi)

+r1

∑

i6=t

βi

∏

j 6=(t,i)

(1 − βj)

+r2

∑

i6=t,j>i

βiβj

∏

k 6=(t,i,j)

(1 − βk)

+ · · ·)

Notice that the equation is similar to Equation 6 except for the
(1 − β0) term. Since 0 ≤ (1 − β0) ≤ 1, we see (by a sim-
ilar proof) that γi = γj for all 1 ≤ i, j ≤ n for this case as
well. Thus in this case all the STAs will have the same collision
probability γ, and the AP will have a possible different collision
probability γ0. Uniqueness of the fixed point would require that
the vector (γ0, γ, · · · , γ) is unique for the system. However, we
would require more information to solve this problem (the cap-
ture probability at an STA when the AP is the transmitter when
some other STAs also transmit).

VII. CONCLUSION

In this paper we have studied a multidimensional fixed point
equation arising from the model of the back-off process of the
IEEE 802.11 and 11e EDCF access mechanism with the pos-
sibility of capture. We developed a general framework to an-
alyze such systems with capture. We first considered the case
when the STAs send UDP traffic to the AP, and their queues
are saturated. For this case, we showed that when the propaga-
tion is spatially homogeneous, and when all STAs use the same
back-off parameters, then the fixed point solution for the colli-
sion probabilities is balanced. A balanced solution implies that
the probabilities of success of the STAs are equal, and in this
sense their access is fair (though it does not imply throughput
fairness). Further, if the capture probabilities decrease with the
number of colliding nodes, then the fixed point is also unique.
As argued in [9], establishing such uniqueness is important for
the applicability of the fixed point analysis to predict perfor-
mance. We also showed that when the AP is also transmitting

packets then the result that the fixed point is balanced across the
STAs continues to hold.

The fixed point approach is quite general and can be extended
to different capture models and different spatial distribution of
nodes. As pointed out in [9], however, it would be important to
establish the uniqueness of the fixed point in each case, as we
have done for some special cases in this paper.
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