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Abstract— We consider the vector fixed point equations arising
out of the analysis of the saturation throughput of a single cell
IEEE 802.11e (EDCA) wireless local area network with nodes
that have different back-off parameters, including different Ar-
bitration InterFrame Space (AIFS) values. We consider balanced
and unbalanced solutions of the fixed point equations arising in
homogeneous and nonhomogeneous networks. We are concerned,
in particular, with (i) whether the fixed point is balanced within a
class, and (ii) whether the fixed point is unique. Our simulations
show that when multiple unbalanced fixed points exist in a
homogeneous system then the time behaviour of the system
demonstrates severe short term unfairness (ormultistability).
Implications for the use of the fixed point formulation for
performance analysis are also discussed. We provide a condition
for the fixed point solution to be balanced within a class, and
also a condition for uniqueness. We then provide an extension of
our general fixed point analysis to capture AIFS based differen-
tiation, including the concept of virtual collision when there are
multiple queues per station; again a condition for uniqueness is
established. For the case of multiple queues per node, we findthat
a model with as many nodes as there are queues, with one queue
per node, provides an excellent approximation. An asymptotic
analysis of the fixed point is provided for the case in which
packets are never abandoned, and the number of nodes goes to
∞. Finally the fixed point equations are used to obtain insights
into the throughput differentiation provided by different initial
back-offs, persistence factors, and AIFS, for finite numberof
nodes and for differentiation parameter values similar to those
in the IEEE 802.11e standard. Simulation results validate the
accuracy of the analysis.

Index Terms— Performance of Wireless LANs, Short term Un-
fairness, QoS in Wireless LANs, EDCA Analysis

I. I NTRODUCTION

A new component of the IEEE 802.11e medium access
control (MAC) is an enhanced distributed channel access
(EDCA), which provides differentiated channel access to pack-
ets by allowing different back-off parameters (see [2]). Several
traffic classes are supported, the classes being distinguished
by different back-off parameters. Thus, whereas in the legacy
DCF all nodes have a single queue, and a single back-off
“state machine”, all with the same back-off parameters (we
say that the nodes arehomogeneous), in EDCA the nodes can
have multiple queues with separate back-off state machines
with different parameters, and hence are permitted to be
nonhomogeneous.

This paper is concerned with the saturation throughput anal-
ysis of IEEE 802.11e (EDCA) wireless LANs. We consider
a single cell network of IEEE 802.11e nodes (single cell
meaning that all nodes are within control channel range of each
other), with an ideal channel (without capture, fading or frame
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error) and assume that packets are lost only due to collisionof
simultaneous transmissions. For ease of understanding, much
of our presentation is for the case in which each node has only
one EDCA queue (of some access category). The analysis,
however, applies to the general case of multiple EDCA queues
(of different access categories) per node and we show this in
Section VII.

Much work has been reported on the performance evaluation
of EDCA to support differentiated service. Most of the ana-
lytical work reported has been based on a decoupling approxi-
mation proposed initially by Bianchi ([3]). While keeping this
basic decoupling approximation, in [1] Kumar et al. presented
a significant simplification and generalisation of the analysis
of the IEEE 802.11 back-off mechanism. This analysis led to
a certain one dimensional fixed point equation for the collision
probability experienced by the nodes in a homogeneous system
(i.e., one in which all the nodes have the same back-off
parameters). In this paper we considermultidimensional fixed
point equationsfor a homogeneous system of nodes, and also
for a nonhomogeneous system of nodes. The nonhomogeneity
arises due to different initial back-offs, or different back-
off multipliers, or different amounts of time that nodes wait
after a transmission before restarting their back-off counters
(i.e., the AIFS (Arbitration InterFrame Space) mechanism of
IEEE 802.11e), or different number of access categories per
node.

Our approach in this paper builds upon the one provided in
[1]. The main contributions of this paper are the following:

1) We provide examples of homogeneous systems in which,
even though a unique balanced fixed point exists (i.e.,
a solution in which all the coordinates are equal), there
can be multiple unbalanced fixed points, thus suggesting
multistability. We demonstrate by simulation that, in
such cases, significant short term unfairness can be
observed and the unique balanced fixed point fails to
capture the system performance.

2) Next, in the case where the back-off increases multi-
plicatively (as in IEEE 802.11), we establish a simple
sufficient condition for the uniqueness of the solution
of the multidimensional fixed point equation in the
homogeneous and the nonhomogeneous cases.

3) We perform an analytical study of the throughput differ-
entiation provided by the different back-off mechanisms,
b0, p and AIFS. We do an asymptotic analysis of the
service differentiation (with the number of nodes tending
to infinity), and also obtain approximate results for a
finite number of nodes.

A survey of the literature: There has been much research
activity on modeling the performance of IEEE 802.11 and



in particular of IEEE 802.11e medium access standards. The
general approach has been to extend the decoupling approx-
imation introduced by Bianchi ([3]). Without modeling the
AIFS mechanism, the extension is straightforward. Only the
initial back-off, and the back-off multiplier (persistence factor)
are modeled. In [4], [5] and [6], such a scheme is studied
by extending Bianchi’s Markov model per traffic class. In
this paper, in Section III, we will provide a generalisation
and simplification of this approach. We will then provide
examples where nonunique fixed points can exist, demonstrate
the consequences of such nonuniqueness, and also conditions
that guarantee uniqueness.

The AIFS technique is a further enhancement in
IEEE 802.11e that provides a sort of priority to nodes that have
smaller values of AIFS. After any successful transmission,
whereas high priority nodes (with AIFS = DIFS) wait only
for DIFS (DCF Interframe Space) to resume counting down
their back-off counters, low priority nodes (with AIFS>
DIFS) defer the initiation of countdown for an additional
AIFS−DIFS slots. Thus a high priority node decrements its
back-off counter earlier than a low priority node and also has
fewer collisions.

Among the approaches that have been proposed for mod-
eling the AIFS mechanism (for example, [7], [8], [9], [10],
[11], [12], [23] and [13]) the ones in [12], [23] and [13] come
much closer to capturing the service differentiation provided
by the AIFS feature. In [12] the authors propose a Markov
model to capture both the different back-off window expansion
approach and AIFS. AIFS is modeled by expanding the state-
space of the Markov chain to include the number of slots
elapsed since the previous transmission attempt on the channel.
In [13] the authors observe that the system exists in states in
which only nodes of certain access categories can attempt. The
approach is to model the evolution of these states as a Markov
chain. The transition probabilities of this Markov chain are
obtained from the assumed, decoupled attempt probabilities.
This approach yields a fixed point formulation. This is the
approach we will discuss in Section VI. [23] uses a Markov
chain on the number of slots elapsed from the previous
transmission to model AIFS based service differentiation.[11]
extends the Bianchi’s analysis to multiple traffic classes per
node case using the Markov chain approach.

We note that the analyses in [12] and [13] are based on
Bianchi’s approach to modeling the residual back-off by a
Markov chain. In this paper, we have extended the simpli-
fication reported in [1] (which was for a homogeneous system
of nodes) to nonhomogeneous nodes with different back-off
parameters and AIFS based priority schemes. Also, we model
the case of multiple queues (of different access categories)
per node (see [11]). Thus, in our work, we have provided a
simplified and integrated model to capture all the essential
backoff based service differentiation mechanisms of IEEE
802.11e.

In the previous literature, it is assumed that the collision
rate experienced by a queue of any access category is constant
over time. There appears to have been no attempt to study the
phenomenon of short term unfairness in the fixed point frame-
work. A related work on Ethernet ([25]) identifies short-term

unfairness in the system by experimentation and simulation,
and suggests modifications to the protocol to eliminate it. Also,
all the existing work assumes that the collision probabilities
of all the queues with identical access parameters are the
same. Thus there appears to have been no earlier work on
studying the possibility of unbalanced solutions of the fixed
point equations. In addition, the possibility of nonuniqueness
of the solution of the fixed point equations arising in the
analyses seems to have been missed in the earlier literature. In
our work, we study the fixed point equations for IEEE 802.11e
networks and take into account all these possibilities.
Outline of the paper: In Section II we review the generalised
back-off model that was first presented in [1]. In Section III
we develop the multidimensional fixed point equations for the
homogeneous and nonhomogeneous cases (without AIFS), and
obtain the necessary and sufficient conditions satisfied by the
solutions to the fixed point equations. We provide examples
in Section IV to show that even in the homogeneous case
there can exist multiple unbalanced fixed points and show
the consequence of this. In Section V-A, we analyse the
fixed point equations for a homogeneous system of nodes
and obtain a condition for the existence of only one fixed
point. In Sections V-B and VI, we extend the analysis to
nonhomogeneous system of nodes, with different back-off
parameters (including AIFS). In Section VII we analyse the
case of multiple EDCA queues per node. An analytical study
of the service differentiation provided by the various access
parameters is done in Section VIII. In Section IX, we pro-
vide numerical results verifying the validity of the analyses.
Section X concludes the paper and discusses future work.

II. T HE GENERALISED BACK-OFF MODEL

There aren nodes, indexed byi, 1 ≤ i ≤ n. We begin
with considering the case in which each node has one EDCA
queue. We adopt the notation in [1], whose authors consider
a generalisation of the back-off behaviour of the nodes, and
define the following back-off parameters (for nodei)

Ki := At the (Ki + 1)th attempt either the packet being
attempted by nodei succeeds or is discarded

bi,k :=Themeanback-off (in slots) at thekth attempt for a
packet being attempted by nodei, 0 ≤ k ≤ Ki

Definition 2.1: A system ofn nodes is said to behomoge-
neous, if all the back-off parameters of the nodes, like,Ki,
bi,k, 0 ≤ k ≤ Ki are the same for alli, 1 ≤ i ≤ n. A system of
nodes is callednonhomogeneousif the back-off parameters
of the nodes are not identical.
Remark: IEEE 802.11e permits different back-off parameters
to differentiate channel access obtained by the nodes in an
attempt to provide QoS. The above definitions capture the
possibility of having differentCWmin and CWmax values,
different exponential back-off multiplier values and evendif-
ferent number of permitted attempts. For ease of discussion
and understanding, we will postpone the topic of AIFS until
Section VI. Hence in the discussions up to Section V-B, all
the nodes wait only for a DIFS after a busy channel.

It has been shown in [1] (and later in [22]) that under the
decoupling assumption, introduced by Bianchi in [3], the at-
tempt probability of nodei (in a back-off slot, and conditioned



on being in back-off) for given collision probabilityγi is given
by,

Gi(γi) :=
1 + γi + · · · + γKi

i

bi,0 + γibi,1 + · · · + γKi

i bi,Ki

(1)

Remarks 2.1:

1) We will assume thatbi,· are such that0 ≤ Gi(γi) ≤ 1
for all γi, 0 ≤ γi ≤ 1 andGi(γi) < 1 wheneverγi > 0.

2) When the system is homogeneous then we will drop the
subscripti from Gi(·), and write the function simply as
G(·).

III. T HE FIXED POINT EQUATION

It is important to note that in the present discussion all
rates are conditioned on being in the back-off periods; i.e.,
we have eliminated all durations other than those in which
nodes are counting down their back-off counters, in order
to obtain the collision probabilityγi of player i and its
attempt probabilityβi (= Gi(γi)). Later one brings back the
channel activity periods in order to compute the throughput
in terms of the attempt probabilities (see [1]). Now consider
a nonhomogeneous system ofn nodes. Letγ be the vector
of collision probabilities of the nodes. With the slotted model
for the back-off process and the decoupling assumption, the
natural mapping of the attempt probabilities of other nodesto
the collision probability of a node is given by

γi = Γi(β1, β2, . . . , βn) = 1 −

n
∏

j=1,j 6=i

(1 − βj)

whereβj = Gj(γj). We could now expect that the equilibrium
behaviour of the system will be characterised by the solutions
of the following system of equations. For1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))

We write thesen equations compactly in the form of the
following multidimensional fixed point equation.

γ = Γ(G(γ)) (2)

SinceΓ(G(γ)) is a composition of continuous functions it is
continuous. We thus have a continuous mapping from[0, 1]n

to [0, 1]n. Hence by Brouwer’s fixed point theorem there exists
a fixed point in[0, 1]n for the equationγ = Γ(G(γ)).

Consider theith component of the fixed point equation, i.e.,

γi = 1 −
∏

1≤j≤n,j 6=i

(1 − Gj(γj))

or equivalently,

(1 − γi) =
∏

1≤j≤n,j 6=i

(1 − Gj(γj))

Multiplying both sides by(1 − Gi(γi)), we get,

(1 − γi)(1 − Gi(γi)) =
∏

1≤j≤n

(1 − Gj(γj))

Thus a necessary and sufficient conditionfor a vector of
collision probabilitiesγ = (γ1, · · · , γn) to be a fixed point
solution is that, for all1 ≤ i ≤ n,

(1 − γi)(1 − Gi(γi)) =

n
∏

j=1

(1 − Gj(γj)) (3)

where the right-hand side is seen to be independent ofi.
DefineFi(γ) := (1 − γ)(1 − Gi(γ)). From Equation 3 we

see that ifγ is a solution of Equation 2, then for alli, j, 1 ≤
i, j ≤ n,

Fi(γi) = Fj(γj) (4)

Notice that this is only anecessary condition. For example, in
a homogeneous system of nodes, the vectorγ such thatγi = γ
for all 1 ≤ i ≤ n, satisfies Equation 4 for any0 ≤ γ ≤ 1, but
not all such points are solutions of the fixed point Equation 2.

Definition 3.1: We say that a fixed pointγ (i.e., a solution
of γ = Γ(G(γ))) is a balancedfixed point if γi = γj for all
1 ≤ i, j ≤ n; otherwise,γ is said to be anunbalanced fixed
point.

Remarks 3.1:

1) It is clear that if there exists an unbalanced fixed point
for a homogeneous system, then every permutation is
also a fixed point and hence, in such cases, we do not
have a unique fixed point.

2) In the homogeneous case, by symmetry, the average
collision probability must be the same for every node.
If the collision probabilities correspond to a fixed point
(see 3, next), then this fixed point will be of the
form (γ, γ, · · · , γ) whereγ solvesγ = Γ(G(γ)) (since
Γi(·) = Γ(·) andGi(·) = G(·) for all 1 ≤ i ≤ n). Such a
fixed point ofγ = Γ(G(γ)) is guaranteed by Brouwer’s
Fixed Point. The uniqueness of such a balanced fixed
point was studied in [1]. We reproduce this result in
Theorem 5.1.

3) There is, however, the possibility that even in the
homogeneous case, there is an unbalanced solution of
γ = Γ(G(γ)). By simulation examples we observe
in Section IV that when there exist unbalanced fixed
points, the balanced fixed point of the system does
not characterise the average performance, even if there
exists only one balanced fixed point. In Section V-A,
we provide a condition for homogeneous IEEE 802.11
and IEEE 802.11e type nodes (with exponential back-
off) under which there is a unique balanced fixed point
and no unbalanced fixed point. In such cases, it is
now well established, that the unique balanced fixed
point accurately predicts the saturation throughput of the
system.

4) For the homogeneous case the back-off process can be
exactly modeled by a positive recurrent Markov chain
(see [1]). Hence the attempt and collision processes will
be ergodic and, by symmetry, the nodes will have equal
attempt and collision probabilities. In such a situation
the existence of multiple unbalanced fixed points will
suggest short term unfairness or multistability. We will
observe this phenomenon in Section IV.



5) Consider a system of homogeneous nodes having un-
balanced solutions for the fixed point equationγ =
Γ(G(γ)) (i.e., there existsi, j such thatγi 6= γj), then
from Equation 4, we see thatF (γi) = F (γj), or the
function F is many-to-one. Hence for a homogeneous
system of nodes, if the functionF is one-to-one then
there cannot exist unbalanced fixed points. In Section V-
B we use this observation to obtain a sufficient condition
for the uniqueness of the fixed point in the nonhomoge-
neous case.

IV. N ONUNIQUE FIXED POINTS AND MULTI STABILITY :
SIMULATION EXAMPLES

A. Example 1

Consider a homogeneous system (let us call it System-I)
with n = 10 nodes. The functionG(·) of the nodes is given
by,

G(γ) =
1 + γ + γ2 + γ3 + . . .

1 + γ + γ2 + γ3 + 64(γ4 + γ5 + . . .)

The system corresponds to the case whereK = ∞, b0 =
b1 = b2 = b3 = 1 and b4 = b5 = b6 = . . . = 64 (bi

are distributed uniformly over the integers in [1,CWi] for
appropriateCWi). From the form of functionG(·), we can
see that a node which is currently at back-off stage0 is more
likely to remain at that stage as ittakes4 successive collisions
to make the attempt rate of the node< 1. Likewise, a node
that is in the larger back-off stagesb4 = b5 = · · · = 64, will
retry continuously with mean inter-attempt slots of 64 until it
succeeds. Observe that only one node can be at back-off stage
0 at any time. This leads to the apparent multistability of the
system.

Figure 1 plotsG(γ), the correspondingF (γ) = (1−γ)(1−
G(γ)) and shows the balanced fixed point of the system for
n = 10 nodes. The balanced fixed point of the system shown
in the figure is obtained using the fixed point equationγ =
1 − (1 − G(γ))9. Observe that the functionF (·) is not one-
to-one (the functionF (·) not being one-to-one does not imply
that there exist multiple fixed point solutions; see Remarks3.1,
5).

Figure 2 shows the existence of unbalanced fixed points for
System-I. These fixed points are obtained as follows. Assume
that we are interested in fixed points such thatγ1 6= γ2 =
· · · = γn. Given γ2 = · · · = γn, the attempt probability of
the nodes2, · · · , n is given by G(γ2). Hence, the collision
probability of node1 is given byγ1 = 1 − (1 − G(γ2))

n−1.
The attempt probability of node1 would then beG(γ1). Using
the decoupling assumption, the collision probability of any of
the othern−1 nodes would then be,1− (1−G(γ2))

n−2(1−
G(γ1)) = γ2. Thus we obtain a fixed point equation forγ2

(and hence for all the otherγj , 3 ≤ j ≤ n). In Figure 2
we plot 1 − (1 − G(γ))8(1 − G(1 − (1 − G(γ))9)) (plotted
as the line marked with dots), the intersection of which with
the “y=x” line shows the solutions forγ2(= · · · = γn). In
the same way, we obtain the fixed point equation forγ1 by
eliminating γ2, · · · , γn from the multidimensional system of
equations. This functiton is plotted in in Figure 2 using pluses
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also show the “y=x” line.
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Fig. 2. Example System-I: Demonstration of unbalanced fixedpoints. Plots
of γ2 = 1− (1−G(γ))8(1−G(1− (1− G(γ))9)) (the curve drawn with
dots and lines) and the function for the fixed point equation for γ1 (see text)
using pluses and lines.

and lines and the intersection of this curve with the “y=x” line
shows the corresponding solutions forγ1. We see that there are
three solutions in each case. The smallest values ofγ1 (approx.
0.14) pairs up with the largest value ofγ2 = · · · = γn (approx.
0.97). Notice that the balanced fixed point of the system is also
a fixed point in the plot (compare with Figure 1). Then there
is one remaining unbalanced fixed point whose values can be
read off the plot. We note that there could exist many other
unbalanced fixed points for this system of equations, as we
have considered only a particular variety of fixed points that
have the property thatγ1 6= γ2 = · · · = γn.

In order to examine the consequences of multiple unbal-
anced fixed points we simulated the back-off process with
the back-off parameters of System-I. The following remarks
summarise our simulation approach in this paper.

Remarks 4.1 (On the Simulation Approach used):

1) We have developed an event-driven simulator written in
the “C” language based on the coupled multidimensional
backoff process of the various nodes, to compare with



the analytical results. In this simulator, we do not simu-
late the detailed wireless LAN system (as is done in an
ns-2 simulator), but only the backoff slots. We will refer
to this as the CMP (Coupled Markov Process) simulator.
The main aim of the CMP simulator is to understand
the backoff behaviour of the nodes and its dependence
on the different backoff parameters. From the point of
view of performance analysis, it may also be noted that
once the back-off behaviour is correctly modelled the
channel activity can easily be added analytically, and
thus throughput results can be obtained (see [3] and
[1]). Note that, for IEEE 802.11 type networks, a good
match between analysis that uses a decoupled Markov
model of the back-off process and ns-2 simulations has
already been reported in earlier works (see the literature
survey in Section I). In addition, for some cases, ns-2
simulations have also been provided in comparison with
the CMP simulator and the analytical results.

2) Thus our simulation is programmed as follows. The
system evolves over back-off slots. All the nodes are
assumed to be in perfect slot synchronisation. The actual
coupled evolution of the back-off process is modeled.
The back-off distribution is uniform and the residual
back-off time is the state for each node. At every slot,
depending on the state of the back-off process, there are
three possibilities: the slot is idle, there is a successful
transmssion, or there is a collision. This causes further
evolution of the back-off process.

3) Our simulation approach, which we primarily use to
study the back-off behaviour of the nodes, takes few
seconds to complete a simulation run, in comparison
with the ns2simulations which takes any time between
few minutes to an hour depending on the number of
nodes in the system. The coupled back-off evolution
approach we use captures all the essential features of a
single cell system with ideal channel (no capture, fading
or frame error) and where there is perfect synchronisa-
tion among the nodes (which is typical for single cell
systems). The simulation provides the attempt rates and
collision probabilities directly, which can be used with
the throughput formula provided in [1] to obtain the
throughput of the nodes.

4) In all our simulations,bi are distributed uniformly over
the integers in [1, CWi] for appropriateCWi. We note
here that the backoff behaviour of IEEE 802.11e EDCA
with the backoff range [0, CW ] can be modeled in the
same way as IEEE 802.11 DCF with the backoff range
[1, CW + 1] and the value of AIFS reduced by1 (see
[13], [21]). Figure 3 shows this equivalence. Thus, the
“0 sampling problem” found in IEEE 802.11 DCF is not
observed in IEEE 802.11e EDCA.

5) In Figures 4, 7 and 9, for the purpose of reporting
the short term unfairness results, the entire duration of
simulation is divided intok frames, where the size of
each frame is 10,000 slots. The short-term average of the
collision probability of each nodej, 1 ≤ j ≤ n, is calcu-
lated asCj(i)

Aj(i)
whereCj(i) andAj(i) correspond to the

number of collisions and attempts in framei, 1 ≤ i ≤ k,
for nodej. The long-term average is similarly calculated

as 1
n

∑n
j=1

∑

k

i=1
Cj(i)

∑

k

i=1
Aj(i)

wheren is the number of nodes.

Notice that the long-term average collision rate is a
batch biased average of the short-term collision rates.
Hence, when looking at the graphs, it will be incorrect
to visually average the short-term collision rate plots
in an attempt to obtain the long-term average collision
rate. This is because when a node is shown to have a
low collision probability, it is the one that is attempting
every slot (while the other nodes attempt with a mean
gap of64 slots), and hence it sees a low probability of
collision. In this caseAj(·) is large andCj(·) ≪ Aj(·).
On the other hand, when a node is shown to have a high
collision probability it is attempting at an average rate
of 1

64 and almost all its attempts collide with the node
that is then attempting in every slot. In this caseAj(·)
is small andCj(·) ≈ 1. Thus, in obtaining the overall
average, it is essential to account for the large variation
in Aj(·) between the two cases.

In Figure 4 we plot a (simulation) snap shot of the short term
average collision probability of 2 of the 10 nodes of System-I
and the average collision probability of the nodes (The average
is calculated over all frames and all nodes. Since the nodes
are identical, the average collision probability is the same for
all the nodes). Observe that the short term average has a huge
variance around the long term average. It is evident that over
1000’s of slots one node or the other monopolises the channel
(and the remaining nodes see a collision probability of1 during
those slots). This could be described as multistability. A look
into the fairness index (see Figure 10) plotted as a function
of the frame size used to calculate throughput suggests that
System-I exhibits significant unfairness in service even over
reasonably large time intervals.

Implication for the use of the balanced fixed point:Notice
also that the average collision rate shown in Figure 4 is about
0.25, whereas the balanced fixed point shown in Figure 1
shows a collision probability of about 0.62.Hence we see that
in this case, where there are multiple fixed points, the balanced
fixed point does not capture the actual system performance.

B. Example 2

Let us now consider yet another homogeneous example (let
us call it System-II) withn = 20 nodes. The functionG(·) of
the nodes is given by,

G(γ) =
1 + γ + γ2 + · · · + γ7

1 + 3γ + 9γ2 + 27γ3 + · · · + 2187γ7

The system corresponds to the case whereK = 7, b0 = 1,
p = 3 and bk = pkb0 for all 0 ≤ k ≤ K. (bi are uniformly
distributed in [1,CWi] for appropriateCWi) We notice that
in this example the way the back-off expands is similar to
the way it expands in the IEEE 802.11 standard, except that
the initial back-off is very small (1 slot) and the multiplier
is 3, rather than 2. Figure 5 plotsG(γ), the corresponding
F (γ) = (1 − γ)(1 − G(γ)) and the balanced fixed point of
the system forn = 20 nodes. The balanced fixed point of the
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probability of 2 of the 10 nodes. Also plotted is the average collision
probability of the nodes (averagedover all frames and nodes). The 95%
confidence interval for the average collision probability lies within 0.7% of
the mean value.

system shown in the figure is obtained using the fixed point
equationγ = 1 − (1 − G(γ))19.

As in the case of System-I, Figure 6 shows the existence
of multiple unbalanced fixed points for System-II. The fixed
points we have shown correspond to the case whereγ1 6= γ2 =
· · · = γn and are obtained just as discussed for System-I.

Figure 7 plots a snap shot of the short term average collision
probability (from simulation) of 2 of the 20 nodes and the
average collision probability of the nodes (same for all the
nodes). Observe that the short term averages vary a lot as
compared to the long term average, suggesting multistability.
Again, as in the case of System-I, comparing the average
collision probability with the balanced fixed point of the
system in Figure 5, we see that the fixed point does not capture
the actual system performance.

Discussion of Examples 1 and 2:From the simulation
examples, we can make the following inferences.

1) When there are multiple unbalanced fixed points in
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Fig. 5. Example System-II: The balanced fixed point. Plots ofG(γ), F (γ) =
(1 − γ)(1 − G(γ)) and 1 − (1 − G(γ))19 vs. the collision probabilityγ;
the line “y=x” is also shown. Notice that the functionF is not one-to-one.
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Fig. 6. Example System-II: Demonstration of unbalanced fixed points. Plots
of γ2 = 1 − (1 − G(γ))18(1 − G(1 − (1 − G(γ))19)) (the curve drawn
with dots and lines) and the function for the fixed point equation for γ1 (see
text) using pluses and lines.
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Fig. 7. Example System-II: Snap-shot of short term average collision
probability of 2 of the 20 nodes. The average collision probability is also
plotted in the figure (averagedover all slots and nodes). The 95% confidence
interval for the average collision rate lies within 0.7% of the mean value.

a homogeneous system then the system can display
multistability, which manifests itself as significant short
term unfairness in channel access.

2) When there are multiple unbalanced fixed points in
a homogeneous system then the collision probability
obtained from the balanced fixed point may be a poor
approximation to the long term average collision prob-
ability.

Similar conclusions can be drawn for nonhomogeneous sys-
tems when the system of fixed point equations have multiple
solutions.

It appears that the existence of multiple-fixed points is a
consequence of the form of theG(·) function in the above
examples, whereG(·) is similar to a switching curve; see,
for example, Figure 1 where there is a very high attempt
probability at low collision probabilities and a very low
attempt probability at high collision probabilities.

C. Example 3

Consider a homogeneous system in which back-off in-
creases multiplicatively as in IEEE 802.11 DCF (let us call
it System-III), withn = 10 nodes. The functionG(·) is given
by,

G(γ) =
1 + γ + γ2 + . . . + γ7

16 + 32γ + 64γ2 + . . . + 2048γ7

The system corresponds to the case whereK = 7, p = 2
and b0 = 16 and bk = pkb0 for all 0 ≤ k ≤ K (bi

are uniformly distributed in [1,CWi] for appropriateCWi).
These parameters are similar to those used in the IEEE 802.11
standard. Figure 8 plotsG(·), the correspondingF (γ) =
(1 − γ)(1 − G(γ)) and the unique balanced fixed point of
the system. (Notice thatF is one-to-one and uniqueness of
the fixed point will be proved in Section V-A.) The balanced
fixed point of the system is obtained using the fixed point
equationγ = 1−(1−G(γ))9. The balanced fixed point yields
a collision probability of approximately 0.29.
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Fig. 8. Example System-III: Plots ofG(γ), F (γ) = (1 − γ)(1 − G(γ))
and 1 − (1 − G(γ))9 vs. the collision probabilityγ; the line “y=x” is also
shown.
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Fig. 9. Example System-III: Snap-shot of short term averagecollision
probability of 2 of the 10 nodes. Also plotted is the average collision
probabilty obtained by the nodes. The 95% confidence interval of the average
collision rate lies within 0.2% of the mean value.

Figure 9 plots a snap shot of the short term average collision
probability (from simulation) of 2 of the 10 nodes and the
average collision probability of the nodes of the Example
System-III. Notice that the short term average collision rate
is close to the average collision rate (the vertical scale in
this figure is much finer than in the corresponding figures
for System-I and System-II). Also, the average collision rate
matches well with the balanced fixed point solution obtained
in Figure 8.
Remark:Thus we see that in a situation in which there is a
unique fixed point not only is there lack of multistability, but
also the fixed point solution yields a good approximation to
the long run average behaviour.

D. Short Term Fairness in Examples 1, 2, 3

Figure 10 plots the throughput fairness index1
n

(
∑

n

i=1
τi)

2

∑

n

i=1
τ2

i

(whereτi is the average throughput of nodei over the measure-
ment frame, see [18]) against the frame size used to measure
throughput. The fairness index is obtained for each frame and
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Fig. 10. Throughput fairness index is plotted against the number of slots used
to measure throughput. The dotted lines mark the 95% confidence interval.

is averaged over the duration of the simulation. Also plotted in
the figure is the 95% confidence interval. We note that values
of this index will lie in the interval[0, 1], and smaller values
of the index correspond to greater unfairness between the
nodes. The performance of all the three example systems are
compared. Notice that Example System-III (similar to IEEE
802.11 DCF) has the best fairness properties. The system
achieves fairness of 0.9 over 1000’s of slots. However, for
Example System-I and II, similar performance is achieved
only over 1,000,000 and 100,000 slots. The unfairness of
Example Systems-I and II can be attributed to their apparent
multistability.

In Section V we establish conditions for the uniqueness of
the solutions to the multidimensional fixed point equation.

V. A NALYSIS OF THE FIXED POINT

A. The Homogeneous Case

The following two results are adopted from [1].
Lemma 5.1:G(γ) is nonincreasing inγ if bk, k ≥ 0, is a

nondecreasing sequence. In that case, unlessbk = b0 for all
k, G(γ) is strictly decreasing inγ.

Theorem 5.1:For a homogeneous system of nodes,
Γ(G(γ)) : [0, 1] → [0, 1], has a unique fixed point ifbk, k ≥ 0,
is a nondecreasing sequence.
Remark: The fixed point(γ, γ, · · · , γ) is the unique balanced
fixed point forγ = Γ(G(γ)). From Equation 4, we see that
a necessarycondition for the existence of unbalanced fixed
points in a homogeneous system of nodes is that the function
F (γ) = (1 − γ)(1 − G(γ)) needs to be many-to-one. In
other words, if the function(1 − γ)(1 − G(γ)) is one-to-
one and ifγ = (γ1, γ2, . . . , γn) is a solution of the system
γ = Γ(G(γ)), thenγi = γj for all i, j.

Consider the exponentially increasing back-off case for
which G(·) is given by,

G(γ) =
1 + γ + γ2 + . . . + γK

b0(1 + pγ + p2γ2 + . . . + pKγK)
(5)

Clearly,G(γ) is a continuously differentiable function and so
is F (γ) = (1− γ)(1−G(γ)). The following simple lemma is
a consequence of the mean value theorem.

Lemma 5.2:F (γ) is one-to-one in0 ≤ γ ≤ 1 if F
′

(γ) 6= 0
for all 0 ≤ γ ≤ 1.

Remarks 5.1:
WhenF (·) is one-to-one in0 ≤ γ ≤ 1 andG(·) is such that
0 ≤ G(γ) ≤ 1 for all 0 ≤ γ ≤ 1, the following hold
(i) F (γ) = 0 iff γ = 1,
(ii) F (0) > 0, and
(iii) F (γ) is a decreasing function ofγ.
Now the derivative ofF is

F
′

(γ) = −1 + G(γ) − G
′

(γ)(1 − γ)

Lemma 5.3:If K ≥ 1, p ≥ 2 andG(·) is as in Equation 5,
thenG

′

(γ) < 0 and |G
′

(γ)| ≤ 2p
b0

for all 0 ≤ γ ≤ 1.
Clearly,G(γ) ≤ 1

b0
and1 ≥ (1− γ) ≥ 0 for all 0 ≤ γ ≤ 1.

Substituting into the expression forF
′

(γ), we get,

F
′

(γ) ≤ −1 +
1 + 2p

b0

Thus, if in addition to the other condition in Lemma 5.3, if
b0 > 1 + 2p, thenF

′

(γ) < 0 and the following result holds
by virtue of the remark following Theorem 5.1.

Theorem 5.2:For a functionG(·) defined as in Equation
5 if K ≥ 1, p ≥ 2 and b0 > 2p + 1, then the systemγ =
Γ(G(γ)) has a unique fixed point which is balanced.
Remark: It can be shown that if Lemma 5.3 holds forG(·) as
in Equation 5 it also holds for any case in whichbk = pkb0

for 0 ≤ k ≤ m ≤ K and bk = pmb0 for m < k ≤ K.
The latter situation closely matches the IEEE 802.11 standard
(with b0 = 16, p = 2, K = 7, m = 5). Hence a homogeneous
IEEE 802.11 WLAN has a unique fixed point which is also
balanced. In general, if the functionG(·) is arbitrary (as in
Equation 1) but monotone decreasing, there exists a unique
balanced fixed point for the system as long as the function
(1 − γ)(1 − G(γ)) is one-to-one.

B. The Nonhomogeneous Case

In this section, we will extend our results to systems
with nonhomogeneous nodes. AIFS will be introduced in
Section VI. Nonhomogeneity is introduced by using different
values ofb0, p andK in different nodes.

Consider a nonhomogeneous system ofn nodes, withGi(·)
a monotonically decreasing function andFi(γ) := (1−γ)(1−
Gi(γ)) being one-to-one for alli. Let there be two fixed point
solutionsγ = (γ1, γ2, . . . , γn) and λ = (λ1, λ2, . . . , λn) for
the above system (see Section III for the fixed point equations),
and there existsk, 1 ≤ k ≤ n, such thatγk 6= λk. From the
necessary condition (Equation 4) we require that, for alli,
and for someJ1 > 0 and J2 > 0 (clearly, J1, J2 6= 0, see
Remarks 5.1),

(1 − γi)(1 − Gi(γi)) = J1

(1 − λi)(1 − Gi(λi)) = J2

Since(1−γ)(1−Gi(γ)) is one-to-one, applying this toγk and
λk, we requireJ1 6= J2. Without loss of generality, assume



J1 < J2. Hence,γi > λi for all i (see Remarks 5.1). Using
Equation 3 we have,

λi = 1 −
∏

j 6=i

(1 − Gj(λj))

≥ 1 −
∏

j 6=i

(1 − Gj(γj))

= γi

a contradiction. Hence, it must be thatJ1 = J2 or there exists
a unique fixed point.

Notice that the arguments above immediately imply the
following result.

Theorem 5.3:If Gi(γ) is a decreasing function ofγ for all i
and(1−γ)(1−Gi(γ)) is a strictly monotone function on[0, 1],
then the system of equationsβi = Gi(γi) andγi = Γi(β1, . . .,
βi, . . . , βn) has a unique fixed point.

Where nodes use exponentially increasing back-off, the next
result then follows.

Theorem 5.4:For a system of nodes1 ≤ i ≤ n, with Gi(·)
as in Equation 5, that satisfyKi ≥ 1, pi ≥ 2 andb0i

> 2pi+1,
there a exists a unique fixed point for the system of equations,
γi = 1 −

∏

j 6=i(1 − Gj(γj)) for 1 ≤ i ≤ n.
Remark: The above result has relevance in the context of the
IEEE 802.11e standard where the proposal is to use differ-
ences in back-off parameters to differentiate the throughputs
obtained by the various nodes. While Theorem 5.4 only states
a sufficient condition, it does point to a caution in choosing
the back-off parameters of the nodes.

Figure 11 compares the collision probability obtained using
the fixed point analysis for a homogeneous system, with ns-2
simulation and the CMP simulator. The plot shows3 different
cases, Priority 0, 1 and 2, corresponding to the IEEE 802.11e
EDCA default settings for ACVO, AC VI and AC BE.”
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Fig. 11. Plots of collision probability for a homogeneous system of nodes.
Three different cases are considered, Priority 0 (ACVO), Priority 1 (AC VI)
and Priority 2 (ACBE). The lines correspond to the fixed point analysis,
the “+” correspond to the ns-simulations and “O” correspond to theCMP
simulator. The95% confidence interval lies within1% of the simulation
estimate.

VI. A NALYSIS OF THE AIFS MECHANISM

Our approach for obtaining the fixed point equations when
the AIFS mechanism is included is the same as the one

developed in [13]. However, we develop the analysis in the
more general framework introduced in [1] and extended here
in Section III. We show that under the condition thatF (·) is
one-to-one there exists a unique fixed point for this problem
as well. The analysis is presented here for two different AIFS
class case, but can be extended to any number of classes. Also
in this section, we consider only the case in which there is one
queue (of an AIFS class) in each node. Extension to the case
of multiple queues per node is done in Section VII.

Let us begin by recalling the basic idea of AIFS based
service differentiation (see [14]). In legacy DCF, a node
decrements its back-off counter, and then attempts to trans-
mit only after it senses an idle medium for more than a
DCF interframe space (DIFS). However, in EDCA (Enhanced
Distributed Channel Access), based on the access category
of a node (and its AIFS value), a node attempts to transmit
only after it senses the medium idle for more than its AIFS.
Higher priority nodes have smaller values of AIFS , and hence
obtain a lower average collision probability, since these nodes
can decrement their back-off counters, and even transmit, in
slots in which lower priority nodes (waiting to complete their
AIFSs) cannot. Thus,nodes of higher priority (lower AIFS) not
only tend to transmit more often but also have fewer collisions
compared to nodes of lower priority (larger AIFS).The model
we use to analyze the AIFS mechanism is quite general and
accomodates the actual nuances of AIFS implementations (see
[16] for how AIFS and DIFS differs) when the AIFS parameter
values and the sampled back-off values are suitably adjusted.
See Figure 3 on how the actual AIFS can be modeled using
a “DCF like” scheme.

A. The Fixed Point Equations

Let us consider two classes of nodes of two different
priorities. The priority for a class is supported by using AIFS
as well asb0, p andK. All the nodes of a particular priority
have the same values for all these parameters. There are
n(1) nodes of Class1 and n(0) nodes of Class0. Class1
corresponds to a higher priority of service. The AIFS for Class
0 exceeds the AIFS of Class1 by l slots. Thus, after every
transmission activity in the channel, while Class0 nodes wait
to complete their AIFS, Class1 nodes can attempt to transmit
in thosel slots. Also, if there is any transmission activity (by
Class1 nodes) during thosel slots, then again the Class0
nodes wait for another additionall slots compared to the Class
1 nodes, and so on.

As in [3] and [1], we need to model only the evolution of
the back-off process of a node (i.e., the back-off slots after
removing any channel activity such as transmissions or col-
lisions) to obtain the collision probabilities. For convenience,
let us call the slots in which only Class1 nodes can attempt as
excess AIFSslots, which will correspond to the subscriptEA
in the notation. In theremainingslots (corresponding to the
subscriptR in the notation) nodes of either class can attempt.
Let us view such groups of slots, where different sets of nodes
contend for the channel, as differentcontention periods. Let
us define

β
(1)
i := the attempt probability of a Class 1 node for alli, 1 ≤
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Fig. 12. AIFS differentiation mechanism: Markov model for remaining
number of AIFS slots.

i ≤ n(1), in the slots in which a Class 1 node can
attempt (i.e., all the slots)

β
(0)
i := the attempt probability of a Class 0 node for alli, 1 ≤

i ≤ n(0), in the contention periods during which
Class 0 nodes can attempt (i.e., slots that are not
Excess AIFS slots)

Note that in making these definitions we are modeling the
attempt probabilities for Class 1 as being constant over all
slots, i.e., the Excess AIFS slots and the remaining slots.
This simplification is just an extension of the basic decoupling
approximation, and has been shown to yield results that match
well with simulations (see [13]). We provide results using our
simulation approach in Section IX.

Now the collision probabilities experienced by nodes will
depend on the contention period (excess AIFSor remaining
slots) that the system is in. The approach is to model the
evolution over contention periods as a Markov Chain over the
states(0, 1, 2, · · · , l), where the states, 0 ≤ s ≤ (l − 1),
denotes that an amount of time equal tos slots has elapsed
since the end of the AIFS for Class1. These states correspond
to the excess AIFSperiod in which only Class 1 nodes can
attempt. In theremainingslots, when the state iss = l, all
nodes can attempt.

In order to obtain the transition probabilities for this Markov
chain we need the probability that a slot is idle. Using the
decoupling assumption, the idle probability in any slot during
the excess AIFSperiod is obtained as,

qEA =

n(1)
∏

i=1

(1 − β
(1)
i ) (6)

Similarly, the idle probability in any of the remaining slots is
obtained as,

qR =
n(1)
∏

i=1

(1 − β
(1)
i )

n(0)
∏

j=1

(1 − β
(0)
j ) (7)

The transition structure of the Markov chain is shown in
Figure 12. As compared to [13], we have used a simplification
that the maximum contention window is much larger thanl. If
this were not the case then some nodes would certainly attempt
before reachingl. In practice,l is small (e.g., 1 slot or 5 slots;
see [2]) compared to the maximum contention window.

Let π(EA) be the stationary probability of the system being
in the excess AIFSperiod; i.e., this is the probability that the
above Markov chain is in states 0, or 1, or· · ·, or (l − 1). In
addition, letπ(R) be the steady state probability of the system
being in the remaining slots, i.e., statel of the Markov chain.
Solving the balance equations for the steady state probabilities,

we obtain,

π(EA) =
1 + qEA + q2

EA + · · · + ql−1
EA

1 + qEA + q2
EA + · · · + ql−1

EA +
ql

EA

1−qR

π(R) =

ql
EA

1−qR

1 + qEA + q2
EA + · · · + ql−1

EA +
ql

EA

1−qR

(8)

The average collision probability of a node is then obtained
by averaging the collision probability experienced by a node
over the different contention periods. The average collision
probability for Class1 nodes is given by, for alli, 1 ≤ i ≤
n(1),

γ
(1)
i = π(EA)(1 −

n(1)
∏

j=1,j 6=i

(1 − β
(1)
j ))

+ π(R)(1 − (

n(1)
∏

j=1,j 6=i

(1 − β
(1)
j )

n(0)
∏

j=1

(1 − β
(0)
j )))(9)

Similarly, the average collision probability of a Class0 node
is given by, for alli, 1 ≤ i ≤ n(0),

γ
(0)
i = 1 − (

n(1)
∏

j=1

(1 − β
(1)
j )

n(0)
∏

j=1,j 6=i

(1 − β
(0)
j )) (10)

Our analysis in the remaining section now generalises
the analysis of [13] and also establishes uniqueness of the
fixed point and the property that the fixed point is balanced
over nodes in the same class. DefineG(1)(·) and G(0)(·)
as in Equation 1 (except that the superscripts here denote
the class dependent back-off parameters, with nodes withina
class having the same parameters). Then the average collision
probability obtained from the previous equations can be used
to obtain the attempt rates by using the relations

β
(1)
i = G(1)(γ

(1)
i ), andβ

(0)
j = G(0)(γ

(0)
j ) (11)

for all 1 ≤ i ≤ n(1), 1 ≤ j ≤ n(0). We obtain fixed point
equations for the collision probabilities by substitutingthe
attempt probabilities from Equation 11 into Equations 9 and
10 (and also into Equations 6 and 7). We have a continuous
mapping from[0, 1]n

(1)+n(0)

to [0, 1]n
(1)+n(0)

. It follows from
Brouwer’s fixed point theorem that there exists a fixed point.

B. Uniqueness of the Fixed Point

Lemma 6.1:If F (·) is one-to-one, then collision probabili-
ties of all the nodes of the same class are identical; i.e., the
fixed points are balanced within each class.

Theorem 6.1:The set of Equations 9, 10 and 11 (together
with 8, 6 and 7), representing the fixed point equations for
the AIFS model, has a unique solution if the corresponding
functionsG(1) and G(0) are monotone decreasing andF (1)

andF (0) are one-to-one.
Remark:It follows from the earlier results in this paper (see,
for example, Theorem 5.2) that ifG(0)(·) and G(1)(·) are of
the form in Equation 5, and ifK(i) ≥ 1, p(i) ≥ 2, andb

(i)
0 >

2p(i) + 1, for i = 0, 1, then the fixed point will be unique.



C. Simulation Results (Fixed Point Analysis, CMP and ns-2
Simulations)

Although the numerical accuracy of the fixed point analysis
has been reported before (see [3], [13]), for completeness,in
Figures 13 and 14, we compare the collision probability ob-
tained using the fixed point analysis with ns-2 simulation and
the CMP simulator. Figure 13 plots the collision probabilities
of AC VO (access category for voice; the high priority) nodes
and ACBE (access category for best-effort traffic, e.g., TCP;
the low priority) nodes, with the number of ACBE nodes
fixed to4. Figure 14 plots the collision probabilities of ACVI
(access category for video; the high priority) nodes and ACBE
(the low priority) nodes with the number of ACBE nodes
fixed to 12. AC VO, AC VI and AC BE correspond to the
IEEE 802.11e EDCA access categories. As observed in the
plots, the AIFS model works very well wheneverl ≪ CWmin

of the traffic classes. Additional plots comparing the analysis
with the CMP simulator have been provided ( figures 15, 16
and 17) in support of our analysis.
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Fig. 13. Plots of collision probability of HP - Priority 0 (ACVO) nodes
and LP - Priority 2 (ACBE) nodes with the number of Priority 2 nodes fixed
to 4. The lines correspond to the fixed point analysis, the “+” correspond
to the ns-simulations and “o” correspond to the CMP simulator. The 95%
confidence interval lies within1% of the simulation estimate.

Remarks 6.1 (AIFS Differentiation and Multistability):It
has been observed that (see Section VIII) as the number of
nodes in the system increases, AIFS provides non-preemptive
service to high priority nodes, starving the low priority
nodes. This may lead to long periods of time when high
priority nodes get serviced while the low priority nodes
wait. We capture this behaviour using the Markov model in
Figure 12. This cannot be viewed as multistability (as seen in
Section IV), because AIFS always gives preferential access
to the high priority nodes, while starving the low priority
nodes, and never the other way. Further, in our analysis on
AIFS, the attempt probabilityβ(i) of a classi corresponds to
only those slots in which classi can attempt (rather than all
slots). The variation in attempt rate and collision probability,
due to AIFS, is captured using the Markov model shown in
Figure 12.
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Fig. 14. Plots of collision probability of HP - Priority 1 (ACVI) nodes and
LP - Priority 2 (AC BE) nodes with the number of Priority 2 nodes fixed
to 12. The lines correspond to the fixed point analysis, the “+” correspond
to the ns-simulations and “o” correspond to the CMP simulator. The 95%
confidence interval lies within1% of the simulation estimate.
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Fig. 15. Plots of collision probability of HP - Priority 1 (ACVI) nodes and
LP - Priority 2 (AC BE) nodes with the number of Priority 2 nodes fixed to8.
The lines correspond to the fixed point analysis and the symbols correspond
to the CMP simulator. The95% confidence interval lies within1% of the
simulation estimate.

VII. M ULTIPLE ACCESSCATEGORIES PERNODE

In this section we further generalize our fixed point anal-
ysis to include the possibility of multiple access categories
(or queues) per node. We considern nodes andci access
categories (ACs) per nodei; the ACs can be of either AIFS
class (for simplicity, we consider only two AIFS classes) and
ci = c

(1)
i + c

(0)
i (the superscripts refering to the AIFS classes

as before). The ACs in a node need not have the sameG(·).
Since there are multiple ACs per node, each with its own
back-off process, it is possible that two or more ACs in a
node complete their back-offs at the same slot. This is then
calledVirtual Collision, and is resolved in favour of the queue
with the highestCollision Priority in the node. We label the
ACs from 1 to ci, with AC 1 corresponding to the highest
collision priority in the node and ACci corresponding to
the least collision priority. Unlike the single access category
per node case where a collision is caused whenever any two
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Fig. 16. Plots of collision probability of HP - Priority 1 (ACVI) nodes and
LP - Priority 3 (AC BK) nodes with the number of Priority 3 nodes fixed to4.
The lines correspond to the fixed point analysis and the symbols correspond
to the CMP simulator. The95% confidence interval lies within1% of the
simulation estimate.

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of high priority nodes

c
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

HP
LP

Fig. 17. Plots of collision probability of HP - Priority 2 (ACBE) nodes and
LP - Priority 3 (AC BK) nodes with the number of Priority 3 nodes fixed to8.
The lines correspond to the fixed point analysis and the symbols correspond
to the CMP simulator. The95% confidence interval lies within1% of the
simulation estimate.

nodes (equivalently, ACs) attempt in a slot, here, a AC sees
a collision in a slot only when a AC of some other node
or a higher priority AC of the same node attempts in that
slot. A low priority AC of a node cannot cause collision to
a higher priority AC in the same node. In Section VII-A we
will study multiple access categories per node without AIFS
(i.e., all the ACs wait only for DIFS) and consider AIFS later
in Section VII-B.

We assume that, in a node (sayi), the AIFS of Class0 ACs
(with c

(0)
i ACs) exceeds the AIFS of the higher priority Class

1 ACs (with c
(1)
i ACs) by l slots. This assumption conforms

with the way access categories are defined in the IEEE 802.11e
standard. Also, when collision priorities are interchanged with
AIFS priorities, the actual performance of the system would
be hard to characterise.

A. Without AIFS

Let γi,j be the collision probability of ACj of nodei and
βi,j be the attempt probability of ACj of nodei, when the
AC can attempt. The fixed point equations for this system are,
for all i = 1, · · · , n (andj = 1, · · · , ci),

βi,j = Gi,j(γi,j) (12)

γi,j = 1 −

j−1
∏

m=1

(1 − βi,m)

n
∏

{k=1,k 6=i}

ck
∏

l=1

(1 − βk,l) (13)

where Gi,j(·) depend on the back-off parameters of ACj
of nodei. The term

∏j−1
m=1(1 − βi,m) in the above equation

corresponds to the higher priority ACs in the same node.
Observe that theGi,j(·) definition allows the possibility of
different back-off parameters (b0, p, K) within a node.

Theorem 7.1:The fixed point equations inγ, obtained by
substituting Equations 12 in Equations 13 has a unique fixed
point whenGi,j is monotone decreasing andFi,j(γ) := (1 −
γ)(1 − Gi,j(γ)) is one-to-one for alli = 1, · · · , n and j =
1, · · · , ci.

B. With AIFS

In this section, we analyse the system where nodes have
ACs of either AIFS class (the case where there are only Class
1 ACs can be modeled using the approach in Section VII-A).
Define for 1 ≤ i ≤ n, 1 ≤ j ≤ ci, Ci,j ∈ {0, 1} to be the
AIFS class of ACj in nodei. Writing the fixed point equations
for i, j s.t. Ci,j = 1, we obtain,

γi,j = 1 − (π(EA)

j−1
∏

m=1

(1 − βi,m)

n
∏

{k=1,k 6=i}

∏

{1≤l≤ck:Ck,l=1}

(1 − βk,l)

+ π(R)

j−1
∏

m=1

(1 − βi,m)
n
∏

{k=1,k 6=i}

ck
∏

l=1

(1 − βk,l)) (14)

and for i, j s.t. Ci,j = 0, we obtain,

γi,j = 1 −

j−1
∏

m=1

(1 − βi,m)

n
∏

{k=1,k 6=i}

ck
∏

l=1

(1 − βk,l) (15)

andβi,j = Gi,j(γi,j). π(EA) andπ(R) are defined as before
(see Equation 8), withqEA andqR defined as

qEA =

n
∏

k=1

∏

{1≤l≤ck:Ck,l=1}

(1 − βk,l)

qR =
n
∏

k=1

ck
∏

l=1

(1 − βk,l) (16)

Theorem 7.2:The fixed point equations (14) and (15) have
a unique solution whenGi,j are monotone decreasing and
Fi,j(·) are one-to-one for alli = 1, · · · , n and for eachi,
j = 1, · · · , ci.



VIII. T HROUGHPUTDIFFERENTIATION: AN ANALYTICAL

STUDY

It should be noted that all the results in this section are
for the fixed point solution. Hence, when we use the term
“collision probability” and “attempt rate” it is only in so far as
a good match between the fixed point analysis and simulation
has already been reported in earlier literature (see Section I).

We will consider two alternatives forK, the maximum
retransmission attempts allowed for a packet, namelyK = ∞
and K finite. In this section, for the finiteK case, the form
of the functionG(γ), for all γ, 0 ≤ γ ≤ 1 is,

G(γ) =
1 + γ + γ2 + . . . + γK

b0(1 + pγ + p2γ2 + . . . + pKγK)
(17)

It is clear that for finiteK the attempt rate of a node is
lower bounded, and hence as the number of nodes increases to
infinity the collision probability of any node goes to 1. Hence,
for this case, we will obtain insights regarding performance
differentiation only for a finitely large number of nodes. For
the infinite K case, however, we will study (as in [1]) the
asymptotics of performance differentiation as the number of
nodes tends to∞. In the K = ∞ case, the functionG(γ)
simplifies to,

G∞(γ) =

{

(1−γp)
b0(1−γ) 0 ≤ γ < 1

p

0 γ ≥ 1
p

(18)

In the nonhomogeneous case we will writeG(1)
∞ (γ) and

G
(0)
∞ (γ). For the homogeneous case withK = ∞, the

(balanced fixed point) asymptotic analysis asn → ∞ was
performed in [1].

Consider a set of nodes, divided into two classes, Class1
and Class0, with Class1 corresponding to a higher priority
of service.For simplicity, we assume thatn(1) and n(0), the
number of nodes of Class1 and Class0 respectively, are
related as,n(1) = αn, n(0) = (1 − α)n for somen and
α, 0 < α < 1. Let γ(1)(K, n) and β(1)(K, n) be the fixed
point solutions for the collision probability and attempt rate
of a Class1 node for a givenK and total number of nodesn.
Similarly, let γ(0)(K, n) andβ(0)(K, n) be the corresponding
values for a Class0 node.

We will study three cases:

Case 1: b(1)
0 < b

(0)
0 , p(1) = p(0) = p, AIFS(1) = AIFS(0) =

DIFS
Case 2: b(1)

0 = b
(0)
0 = b0, p(1) < p(0), AIFS(1) = AIFS(0) =

DIFS
Case 3: b(1)

0 = b
(0)
0 = b0, p(1) = p(0) = p, AIFS(1) < AIFS(0)

Note that in the analysis in earlier sections, we used the
Binomial model for the number of attempts in a slot. With
n → ∞, in this section, we will use the Poisson batch model
for the number of attempts in a slot (as in [1]).

A. Case 1: Differentiation byb0

1) K = ∞, Asymptotic Analysis asn → ∞: With
the random number of attempts of each class in a back-
off slot being modeled as Poisson distributed, the collision

probabilitiesγ(·)(∞, n) and the attempt ratesβ(·)(∞, n) are
related by

γ(1)(∞, n) = 1 − e−((n(1)−1)β(1)(∞,n)+n(0)β(0)(∞,n))

γ(0)(∞, n) = 1 − e−(n(1)β(1)(∞,n)+(n(0)−1)β(0)(∞,n))

(19)

Substituting β(·)(∞, n) = G
(·)
∞ (γ(·)(∞, n)) in the above

equations gives the desired fixed point equations governing
the system. Trivially, we see that,

(1 − γ(1)(∞, n))e−β(1)(∞,n) = (1 − γ(0)(∞, n))e−β(0)(∞,n)

(20)

Lemma 8.1:For i ∈ {0, 1}, F
(i)
∞ (γ) := (1 − γ)e−G(i)

∞ (γ)

is one-to-one for allγ, 0 ≤ γ ≤ 1 if bi
0 ≥ 2p + 1.

Theorem 8.1:In Case 1, withK = ∞, whenF
(i)
∞ is one-

to-one fori ∈ {0, 1},
1) γ(1)(∞, n) < γ(0)(∞, n) for all n
2) limn→∞ γ(1)(∞, n) ↑ 1

p
, limn→∞ γ(0)(∞, n) ↑ 1

p

3) limn→∞(n(1)β(1)(∞, n) + n(0)β(0)(∞, n)) ↑ ln( p
p−1 )

Theorem 8.2:In Case 1, withK = ∞, the ratio of the

throughputs of Class 1 and Class 2 converges tob
(0)
0 −p

b
(1)
0 −p

as
n → ∞.
Remark: Thus, for example, ifb(1)

0 = 16, b
(0)
0 = 32, and

p = 2 then the ratio of the Class 1 to Class 0 node throughput
will be approximately30/14 for largen.

2) Finite K, Approximate Analysis for Largen: With finite
K, as the number of nodes increases, the collision probability
of either class increases to1 (since the attempt rate is lower
bounded) andG(·) is small (since it decreases like 1

b0pK+1 ,
see Equation 17). Then the difference between the collision
probabilities (we drop the argumentsK andn in the following)

γ(1) − γ(0) = (G(0)(γ(0)) − G(1)(γ(1)))

(1 − G(0)(γ(0)))(n
(0)−1)(1 − G(1)(γ(1)))(n

(1)−1)

also becomes insignificant. Hence, we can assume thatγ(1) ≈
γ(0). For equal packet length transmission, the ratio of the
throughputs of a Class1 node to a Class0 node corresponds
to the ratio of their success probabilities, hence the throughput
ratio is given by,

G(1)(γ(1))(1 − G(1)(γ(1)))n(1)−1(1 − G(0)(γ(0)))n(0)

G(0)(γ(0))(1 − G(1)(γ(1)))n(1)(1 − G(0)(γ(0)))n(0)−1

=

G(1)(γ(1))
(1−G(1)(γ(1)))

G(0)(γ(0))
(1−G(0)(γ(0)))

(21)

Using γ(1) ≈ γ(0), writing this asγ, and using the fact that
G(·)(γ) ≈ 0 for largen, we have,

(21) ≈

G(1)(γ)
(1−G(1)(γ))

G(0)(γ)
(1−G(0)(γ))

≈
G(1)(γ)

G(0)(γ)
=

b
(0)
0

b
(1)
0

It follows that when service differentiation is provided bythe
back-off window, for a large number of nodes, the throughput



ratio roughly corresponds tob
(0)
0

b
(1)
0

, which, for large values of

b
(0)
0 and b

(1)
0 is almost that same as that obtained for the

asymptotic analysis withK = ∞ in Theorem 8.2
Remark:For finite K case, this observation (throughput ratio

is approximately equal tob
(0)
0

b
(1)
0

) is well known. This result

has been shown analytically (using similar approximations)
and also has been observed in simulations (see [6], [12] and
[15]). It has been observed in [1] that for a given number
of nodes,n, there will exist aK(n) such that the system
performance will not vary much for allK > K(n). Hence, an
asymptotic analysis would suffice for such cases. Moreover,
we have obtained this result in a much more general setting,
using the functionG(·).

B. Case 2: Differentiation byp
It may be noted that in the current version of IEEE 802.11e

standard this mechanism no longer exists [2].
1) K = ∞, Asymptotic Analysis asn → ∞: The fixed

point equation governing the collision probability and the
attempt rate is the same as Equation 19. The following theorem
summarizes the main results for Case 2.

Theorem 8.3:In Case 2, withK = ∞, whenF
(i)
∞ is one-

to-one fori ∈ {0, 1}, the following hold:

1) γ(1)(∞, n) < γ(0)(∞, n) for all n
2) limn→∞ γ(1)(∞, n) ↑ 1

p(1) , limn→∞ γ(0)(∞, n) ↑ 1
p(1)

3) limn→∞ n(1)β(1)(∞, n) ↑ ln( p(1)

p(1)−1
)

4) limn→∞ n(0)β(0)(∞, n) = 0
Remark:Thus we see that, withK = ∞ and a large number
of nodes, unlike initial back-off based differentiation, the
persistence factor based differentiation completely suppresses
the class with the larger value ofp.

2) Finite K, Approximate Analysis for Largen: For fi-
nite K, with the approximationγ(1) ≈ γ(0) and the fact
that G(·)(γ(·)) ≈ 0, the throughput ratio approximates to
(1+p(0)γ+p(0)2γ2+...+p(0)K

γK)

(1+p(1)γ+p(1)2γ2+...+p(1)K
γK)

(see Equation 21). Hence, as the
collision probability of the system increases with load, the
ratio of the throughputs of Class 1 to Class 0 also increases
(depending onp(1), p(0) and the value ofK). We note that as
n → ∞, the throughput ratio for the finiteK case is finite,
unlike the asymptotic case (K = ∞). However, the ratio tends
to infinity when we considerK → ∞.

C. Case 3: Differentiation by AIFS

1) K = ∞, Asymptotic Analysis forn → ∞: In this case
service differentiation is provided only by AIFS and we let
G

(1)
∞ = G

(0)
∞ = G∞ (i.e., the back-off parametersb0 andp are

the same). With the assumption that the number of attempts
in each slot is Poisson distributed, the fixed point equations
for the AIFS model are (see Equations 9 and 10)

γ(1)(∞, n) = π(EA)(1 − e−(n(1)−1)β(1)(∞,n)) +

π(R)(1 − e−(n(1)−1)β(1)(∞,n)−n(0)β(0)(∞,n))

γ(0)(∞, n) = (1 − e−n(1)β(1)(∞,n)−(n(0)−1)β(0)(∞,n))

Theorem 8.4:In Case 3, withK = ∞, whenF
(i)
∞ is one-

to-one fori ∈ {0, 1},
1) γ(1)(∞, n) < γ(0)(∞, n) for all n
2) limn→∞ γ(1)(∞, n) ↑ 1

p
, limn→∞ γ(0)(∞, n) ↑ 1

p

3) limn→∞ n(1)β(1)(∞, n) ↑ ln( p
p−1 )

4) limn→∞ n(0)β(0)(∞, n) = 0
Remark: Again we see that using AIFS for differentiation,
when K = ∞ and largen, completely suppresses the class
with the larger value of AIFS. Observe that Parts 3 and 4
of Theorem 8.4 imply that the individual node attempt ratio
β(1)(∞,n)

β(0)(∞,n)
goes to∞ asn → ∞. Some insight into this result

will be obtained from the analysis in the following section.
2) Finite K, Approximate Analysis:
Lemma 8.2:In Case 3 for finiteK, with l = 1, if the fixed

point collision probabilities areγ(1) and γ(0), then the ratio
of the throughputs of Class 1 to Class 0 is given by

G(1)(γ(1))
(1−G(1)(γ(1)))

G(0)(γ(0))
(1−G(0)(γ(0)))

1

qR

Using this result and approximating(1−G(i)(γ(i))) ≈ 1 as
before, the ratio of throughput equals

G(1)(γ(1))
(1−G(1)(γ(1)))

G(0)(γ(0))
(1−G(0)(γ(0)))

1

qR

≈
G(1)(γ(1))

G(0)(γ(0))

1

qR

(22)

For generall, we can expect a factor like1
ql

R

in the previous
expression. For low loads, whenqR is not close to 0, the dom-
inating term in the previous expression isG(1)(γ(1))

G(0)(γ(0))
. At high

loads, both the terms contribute to throughput differentiation
depending on the values ofn(1) andn(0).

IX. N UMERICAL STUDY AND DISCUSSION

In Figure 18 we plot throughput ratios obtained from a
simulation of the coupled back-off processes of two classesof
nodes (the simulation approach is explained in Remarks 4.1).
We note that this is the throughput ratio if the packet sizes
of the two classes are equal. If the packet sizes are unequal
then we only need to multiply the throughput ratio plotted
here by the ratio of the packet lengths of the two classes.
Also plotted is the analytical results obtained from our fixed
point approach. The following remarks help in interpretingthe
results in Figure 18.

Remarks 9.1:

1) Consider AIFS based differentiation. For finiteK the
attempt rates are bounded below, and the termG(1)(γ(1))

G(0)(γ(0))

is bounded, but as(n(1)+n(0)) → ∞ the idle probability
qR → 0 ensuring (see Equation 22) that the individual
node throughput ratio goes to∞ for finite K as well
(similar to the asymptotic results in Theorem 8.4). In
addition, whenn(1) increases,π(EA) increases to1.
Hence, the lower priority nodes (with larger AIFS) rarely
get a chance to attempt and the throughput ratio goes to
infinity; this is demonstrated by the simulation results
in Figure 18, plots with+ and ⋆. When n(1) is kept
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Fig. 18. Ratio of the throughput of a Class1 (higher priority) node to the
throughput of a Class0 node (lower priority). Analysis results (solid lines)
and simulation results (symbols). Four cases are considered: +: differentiation
only by AIFS with equal number of nodes,n(1) = n(0); ⋆: differentiation by
AIFS and byb0 with equal number of nodes,n(1) = n(0); •: differentiation
only by b0 with equal number of nodes,n(1) = n(0); ◦: differentiation only
by AIFS with, 5 = n(1)

≪ n(0). In all casesp = 2 and K = 7 for either
class. For the simulation results, the 95% confidence interval lies within 1%
of the average value.
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Fig. 19. Collision probability of high priority AC (HP) and low priority AC
(LP) in a system of nodes with two ACs. Both simulation (sim) and analysis
(ana) are plotted. The back-off parameters of both the ACs (in all the nodes)
are identical withb0 = 16 and AIFS = DIFS. Also plotted is the collision
probability (obtained from simulation) for single AC per node case with same
back-off parameters and twice the number of nodes. In all thecasesp = 2 and
K = 7. For the simulation results, the95% confidence interval lies within
1% of the mean value.

constant andn(0) is increased (which is more typical),
the collision probability of Class0 nodes increases to
1 and their success probability tends to0. However, the
collision probability of Class1 nodes remains much less
than1 depending on the value ofn(1) and hence again
the throughput ratio tends to∞ (see Figure 18, plots
with ◦). Figure 18 also shows the throughput ratio when
only b0 is used for differentiation (plots with•); notice
that, as shown earlier, the throughput ratio is just the
reciprocal of the ratios of the initial back-off durations,
and does not change withn.

2) For Case 3, in general,γ(1) andγ(0) are different, unlike
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Fig. 20. Collision probability of high priority AC (HP) and low priority AC
(LP) in a system of nodes with two ACs. Both simulation (sim) and analysis
(ana) are plotted. For the high priority AC,b0 = 16 and AIFS = DIFS, while
for the low priority AC we haveb0 = 32 and AIFS = DIFS + 1 slot. Also
plotted is the collision probability (from simulation) of two classes of nodes
when the two ACs of a node are considered as independent ACs inseparate
nodes. In all the casesp = 2 andK = 7. For the simulation results, the95%
confidence interval lies within1% of the mean value.

in Cases 1 and 2. This is captured by the first term in
the expressionG

(1)(γ(1))
G(0)(γ(0))

1
qR

.
3) Notice that similar results for AIFS hold even when the

functionsG(1) andG(0) are not identical (see Figure 18,
plot with ⋆). A comparison between the plots with+
and ⋆ in Figure 18 shows the effect of using bothb0

and AIFS for throughput differentiation. Theb0 based
differentiation causes the entire curve to shift up (in
favour of the higher priority class), and AIFS still causes
the ratio to increase with increasingn.

Figures 19 and 20 plot performance results for the multiple
ACs per node case. In Figure 19, we consider a set of homo-
geneous nodes each with two access categories. The back-off
parameters for either AC are the same (b0 = 16, p = 2, K = 7
and AIFS = DIFS). The figure plots the collision probability
of the higher priority (HP) AC and the low priority (LP) AC in
simulation as well as the analysis. Also plotted in comparison
is the collision probability (from simulation) for the single
AC per node case with twice the number of nodes. Notice
that, except for smalln, the performance of the high priority
AC and the low priority AC are almost identical (the back-off
parameters are identical), and close to the performance of the
single AC per node case (see Remark 9.2 below).

In Figure 20, we again consider a set of nodes each with
two access categories. The higher priority AC hasb0 = 16
and AIFS = DIFS, while the low priority AC hasb0 = 32
and AIFS = DIFS +1 slot. p = 2 andK = 7 for either case.
Figure 20 plots the collision probability of the high priority
AC and the low priority AC from simulation as well as the
analysis. Also plotted is the collision probability for thetwo
classes of nodes (from simulation) obtained by modeling the
two ACs in a node as independent ACs in separate nodes.
Notice again that except for smalln, the performance of the
multiple queue per node case is close to the performance of
the single queue case.



Remarks 9.2:The above observations from Figures 19 and
20 can be understood as follows. From the fixed point equa-
tions in Section VII, we see that for the high priority AC in
any node, only one term corresponding to the low priority AC
of the same node is missing (for the systems in Figures 19
and 20 with two ACs), in comparison to the case in which
all the ACs are in2n separate nodes. Hence, asn increases,
the effect this single AC in the same node diminishes, and the
performance of the multiple queue per node case coincides
with the performance of the single queue per node case each
with one of the original ACs.

X. SUMMARY

In this paper we have studied a multidimensional fixed point
equation arising from a model of the back-off process of the
EDCA access mechanism in IEEE 802.11e Wireless LANs.
Our first concern was the consequences of the nonuniqueness
of the fixed point solution and conditions for uniqueness.
We demonstrated via examples of homogeneous systems that
even when the balanced fixed point is unique, the existence
of unbalanced fixed points coexists with the observation of
severe short term unfairness in simulations. Further, in such
examples the balanced fixed point solution does not capture
the long run average behaviour of the system. With these
observations in mind, we concluded that it is desirable to have
systems in which there is a unique fixed point, even for a
nonhomogeneous system.

We have provided simple sufficient conditions on the node
back-off parameters that guarantee that a unique fixed point
exists. We have shown that the default IEEE 802.11 parameters
satisfy these sufficient conditions. The IEEE 802.11e standard
motivated us to consider the nonhomogeneous case, and in this
case our results suggest certainsaferanges of parameters that
guarantee the uniqueness of the fixed point while providing
service differentiation.

Using the fixed point analysis, we were also able to obtain
insights into how the different back-off parameters provide
throughput differentiaton between the nodes in a nonhomoge-
neous system. We observed that using initial back-off window,
in general, a fixed throughput ratio can be achieved. On the
other hand, usingp andAIFS the service can be significantly
biased towards the high priority class, with the differentiation
increasing in favour of the high priority class as the load inthe
system increases. We also observed that the effect of collision
priority, where there are multiple access categories per node,
decreases when the number of nodes increases.

This paper is concerned with the saturation throughput
analysis of an IEEE 802.11e single cell WLAN without fading
and capture. We have developed a general framework to
analyse single cell systems with capture in [19]. Extending
to a multi-cell scenario, in [20], the performance analysisof
IEEE 802.11 networks comprising intefering co-channel cells
was studied using the fixed point approach.

The fixed point approach is simply a heuristic that is found
to work well in some cases. Our work in this paper suggests
where it might not work and where it might work. In a recent
work [17], the authors have proved that for random backoff

algorithms, when the number of sources grow large, the system
is indeed decoupled, providing a theoretical justificationof
decoupling arguments used in the analysis.
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APPENDIX

A. Proof of Lemma 5.1

We have

G(γ) :=
1 + γ + γ2 · · · + γK

b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK

and we need to show that the derivative of this function with
respect toγ is negative. Taking the derivative we find that we
need to show that

K
∑

k=0

bkγk





K
∑

j=1

jγ(j−1)



 ≤

K
∑

k=0

γk





K
∑

j=1

jbjγ
(j−1)





i.e.,
K
∑

k=0

K
∑

j=1

jbkγ(k+j−1) ≤

K
∑

k=0

K
∑

j=1

jbjγ
(k+j−1)

or, equivalently, we need to show that

2K
∑

n=1

γ(n−1)

min{n,K}
∑

j=max{(n−K),1}

k=(n−j)

j(bj − bk) ≥ 0

Now we consider each term
∑min{n,K}

j=max{(n−K),1}

k=(n−j)

j(bj − bk) and

show that it is nonnegative. To this end, define

m(n) = |{(j, k) : j + k = n, 1 ≤ j ≤ K, 0 ≤ k ≤ K}|,

where| · | denotes set cardinality. Whenk = j, jbj − jbk = 0
and the corresponding term vanishes from the sum. Also,k
equals0 only whenj = n and1 ≤ n ≤ K. Hence, simplifying
the above expression, we get,

max{(n−K),1}+⌊m
2 ⌋−1

∑

j=max{(n−K),1}

((n − j) − j) (bn−j−bj)+n(bn−b0)1{1≤n≤K}

which is nonnegative since, in the range of the sum,(n −
j) − j ≥ 0 and bn−j − bj ≥ 0. It is also easily seen that the
derivative ofG(·) is strictly negative forγ > 0 if the bk are
not all equal, this implies thatG(·) is strictly decreasing in
this case.

B. Proof of Lemma 5.3

DefineG(γ) := u(γ)
v(γ) . We have

u(γ)

v(γ)
=

1 + γ + γ2 · · · + γK

b0(1 + γp + · · · + γkpk + · · · + γKpK)

(u

v

)
′

=
u

′

v − v
′

u

v2

Since, by Lemma 5.1,G
′

(·) ≤ 0,
(

u
v

)
′

≤ 0 for all 0 ≤ γ ≤ 1.
Also, with K ≥ 1, u, u

′

, v and v
′

are nonnegative for all
0 ≤ γ ≤ 1. Hence, for all0 ≤ γ ≤ 1

∣

∣

∣

∣

(u

v

)
′ ∣
∣

∣

∣

≤
v

′

u

v2

Differentiatingv, we get,

v
′

= b0(p + 2p2γ + 3p3γ2 + · · · + KpKγK−1)



Multiplying with u, we have,

v
′

u = b0(p + 2p2γ + 3p3γ2 + · · · + KpKγK−1)

(1 + γ + γ2 + · · · + γK)

= b0p(1 + 2pγ + 3p2γ2 + · · · + KpK−1γK−1)

(1 + γ + γ2 + · · · + γK)

= b0p(1 + γ(1 + 2p) + γ2(1 + 2p + 3p2)

+γ3(1 + 2p + 3p2 + 4p3) + · · ·

+γK−1(1 + 2p + · · · + KpK−1)

+γK(1 + 2p + · · · + KpK−1)

+γK+1(2p + · · · + KpK−1)

+ · · · + γ2K−2((K − 1)pK−2 + KpK−1)

+γ2K−1(KpK−1))

We see that,

v
′

u ≤ b0p(1 + γ(2 + 2p) + γ2(3 + 3p + 3p2)

+γ3(4 + 4p + 4p2 + 4p3) + · · ·

+γK−1(K + Kp + · · · + KpK−1)

+γK(K + Kp + · · · + KpK−1)

+γK+1(Kp + · · · + KpK−1)

+ · · · + γ2K−1(KpK−2 + KpK−1)

+γ2K−1(KpK−1))

For p ≥ 2,

1 + p + p2 + · · · + pn < pn+1

Hence,

v
′

u ≤ b0p((1 + 1) + γ(2p + 2p) + γ2(3p2 + 3p2)

+γ3(4p3 + 4p3) + · · ·

+γK−1(KpK−1 + KpK−1)

+γK(KpK−1 + KpK−1)

+γK+1(KpK−1 + KpK−1)

+ · · ·+ γ2K−1(KpK−1 + KpK−1)

+γ2K−1(KpK−1 + KpK−1))

≤ b02p(1 + γ(2p) + γ2(3p2) + γ3(4p3)

+ · · ·+ γK−1(KpK−1) + γK(KpK−1)

+γK+1(KpK−1) + · · · + γ2K−1(KpK−1)

+γ2K−1(KpK−1))

But we know that,

v2 = b2
0(1 + pγ + p2γ2 + · · · + pKγK)2

= b2
0(1 + γ(2p) + γ2(3p2) + γ3(4p3) + · · · +

γK−1(KpK−1) + γK((K + 1)pK)

+γK+1(KpK+1) + γK+2((K − 1)pK+2)

+ · · ·+ γ2K−1(2p2K−1) + γ2K(p2K))

We see that, forx ≥ 2, y ≥ 2, (x − 1)(y − 1) ≥ 1 ⇒ xy ≥
x + y. Hence, forK ≥ 2, p ≥ 2, K ≤ (K − 1)p. Repeating
the above argument for(K − 1) and p and so on, we get
K ≤ (K − n)pn for 0 ≤ n ≤ K − 1.

Now, comparingv
′

u and v2 term by term in powers ofγ
and using the fact thatK ≤ (K −n)pn for K ≥ 2, p ≥ 2 and
0 ≤ n ≤ K − 1, we see that,

v
′

u

v2
≤

2p

b0

For the caseK = 1 and p ≥ 2, we havev
′

= b0p and
v

′

u = b0p(1 + γ). Also, v2 = b2
0(1 + 2pγ + γ2). Hence,

v
′

u

v2
=

b0p(1 + γ)

b2
0(1 + 2pγ + γ2)

=
p

b0

(1 + γ)

(1 + 2pγ + γ2)

≤
p

b0
≤

2p

b0

C. Proof of Lemma 6.1

Rewriting Equation 9, for alli, 1 ≤ i ≤ n(1), we get,

(1 − γ
(1)
i ) =

n(1)
∏

j=1,j 6=i

(1 − β
(1)
j )[π(EA)

+ π(R)

n(0)
∏

k=1

(1 − β
(0)
k )]

Multiplying by (1 − β
(1)
i ) and using the fact thatβ(1)

i =

G(1)(γ
(1)
i ), we have,

(1 − γ
(1)
i )(1 − G(1)(γ

(1)
i )) = π(EA)qEA + π(R)qR

(23)

Observing Equation 23, we see that the right hand side
is independent ofi. Hence, if the left hand side function,
F (1)(γ) := (1 − γ)(1 − G(1)(γ)), is one to one, thenγ(1)

i =

γ
(1)
j for all 1 ≤ i, j,≤ n(1). Similarly, we can see from

Equation 10 that, for alli, 1 ≤ i ≤ n(0),

(1 − γ
(0)
i )(1 − G(0)(γ

(0)
i )) = qR (24)

Hence again,γ(0)
i = γ

(0)
j for all 1 ≤ i, j,≤ n(0), if F (0) is

one to one.

D. Proof of Theorem 6.1

From Lemma 6.1, we already know that the fixed point
is balanced within a class. Now, assume that there exist two
vector fixed point solutions,γ and λ, with the first n(1)

elements ofγ are γ(1) and the remainingn(0) elements are
γ(0). Similarly, the firstn(1) elements ofλ are λ(1) and the
next n(0) elements areλ(0).

Let us, in this proof, denote the value ofqR (see Equation 7)
for the fixed pointγ as qR(γ) and for the fixed pointλ as
qR(λ); similarly, we do forqEA and for other variables.

Lemma D.1:Let γ andλ be two fixed point solutions and
let F (0) be one-to-one. Ifγ(1) < λ(1), thenγ(0) > λ(0). Also,
γ(1) = λ(1) iff γ(0) = λ(0).

Proof: Without loss of generality, letγ(1) < λ(1). Then
G(1)(γ(1)) > G(1)(λ(1)) (see Lemma 5.1). Hence,

(1 − G(1)(γ(1)))n(1)

< (1 − G(1)(λ(1)))n(1)



If we assumeγ(0) < λ(0), then qR(γ(0)) > qR(λ(0)) (see
Equation 24). Hence, we require

(1−G(1)(γ(1)))n(1)(1−G(0)(γ(0)))n(0) > (1−G(1)(λ(1)))n(1)(1−G(0)(λ(0)))n(0)

Or,
(1 − G(0)(γ(0)))n(0) > (1 − G(0)(λ(0)))n(0)

which impliesγ(0) > λ(0), which is a contradiction.
If γ(0) = λ(0), then qR(γ(0)) = qR(λ(0)). Hence,(1 −

G(1)(γ(1)))n(1)

= (1 − G(1)(λ(1)))n(1)

, Or, γ(1) = λ(1).
Hence, if γ(1) < λ(1), then γ(0) > λ(0). Let γ(0) 6= λ(0),
then qR(γ(0)) 6= qR(λ(0)). Hence,(1 − G(1)(γ(1)))n(1)

6=

(1 − G(1)(λ(1)))n(1)

, Or, γ(1) 6= λ(1).
Now, using Equation 8, write the right hand side of Equa-

tion 23 as

J(qEA, qR, l) :=
qEA(1 + qEA + · · · + ql−1

EA ) + qR
ql

EA

1−qR

1 + qEA + q2
EA + · · · + ql−1

EA +
ql

EA

1−qR

Lemma D.2:If γ(1) < λ(1), then J(qEA(γ), qR(γ), l) >
J(qEA(λ), qR(λ), l).

Proof:
ConsiderJ(qEA, qR, l).

J(qEA, qR, l) =
qEA(1 + qEA + · · · + ql−1

EA ) + qR
ql

EA

1−qR

1 + qEA + · · · + ql−1
EA +

ql
EA

1−qR

Expanding and rewriting the above equation, we get,

=
qEA + qEA(qEA − qR) + · · · + ql−1

EA (qEA − qR)

qEA + qEA(qEA − qR) + · · · + ql−1
EA (qEA − qR) + (1 − qR)

which is of the form f1
f1+f2 . Whenγ(1) < λ(1), thenγ(0) >

λ(0) (from the previous lemma). Hence,

qEA(γ) − qR(γ)

=

n(1)
∏

i=1

(1 − G(1)(γ(1)))(1 −

n(0)
∏

i=1

(1 − G(0)(γ(0))))

<

n(1)
∏

i=1

(1 − G(1)(λ(1)))(1 −

n(0)
∏

i=1

(1 − G(0)(λ(0))))

= qEA(λ) − qR(λ)

Also, we can see that,

qEA(γ) < qEA(λ)

qR(γ) < qR(λ)

Using the above three inequalities, we can see that,

J(qEA(γ), qR(γ), l) < J(qEA(λ), qR(λ), l)

If γ(1) < λ(1), then (1 − γ(1))(1 − G(1)(γ(1))) > (1 −
λ(1))(1 − G(1)(λ(1))). However, from the above lemma and
the right hand side of Equation 23, we see that we have a
contradiction.

E. Proof of Theorem 7.1

The fixed point equations are, for alli = 1, · · · , n (and
j = 1, · · · , ci),

γi,j = 1 −

j−1
∏

m=1

(1 − βi,m)

n
∏

{k=1,k 6=i}

ck
∏

l=1

(1 − βk,l)

where βi,j = Gi,j(γi,j). Clearly, by Brouwer’s fixed point
theorem, there exists a fixed point solution for the above
system of equations. Rewriting the above equation, we get,

(1 − γi,j)(1 − βi,j) =

j
∏

m=1

(1 − βi,m)
n
∏

{k=1,k 6=i}

ck
∏

l=1

(1 − βk,l)

Notice that, for2 ≤ j ≤ ci,

(1 − γi,j)(1 − βi,j) = (1 − γi,j−1)(1 − βi,j−1)(1 − βi,j)

or,

(1 − γi,j) = (1 − γi,j−1)(1 − βi,j−1) (25)

when (1 − βi,j) > 0.
Let us assume that there exists two fixed point solutions

(γ andλ) for the system. Without loss of generality, assume
that for some nodei and its AC j, γi,j < λi,j . Then, the
following lemma shows thatγk,l < λk,l for all k = 1, · · · , n
and l = 1, · · · , ck.

Lemma E.3:Wheneverγ and λ are the fixed point solu-
tions, and if γi,j < λi,j for some i = 1, · · · , n and j ∈
{1, · · · , ci}, then γk,l < λk,l for all k = 1, · · · , n and all
l = 1, · · · , ck.

Proof: Let γi,j < λi,j for somei ∈ 1, · · · , n and j ∈
{1, · · · , ci}. Then, using the fact theFi,j are strictly monotone
decreasing, we have

(1 − γi,j)(1 − Gi,j(γi,j)) > (1 − λi,j)(1 − Gi,j(λi,j))

Using Equation 25, we see that,

(1 − γi,j+1) > (1 − λi,j+1)

i.e., γi,j+1 < λi,j+1 when everj +1 ∈ {1, · · · , ci} and, again
using Equation 25, we have

(1 − γi,j−1)(1 − Gi,j−1(γi,j−1)) > (1 − λi,j−1)(1 − Gi,j−1(λi,j−1))

Or, γi,j−1 < λi,j−1 when everj − 1 ∈ {1, · · · , ci}. Arguing
as above, we see thatγi,l < λi,l for all l = 1, · · · , ci.

From the fixed point equations, we observe that for allk =
1, · · · , n,

(1 − γk,ck
)(1 − Gk,ck

(γk,ck
)) =

n
∏

l=1

cl
∏

m=1

(1 − Gl,m(γl,m))

(1 − λk,ck
)(1 − Gk,ck

(λk,ck
)) =

n
∏

l=1

cl
∏

m=1

(1 − Gl,m(λl,m))

But we know that

(1 − γi,ci
)(1 − Gi,ci

(γi,ci
)) > (1 − λi,ci

)(1 − Gi,ci
(λi,ci

))



sinceγi,ci
< λi,ci

. Hence, we have,

(1 − γk,ck
)(1 − Gk,ck

(γk,ck
)) > (1 − λk,ck

)(1 − Gk,ck
(λk,ck

))

Or, γk,ck
< λk,ck

for all 1 ≤ k ≤ n. Arguing as before for
node i, we thus haveγk,l < λk,l for all k = 1, · · · , n and
l = 1, · · · , n.

Hence, ifγ andλ are two fixed point solutions for the sys-
tem of equations, we see thatγi,k < λi,k for all i = 1, · · · , n
(andk = 1, · · · , ci), which is clearly a contradiction (the proof
is similar to that in Section V-B and is not provided). Hence,
the system of equations for the multiple access categories per
node case (without AIFS) has a unique fixed point solution.

F. Proof of Theorem 7.2

Considerci access categories per nodei with c
(1)
i ACs

(1, · · · , c
(1)
i ) with AIFS(1), and the remainingc(0)

i ACs (c(1)
i +

1, · · · , ci) with AIFS = AIFS(1) + l slots. The fixed point
equations for the system are given in Equations 14 and 15.

As before, by Brouwer’s fixed point theorem, there exists a
fixed point for the system of equations. Assume that there exist
two fixed point solutions for the above system of equations,
γ andλ with γi,j andλi,j as elements.

Let us, in this proof, denote the value ofqR (see Equa-
tion 16) for the fixed pointγ asqR(γ) and for the fixed point
λ asqR(λ); similarly, we do forqEA and for other variables.

In a nodei, consider two ACs of the same AIFS class, i.e.,
j andj−1 s.t.Ci,j = Ci,j−1. As in the proof of Theorem 7.1,
it can be shown from Equation 14 or 15, that

(1 − γi,j) = (1 − γi,j−1)(1 − Gi,j−1(γi,j−1))

or,
(1 − γi,j) = Fi,j−1(γi,j−1)

Hence, using the one-to-one property ofFi,j(·) if γi,j < λi,j ,
thenγi,k < λi,k for all k such thatCi,j = Ci,k,

Now consider all those nodes withCi,ci
= 0, i.e., the least

collision priority AC in a node is of AIFS class0. We then
have, using Equations 15 and 16,

(1 − γi,ci
)(1 − Gi,ci

(γi,ci
)) = qR(γ)

(1 − λi,ci
)(1 − Gi,ci

(λi,ci
)) = qR(λ)

i.e., Fi,ci
(γi,ci

) = qR(γ) and Fi,ci
(λi,ci

) = qR(λ). If
qR(γ) > qR(λ), then γi,ci

< λi,ci
for all i s.t. Ci,ci

= 0.
If qR(γ) = qR(λ), thenγi,ci

= λi,ci
for all i s.t. Ci,ci

= 0.
Combining the above two results, we see that for alli, j s.t.
Ci,j = 0, eitherγi,j > λi,j or γi,j = λi,j or γi,j < λi,j .

Without loss of generality, assume that the collision proba-
bility of Class0 ACs is more inγ than inλ (γ(0) > λ(0), γ(0)

andλ(0) are the vector of collision probabilities corresponding
to AIFS class0 in the vectorsγ andλ respectively). Hence,
qR(γ) < qR(λ). Also, qEA(γ) < qEA(λ) (the proof is similar
to that provided for AIFS with single AC per node and is not
provided), which impliesγ(1) < λ(1).

Now consider the expressionF (·) for the least collision
priority Class1 AC, sayj, of any nodei,

(1 − γi,j)(1 − Gi,j(γi,j)) = π(EA, γ)qEA(γ) + π(R, γ)qR(i,j)
(γ)

(1 − λi,j)(1 − Gi,j(λi,j)) = π(EA, γ)qEA(λ) + π(R, γ)qR(i,j)
(λ)

where qR(i,j)
=
∏j

m=1(1 − βi,m)
∏

{1≤k≤n,k 6=i}

∏ck

l=1(1 −

βk,l). Notice that q(i,j)
R is similar to qR except for terms

corresponding to the Class0 (with lower collision priority)
ACs in node i. Hence, if γ(0) > λ(0), then not only is
qEA(γ) < qEA(λ) andqR(γ) < qR(λ), but also,qRi,j

(γ) <
qRi,j

(λ). Expanding(1 − ·i,j)(1 − Gi,j(·i,j)), we get,

(1 − ·i,j)(1 − Gi,j(·i,j)) =

(1 + qEA + q2
EA + · · · + ql−1

EA )qEA +
ql

EA

1−qR
qR(i,j)

1 + qEA + q2
EA + · · · + ql−1

EA +
ql

EA

1−qR

=
qEA + qEA(qEA − qR) + · · · + ql−1

EA (qEA − qR) + ql
EA(qR(i,j)

− q

qEA + qEA(qEA − qR) + · · · + ql−1
EA (qEA − qR) + (1 − qR)

where qEA − qR = qEA(1 −
∏N

k=1

∏nk

{l=1,Ck
l
=0}(1 − βk,l))

and q
(i,j)
R − qR = q

(i,j)
R (1 −

∏ni

{l=1,Ci
l
=0}(1 − βi,l)). Clearly,

if γ(0) > λ(0), thenqEA(γ)− qR(γ) < qEA(λ)− qR(λ) and
qRi,j

(γ) − qR(γ) < qRi,j
(λ) − qR(λ). Also, we know that

1− qR(γ) > 1− qR(λ). From the above observations, we see
that, (1 − γi,j)(1 − Gi,j(γi,j)) < (1 − λi,j)(1 − Gi,j(λi,j)),
which clearly implies thatγi,j > λi,j . Hence we haveγ(1) >
λ(1) which is a contradiction.

Also, we can see thatγ(1) = λ(1) iff γ(0) = λ(0) (the
proof is similar to that in Theorem 6.1 and is not provided
here).

G. Proof of Lemma 8.1

Considerγ such that0 ≤ γ ≤ 1
p
. Then,G∞(γ) = (1−γp)

b0(1−γ) .

Differentiating(1 − γ)e−G∞(γ), we have,

= e−G∞(γ)(−1) + (1 − γ)e−G∞(γ)(−G
′

∞(γ))

But G
′

∞(γ) = 1
b0

(1−p)
(1−γ)2 . Substituting it in the previous

equation, we get,

= e−G∞(γ)

(

−1 − (1 − γ)
1

b0

(1 − p)

(1 − γ)2

)

= e−G∞(γ)

(

−1 −
1

b0

(1 − p)

(1 − γ)

)

e−G∞(γ) is always positive (sinceG∞(γ) < 1). For 0 ≤ γ ≤
1
p
, the absolute value of1

b0

(1−p)
(1−γ) is maximum whenγ = 1

p
, at

which the value equals,1
b0

(1−p)

(1− 1
p
)

= − p
b0

. Hence, the second

term is always less than(−1+ p
b0

). But, if b0 ≥ 2p+1, clearly,
the second term is negative. Hence, the derivative is always
negative and never equal to zero for all0 ≤ γ ≤ 1

p
. Hence, the

function(1−γ)e−G∞(γ) is one-to-one in the range0 ≤ γ ≤ 1
p
.

For 1
p
≤ γ ≤ 1, G∞(γ) = 0. Hence,(1 − γ)e−G∞(γ) is one-

to-one for allγ, 1
p
≤ γ ≤ 1. Also, the function is decreasing

in both the intervals0 ≤ γ ≤ 1
p

and 1
p
≤ γ ≤ 1. Hence,

(1 − γ)e−G∞(γ) is one-to-one for all0 ≤ γ ≤ 1.

H. Proof of Theorem 8.1

We shall prove Theorem 8.1 by first proving Lemmas H.4
to H.8.



Lemma H.4:In Case 1, withK = ∞, γ(1)(∞, n) ≤
γ(0)(∞, n) for all n.
Remark:Thus, as expected, the collision probability for the
higher priority class is smaller, for eachn.

Proof: Sinceb
(0)
0 > b

(1)
0 , we see from Equation 18 that,

for every γ ∈ [0, 1], G
(1)
∞ (γ) ≥ G

(0)
∞ (γ). Hence,e−G(1)

∞ (γ) ≤

e−G(0)
∞ (γ). Hence,(1− γ)e−G(1)

∞ (γ) ≤ (1− γ)e−G(0)
∞ (γ). Since

the fixed point satisfies Equation 20, it is necessary that
γ(1)(∞, n) ≤ γ(0)(∞, n) holds (since(1−γ)e−G(·)

∞ (γ) is one-
to-one decreasing).

Lemma H.5:In Case 1, withK = ∞, γ(1)(∞, n) and
γ(0)(∞, n) are strictly increasing functions ofn.

Proof: Considern1 < n2. We know that

(1 − γ(1)(∞, n1))e−β(1)(∞,n1)

= (1 − γ(0)(∞, n1))e−β(0)(∞,n1)

(1 − γ(1)(∞, n2))e−β(1)(∞,n2)

= (1 − γ(0)(∞, n2))e−β(0)(∞,n2)

If γ(1)(∞, n1) = γ(1)(∞, n2), then using Lemma 8.1 we
see thatγ(0)(∞, n1) = γ(0)(∞, n2). Henceβ(0)(∞, n1) =
β(0)(∞, n2) and β(1)(∞, n1) = β(1)(∞, n2). Since both
β(0)(∞, ·) and β(1)(∞, ·) cannot be zero, and asn1 < n2,
substituting in Equation 19, we get a contradiction.

Assume thatγ(1)(∞, n1) > γ(1)(∞, n2). Then, from
Equation 20 and Lemma 8.1, it follows thatγ(0)(∞, n1) >
γ(0)(∞, n2). Also if collision probabilities decrease withn,
it would imply that the attempt rates increase withn, i.e.,
β(1)(∞, n1) ≤ β(1)(∞, n2) andβ(0)(∞, n1) ≤ β(0)(∞, n2).
But from Equations 19, we see that,

γ(1)(∞, n1) = 1 − e−((n1(1)−1)β(1)(∞,n1)+n1(0)β(0)(∞,n1))

≤ 1 − e−((n2(1)−1)β(1)(∞,n2)+n2(0)β(0)(∞,n2))

= γ(1)(∞, n2)

Thus we have a contradiction and the result is proved.
Lemma H.6:In Case 1, withK = ∞, the attempt rates

β(1)(∞, n) andβ(0)(∞, n) tend to zero asn → ∞.
Proof: If not, the exponent in the collision probability

equation (Equation 19) tends to−∞ taking the collision
probabilities to1. However, we know that the attempt rate
is zero for allγ ≥ 1

p
, leading to a contradiction (since we are

interested only in the casep > 1).
Lemma H.7:In Case 1, with K = ∞,

limn→∞ γ(1)(∞, n) = limn→∞ γ(0)(∞, n)
Proof: We have

0 < γ(1)(∞, n) − γ(0)(∞, n)

= e−((n(1)−1)β(1)(∞,n)+(n(0)−1)β(0)(∞,n))

(e−β(1)(∞,n) − e−β(0)(∞,n))

≤ (e−β(1)(∞,n) − e−β(0)(∞,n)) →n→∞ 0

Hence proved.
Lemma H.8:In Case 1, withK = ∞, γ(1)(∞, n) <

γ(0)(∞, n) < 1
p

for all n.
Proof: We first observe thatγ(1)(∞, n) < 1

p
for

all n. Otherwise, by Lemma H.4 and Lemma H.5,1
p

≤

γ(1)(∞, n) ≤ γ(0)(∞, n) for all n > N for someN . Hence,
β(1)(∞, n) = β(0)(∞, n) = 0 for all n > N . However,
substituting in Equation 19 gives a contradiction.

Now assume thatγ(0)(∞, n) ≥ 1
p

for all n ≥ N for some
N . Since,γ(.)(∞, n) is a strictly increasing function ofn, we
can, without loss of generality, assume thatγ(0)(∞, n) > 1

p

for all n ≥ N for someN . Hence,β(0)(∞, n) is zero for all
n ≥ N . But we know that the collision probability of Class1
also increases withn and the limit of the collision probability
of Class1 and Class0 are equal. Hence,γ(1)(∞, n) exceeds
1
p

for all n ≥ N
′

for someN
′

, which is a contradiction.

Since γ(1)(∞, n) and γ(0)(∞, n) are less than1
p
, the

inequality in Lemma H.4 becomes strict, i.e.,γ(1)(∞, n) <

γ(0)(∞, n) for all n (when b
(0)
0 > b

(1)
0 , G

(0)
∞ (γ) < G

(1)
∞ (γ)

for all 0 ≤ γ ≤ 1
p
).

Combining the above Lemmas, we see thatγ(1)(∞, n) <
γ(0)(∞, n) for all n (From Lemma H.8). Using the fact that
β(·)(∞, n) → 0 asn → ∞ andγ(1)(∞, n) < γ(0)(∞, n) < 1

p

for all n, we get limn→∞ γ(·)(∞, n) = 1
p

as n → ∞

(from Equation 18). Substitutingγ(·)(∞, n) → 1
p

as n →

∞ in Equations 19, we see thatlimn→∞(n(1)β(1)(∞, n) +
n(0)β(0)(∞, n)) ↑ ln( p

p−1 ), thus completing the proof of
Theorem 8.1.

I. Proof of Theorem 8.2

In the following, for notational simplicity, we drop the
argument(∞, n). Consider the necessary condition, that a
fixed point solution satisfies.

(1 − γ(1))(1 − G(1)
∞ (γ(1))) = (1 − γ(0))(1 − G(0)

∞ (γ(0)))

Since we are interested only in the range0 ≤ γ ≤ 1
p
, we

can substitute forG∞(γ) = (1−γp)
b0(1−γ) , and further simplify the

equation to,

(1 − γ(1)) −
1

b
(1)
0

(1 − γ(1)p) = (1 − γ(0)) −
1

b
(0)
0

(1 − γ(0)p)

Rearranging the terms, we have,

(γ(0) − γ(1)) =
1

b
(1)
0

(1 − γ(1)p) −
1

b
(0)
0

(1 − γ(0)p)

Further

b
(1)
0

(1 − γ(1)p)
(γ(0) − γ(1)) = 1 −

b
(1)
0

b
(0)
0

(1 − γ(0)p)

(1 − γ(1)p)

Let us rewrite the left hand side of this equation as follows

b
(1)
0

(1 − γ(1)p)
(γ(0) − γ(1)) =

b
(1)
0

p

(γ(0)p − γ(1)p)

(1 − γ(1)p)

=
b
(1)
0

p

(1 − γ(1)p) − (1 − γ(0)p)

(1 − γ(1)p)

=
b
(1)
0

p

(

1 −
(1 − γ(0)p)

(1 − γ(1)p)

)



Substituting back this expression for the left hand side into
the original equation, we have

b
(1)
0

p

(

1 −
(1 − γ(0)p)

(1 − γ(1)p)

)

= 1 −
b
(1)
0

b
(0)
0

(1 − γ(0)p)

(1 − γ(1)p)

Rearranging terms, we obtain

b
(1)
0

p
− 1 =

(1 − γ(0)p)

(1 − γ(1)p)

(

b
(1)
0

p
−

b
(1)
0

b
(0)
0

)

Finally the calculation yields

(1 − γ(1)p)/b
(0)
0

(1 − γ(0)p)/b
(1)
0

=
(b

(0)
0 − p)

(b
(1)
0 − p)

(26)

For equal packet length case, the ratio of the throughput of
the nodes equals the ratio of their success probabilities ina
slot (see, for example, [3] and [1]) which, upon simplification,
yields (we reintroduce the dependence onn in the notation)

β(1)(∞, n)

(1 − β(1)(∞, n))

(1 − β(0)(∞, n))

β(0)(∞, n)

As n → ∞, β(1)(∞, n) and β(0)(∞, n) tends to0. Also

we know thatβ(·)(∞, n) is of the form (1−γ(·)(∞,n)p)

b
(·)
0 (1−γ(·)(∞,n))

and

γ(·)(∞, n) < 1
p

for all n. Since

lim
n→∞

γ(1)(∞, n) = lim
n→∞

γ(0)(∞, n)

we havelimn→∞(1−γ(1)(∞, n)) = limn→∞(1−γ(0)(∞, n)).
Hence, using Equation 26, the ratio of the throughputs, as

n → ∞, can be seen to converge to(b
(0)
0 −p)

(b
(1)
0 −p)

asn → ∞.

J. Proof of Theorem 8.3

Lemma J.9:For Case 2, withK = ∞, andF
(i)
∞ one-to-one

1) γ(1)(∞, n) < γ(0)(∞, n) for all n
2) γ(1)(∞, n) andγ(0)(∞, n) strictly increase withn
3) β(1)(∞, n) andβ(0)(∞, n) tend to0 asn → ∞
4) γ(1)(∞, n) < γ(0)(∞, n) < 1

p(1) , ∀n

5) limn→∞ γ(1)(∞, n) = limn→∞ γ(0)(∞, n) = 1
p(1)

The proof follows in similar lines as in Lemmas H.4 - H.8
and hence is not provided here.

Lemma J.10:In Case 2, withK = ∞, n(0)β(0)(∞, n) → 0
asn → ∞.

Proof: Since

lim
n→∞

γ(1)(∞, n) = lim
n→∞

γ(0)(∞, n) =
1

p(1)
>

1

p(0)

we have,β(0)(∞, n) = 0 for all n > N for someN . Hence,
limn→∞ n(0)β(0)(∞, n) = 0.
Remark: Thus, the aggregate attempt rate of the Class0 goes
to zero, while the aggregate attempt rate of the Class1 governs
the system performance.

From Lemma J.9, we see thatγ(1)(∞, n) < γ(0)(∞, n) for
all n and limn→∞ γ(1)(∞, n) ↑ 1

p(1) , limn→∞ γ(0)(∞, n) ↑
1

p(1) . Lemma J.10 shows thatlimn→∞ n(0)β(0)(∞, n) = 0.
Hence, substituting in the fixed point equations for Case 2,
we get limn→∞ n(1)β(1)(∞, n) ↑ ln( p(1)

p(1)−1
) completing the

proof of Theorem 8.3.

K. Proof of Theorem 8.4

Lemma K.11:In Case 3,γ(1)(∞, n) and γ(0)(∞, n) are
strictly increasing functions ofn.

Proof: Rewriting the fixed point equations for AIFS, we
have,

(1 − γ(1)(∞, n))e−β(1)(∞,n) = e−n(1)β(1)(∞,n)(π(EA) +

π(R)e−n(0)β(0)(∞,n))

(1 − γ(0)(∞, n))e−β(0)(∞,n) = e−n(1)β(1)(∞,n)−n(0)β(0)(∞,n)

(27)

Considern1 < n2.
Assume that γ(0)(∞, n1) > γ(0)(∞, n2) (hence,

β(0)(∞, n1) ≤ β(0)(∞, n2)). As γ(0)(∞, n) decreases
with n, (1 − γ)e−G(γ) increases. Hence,qR =

e−n(1)β(1)(∞,n)−n(0)β(0)(∞,n) increases with n. Since qR

increases withn and β(0)(∞, n) is non-decreasing withn,
we requireqEA = e−n(1)β(1)(∞,n) strictly increase withn.
Hence,β(1)(∞, n) strictly decreases withn (or γ(1)(∞, n)
strictly increase withn). From Lemma D.2, we see that as
qEA and qR both increase withn, the R.H.S. of the first of
Equations 27 also increases withn. From the monotonicity of
(1 − γ)e−G(γ), we haveγ(1)(∞, n) decreasing withn which
yields a contradiction.

Assume thatγ(1)(∞, n1) > γ(1)(∞, n2) (henceβ(1)(∞, n)

increases withn). Hence,qEA = e−n(1)β(1)(∞,n) decreases
with n. From the second of Equations 27, we see that if
qEA decreases, thenγ(0)(∞, n) must strictly increase with
n (otherwise, the R.H.S. will decrease withn, and from the
monotonicity of the L.H.S., we get a contradiction). Since
γ(0)(∞, n) increases withn, qR decreases withn. Using the
fact thatqEA andqR decreases withn and from Lemma D.2,
we see that the R.H.S. of the first equation also decreases with
n, which implies thatγ(1)(∞, n) increases withn, which is a
contradiction.

Assume that γ(1)(∞, n1) = γ(1)(∞, n2) (clearly,
β(1)(∞, n) > 0 for all n). Then qEA decreases withn. So
from the R.H.S. of the second of Equations 27, we need that
γ(0)(∞, n) strictly increase withn. So,qR also decreases with
n. Hence, the R.H.S. of the first equation decreases from the
Lemma D.2 and hence we obtain a contradiction.

Similarly, if γ(0)(∞, n1) = γ(0)(∞, n2), qR is constant.
Sincee−n(0)β(0)(∞,n) is non-increasing, we require thatqEA

be non-decreasing (qR = e−n(0)β(0)(∞,n)qEA). Hence, we re-
quireβ(1)(∞, n) strictly decreasing withn. Hence,γ(1)(∞, n)
strictly increases withn. Hence, the L.H.S. of the first equation
decreases withn. However, sinceqR is a constant andqEA

is non-decreasing, we have the R.H.S. of the first equation
non-decreasing, which is a contradiction.

Hence,γ(·)(∞, n) strictly increases withn.
From the above lemma, we can see thatβ(·)(∞, n) goes to

zero asn → ∞.
Lemma K.12:In Case 3, withK = ∞, γ(1)(∞, n) <

γ(0)(∞, n) < 1
p

for all n.
Proof: From Equations 27 we can easily see that(1 −

γ(1)(∞, n))e−β(1)(∞,n) ≥ (1−γ(0)(∞, n))e−β(0)(∞,n). Since
we assumed that the functionG∞(·) is the same for both



the classes, and since we know that(1 − γ)e−G∞(γ) is a
strict monotone decreasing function, we have,γ(1)(∞, n) ≤
γ(0)(∞, n) for all n.

As in Lemma H.8, it can be seen thatγ(1)(∞, n) < 1
p

for all n. Now suppose that, thatγ(0)(∞, n) > 1
p

for all
n ≥ N for some N (γ(·)(∞, n) are strictly increasing
functions of n). With β(0)(∞, n) = 0 for all n ≥ N , the
only factor that governs the collision probability of Class1
and0 is (n(1) − 1)β(1) andn(1)β(1). However, we know that
β(1)(∞, n) goes to zero, orγ(1)(∞, n) → γ(0)(∞, n), which
requiresγ(1)(∞, n) > 1

p
for some n > N

′

, leading to a
contradiction. Hence,γ(1)(∞, n) ≤ γ(0)(∞, n) < 1

p
for all

n. Also, whenγ(·) < 1
p
, the inequality between the collision

probabilities becomes strict, i.e.,γ(1)(∞, n) < γ(0)(∞, n)
(We already know thatγ(1)(∞, n) ≤ γ(0)(∞, n). The result
follows from the Equations 27 and the fact thatG∞(γ) is a
strictly decreasing function ofγ when0 ≤ γ ≤ 1

p
).

Lemma K.13:In Case 3, withK = ∞, n(0)β(0)(∞, n) →
0 asn → ∞.

Proof: Sinceβ(0)(∞, n) ≥ 0

1 − e−(n(1)−1)β(1)(∞,n) ≤ 1 − e−(n(1)−1)β(1)(∞,n)−n(0)β(0)(∞,n)

If n(0)β(0)(∞, n) converges to a positive value, then
this inequality becomes strict in the limit. Hence,
limn→∞ γ(1)(∞, n) < limn→∞ γ(0)(∞, n), which is a
contradiction, since bothγ(1)(∞, n) and γ(0)(∞, n) tend to
1
p

as n → ∞ (this follows sinceγ(·)(∞, n) < 1
p

for all n

andβ(·)(∞, n) tend to0 asn → ∞). Hence,n(0)β(0)(∞, n)
goes to zero.

Using Lemmas K.11 and K.12, we see thatγ(1)(∞, n) <
γ(0)(∞, n) for all n and limn→∞ γ(·)(∞, n) ↑ 1

p
. From the

previous Lemma, we see thatn(0)β(0)(∞, n) → 0. From the
Fixed point equations for AIFS and Lemma K.13, we obtain
limn→∞ n(1)β(1)(∞, n) ↑ ln( p

p−1 ), completing the proof of
Theorem 8.4.

L. Proof of Lemma 8.2

Consider the case of finiteK with n(1) Class1 nodes and
n(0) Class0 nodes. The success probability for a Class1 node
is given by (we dropK andn in the notation)

G(1)(γ(1))(π(EA)(1 − G(1)(γ(1)))(n
(1)−1) +

π(R)(1 − G(1)(γ(1)))(n
(1)−1)(1 − G(0)(γ(0)))n(0)

)

and the success probability for a Class0 node equals

G(0)(γ(0))π(R)(1 − G(1)(γ(1)))n(1)

(1 − G(0)(γ(0)))(n
(0)−1)

The ratio of throughput of a Class1 node to a Class0 node
is then given by,

G(1)(γ(1))(π(EA) + π(R)(1 − G(0)(γ(0)))n(0)

)

G(0)(γ(0))π(R)(1 − G(1)(γ(1)))(1 − G(0)(γ(0)))(n(0)−1)

=

G(1)(γ(1))
(1−G(1)(γ(1)))

(π(EA) + π(R)(1 − G(0)(γ(0)))n(0)

)

G(0)(γ(0))
(1−G(0)(γ(0)))

π(R)(1 − G(0)(γ(0)))n(0)

=

G(1)(γ(1))
(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)( gamma(0)))

(

π(EA)

π(R)(1 − G(0)(γ(0)))n(0)
+ 1

)

Consider the term inside the bracket,

π(EA)

π(R)(1 − G(0)(γ(0)))n(0)
+ 1

Let l = 1. From Equation 8, we see thatπ(EA)
π(R) = 1−qR

qEA
.

Substituting, we get,

1 − qR

qEA(1 − G(0)(γ(0)))n(0)
+ 1

We know thatqEA(1−G(0)(γ(0)))n(0)

= qR. Hence, the above
expression simplifies to

1 − qR

qR

+ 1 =
1

qR

The throughput ratio thus simplifies to

G(1)(γ(1))
(1−G(1)(γ(1)))

G(0)(γ(0))
(1−G(0)(γ(0)))

1

qR


