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Abstract— We consider the vector fixed point equations arising
out of the analysis of the saturation throughput of a single ell

IEEE 802.11e (EDCA) wireless local area network with nodes

that have different back-off parameters, including different Ar-
bitration InterFrame Space (AIFS) values. We consider balaced
and unbalanced solutions of the fixed point equations arisig in

error) and assume that packets are lost only due to collion
simultaneous transmissions. For ease of understandingh mu
of our presentation is for the case in which each node has only
one EDCA queue (of some access category). The analysis,
however, applies to the general case of multiple EDCA queues

homogeneous and nonhomogeneous networks. We are concerned(of different access categories) per node and we show this in

in particular, with (i) whether the fixed point is balanced within a
class, and (ii) whether the fixed point is unique. Our simulaibns
show that when multiple unbalanced fixed points exist in a

Section VII.
Much work has been reported on the performance evaluation

homogeneous system then the time behaviour of the systemOf EDCA to support differentiated service. Most of the ana-

demonstrates severe short term unfairness (omultistability).
Implications for the use of the fixed point formulation for
performance analysis are also discussed. We provide a comidn
for the fixed point solution to be balanced within a class, and
also a condition for uniqueness. We then provide an extengioof
our general fixed point analysis to capture AIFS based diffeen-
tiation, including the concept of virtual collision when there are
multiple queues per station; again a condition for uniquenss is
established. For the case of multiple queues per node, we firlldat

a model with as many nodes as there are queues, with one queue

per node, provides an excellent approximation. An asymptat
analysis of the fixed point is provided for the case in which

lytical work reported has been based on a decoupling approxi
mation proposed initially by Bianchi ([3]). While keepinkis
basic decoupling approximation, in [1] Kumar et al. presént

a significant simplification and generalisation of the asily

of the IEEE 802.11 back-off mechanism. This analysis led to
a certain one dimensional fixed point equation for the doltis
probability experienced by the nodes in a homogeneousmyste
(i.e., one in which all the nodes have the same back-off
parameters). In this paper we considgeultidimensional fixed
point equationgor a homogeneous system of nodes, and also

packets are never abandoned, and the number of nodes goes tofor a nonhomogeneous system of nodes. The nonhomogeneity

oo. Finally the fixed point equations are used to obtain insighg
into the throughput differentiation provided by different initial

back-offs, persistence factors, and AIFS, for finite numberof
nodes and for differentiation parameter values similar to hose
in the IEEE 802.11e standard. Simulation results validate he
accuracy of the analysis.

Index Terms— Performance of Wireless LANs, Short term Un-
fairness, QoS in Wireless LANs, EDCA Analysis

I. INTRODUCTION

arises due to different initial back-offs, or different kac
off multipliers, or different amounts of time that nodes tvai
after a transmission before restarting their back-off ¢ets
(i.e., the AIFS (Arbitration InterFrame Space) mechanidm o
IEEE 802.11e), or different number of access categories per
node.

Our approach in this paper builds upon the one provided in
[1]. The main contributions of this paper are the following:

1) We provide examples of homogeneous systems in which,
even though a unique balanced fixed point exists (i.e.,

A new component of the IEEE 802.11e medium access
control (MAC) is an enhanced distributed channel access
(EDCA), which provides differentiated channel access ttkpa
ets by allowing different back-off parameters (see [2]veSal
traffic classes are supported, the classes being distimgalis
by different back-off parameters. Thus, whereas in thedgga

DCF all nodes have a single queue, and a single back-offz)

“state machine”, all with the same back-off parameters (we
say that the nodes alt®mmogeneoysin EDCA the nodes can
have multiple queues with separate back-off state machines
with different parameters, and hence are permitted to be
nonhomogeneous 3
This paper is concerned with the saturation throughputanal
ysis of IEEE 802.11e (EDCA) wireless LANs. We consider
a single cell network of IEEE 802.11e nodes (single cell
meaning that all nodes are within control channel range dlfiea
other), with an ideal channel (without capture, fading anfie
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a solution in which all the coordinates are equal), there
can be multiple unbalanced fixed points, thus suggesting
multistability,. We demonstrate by simulation that, in
such cases, significant short term unfairness can be
observed and the unique balanced fixed point fails to
capture the system performance.

Next, in the case where the back-off increases multi-
plicatively (as in IEEE 802.11), we establish a simple
sufficient condition for the uniqueness of the solution
of the multidimensional fixed point equation in the
homogeneous and the nonhomogeneous cases.

) We perform an analytical study of the throughput differ-

entiation provided by the different back-off mechanisms,
by, p and AIFS. We do an asymptotic analysis of the
service differentiation (with the number of nodes tending
to infinity), and also obtain approximate results for a
finite number of nodes.

A survey of the literature: There has been much research
activity on modeling the performance of IEEE 802.11 and



in particular of IEEE 802.11e medium access standards. Timefairness in the system by experimentation and simulation
general approach has been to extend the decoupling appraxe suggests modifications to the protocol to eliminatelg§oA
imation introduced by Bianchi ([3]). Without modeling theall the existing work assumes that the collision probabgit
AIFS mechanism, the extension is straightforward. Only thef all the queues with identical access parameters are the
initial back-off, and the back-off multipliepersistence factgr same. Thus there appears to have been no earlier work on
are modeled. In [4], [5] and [6], such a scheme is studiedudying the possibility of unbalanced solutions of the dixe
by extending Bianchi's Markov model per traffic class. Ipoint equations. In addition, the possibility of nonunigass
this paper, in Section Ill, we will provide a generalisatiorf the solution of the fixed point equations arising in the
and simplification of this approach. We will then provideanalyses seems to have been missed in the earlier liter&tiure
examples where nonunique fixed points can exist, demoastratir work, we study the fixed point equations for IEEE 802.11e
the consequences of such nonuniqueness, and also corditimtworks and take into account all these possibilities.
that guarantee unigueness. Outline of the paper: In Section Il we review the generalised
The AIFS techniqgue is a further enhancement ihack-off model that was first presented in [1]. In Section IlI
IEEE 802.11e that provides a sort of priority to nodes thaehawe develop the multidimensional fixed point equations fer th
smaller values of AIFS. After any successful transmissiohpmogeneous and nonhomogeneous cases (without AIFS), and
whereas high priority nodes (with AIFS = DIFS) wait onlyobtain the necessary and sufficient conditions satisfiechéy t
for DIFS (DCF Interframe Space) to resume counting dowsolutions to the fixed point equations. We provide examples
their back-off counters, low priority nodes (with AIFS in Section IV to show that even in the homogeneous case
DIFS) defer the initiation of countdown for an additionathere can exist multiple unbalanced fixed points and show
AIFS—DIFS slots. Thus a high priority node decrements ithe consequence of this. In Section V-A, we analyse the
back-off counter earlier than a low priority node and alss hdixed point equations for a homogeneous system of nodes
fewer collisions. and obtain a condition for the existence of only one fixed
Among the approaches that have been proposed for m@aint. In Sections V-B and VI, we extend the analysis to
eling the AIFS mechanism (for example, [7], [8], [9], [10],nonhomogeneous system of nodes, with different back-off
[11], [12], [23] and [13]) the ones in [12], [23] and [13] comeparameters (including AIFS). In Section VII we analyse the
much closer to capturing the service differentiation pded case of multiple EDCA queues per node. An analytical study
by the AIFS feature. In [12] the authors propose a Markoef the service differentiation provided by the various asce
model to capture both the different back-off window expansi parameters is done in Section VIII. In Section IX, we pro-
approach and AIFS. AIFS is modeled by expanding the statdee numerical results verifying the validity of the anadgs
space of the Markov chain to include the number of slofSection X concludes the paper and discusses future work.
elapsed since the previous transmission attempt on thenxehan
In [13] the authors observe that the system exists in states i Il. THE GENERALISED BACK-OFF MODEL
which only nodes of certain access categories can atternpt. T There aren nodes, indexed by,1 < i < n. We begin
approach is to model the evolution of these states as a Markiith considering the case in which each node has one EDCA
chain. The transition probabilities of this Markov chairearqueue. We adopt the notation in [1], whose authors consider
obtained from the assumed, decoupled attempt probabiliti@ generalisation of the back-off behaviour of the nodes, and
This approach yields a fixed point formulation. This is thdefine the following back-off parameters (for noge
approach we will discuss in Section VI. [23] uses a Markov K; := At the (K; + 1)th attempt either the packet being

chain on the number of slots elapsed from the previous attempted by nodeé succeeds or is discarded
transmission to model AIFS based service differentiatjb] b; 1, :=The meanback-off (in slots) at théth attempt for a
extends the Bianchi's analysis to multiple traffic classes p packet being attempted by node0d < k < K;

node case using the Markov chain approach. Definition 2.1: A system ofn nodes is said to beomoge-

We note that the analyses in [12] and [13] are based @eous if all the back-off parameters of the nodes, lik&;,
Bianchi's approach to modeling the residual back-off by & ;.0 < k < K; are the same forail 1 < i < n. A system of
Markov chain. In this paper, we have extended the simpliodes is callechonhomogeneousf the back-off parameters
fication reported in [1] (which was for a homogeneous systeof the nodes are not identical. [ ]
of nodes) to nonhomogeneous nodes with different back-&&emark: IEEE 802.11e permits different back-off parameters
parameters and AIFS based priority schemes. Also, we modeldifferentiate channel access obtained by the nodes in an
the case of multiple queues (of different access categoriestempt to provide QoS. The above definitions capture the
per node (see [11]). Thus, in our work, we have provided gossibility of having differentCW,,,;, and CW,,.. values,
simplified and integrated model to capture all the essentiifferent exponential back-off multiplier values and e\aift
backoff based service differentiation mechanisms of IEEférent number of permitted attempts. For ease of discussion
802.11e. and understanding, we will postpone the topic of AIFS until

In the previous literature, it is assumed that the collisioBection VI. Hence in the discussions up to Section V-B, all
rate experienced by a queue of any access category is consta@ nodes wait only for a DIFS after a busy channel. =
over time. There appears to have been no attempt to study thé has been shown in [1] (and later in [22]) that under the
phenomenon of short term unfairness in the fixed point framéecoupling assumption, introduced by Bianchi in [3], the at
work. A related work on Ethernet ([25]) identifies shortster tempt probability of nodé (in a back-off slot, and conditioned



on being in back-off) for given collision probability; is given
by,
I+vi+- 4+

Gi Yi) ‘= - (1)
() bio +Yibig 4 -+ bk

Remarks 2.1:
1) We will assume thab, . are such thad < G;(y;) <1

for all v;,0 <~v; <1 andG;(vy;) < 1 whenevery; > 0.

Thus anecessary and sufficient conditidor a vector of
collision probabilitiesy = (y1,---,7,) to be a fixed point
solution is that, for alll <1i <mn,
(1=7)(1 = Gi(v) = [[(1 = G5(7) ®)
j=1
where the right-hand side is seen to be independent of
Define F; () := (1 — v)(1 — G;(v)). From Equation 3 we

2) When the system is homogeneous then we will drop ti§§€ that ity is a solution of Equation 2, then for all j, 1 <
subscripti from G;(-), and write the function simply as J =

G(").

IIl. THE FIXED POINT EQUATION

Fi(vi) = Fj(v5) (4)

Notice that this is only aecessary conditiarFor example, in
a homogeneous system of nodes, the vegteuch thaty; = v

It is important to note that in the present discussion dibr all 1 < i < n, satisfies Equation 4 for any< v < 1, but
rates are conditioned on being in the back-off periods; i.eot all such points are solutions of the fixed point Equation 2
we have eliminated all durations other than those in which Definition 3.1: We say that a fixed poiny (i.e., a solution
nodes are counting down their back-off counters, in ordef v = T'(G(~))) is abalancedfixed point if v; = ~; for all

to obtain the collision probabilityy; of player i and its

1 <1i,5 < n; otherwise;y is said to be amunbalanced fixed

attempt probabilitys; (= G;(v;)). Later one brings back the point. [ |
channel activity periods in order to compute the throughput Remarks 3.1:

in terms of the attempt probabilities (see [1]). Now conside 1) |t js clear that if there exists an unbalanced fixed point

a nonhomogeneous system mwfnodes. Lety be the vector
of collision probabilities of the nodes. With the slotted aed

for a homogeneous system, then every permutation is
also a fixed point and hence, in such cases, we do not

for the back-off process and the decoupling assumption, the  hayve a unique fixed point.

natural mapping of the attempt probabilities of other noes

the collision probability of a node is given by

n

in:Fi(ﬁhﬁQa"'aﬁn):l_ H (1_6])

j=1,j#i

whereg; = G,(v;). We could now expect that the equilibrium
behaviour of the system will be characterised by the sahstio

of the following system of equations. For< i < n,

Yi = Pi(Gl('Yl)7 S Gn('yn))

We write thesen equations compactly in the form of the

following multidimensional fixed point equation.

v =T(G(v)) 2

SinceI'(G(v)) is a composition of continuous functions it is

continuous. We thus have a continuous mapping ffom]”

to [0, 1]™. Hence by Brouwer's fixed point theorem there exists

a fixed point in[0, 1]™ for the equationy = T'(G(7)).

Consider the?” component of the fixed point equation, i.e.,

v=1- [] Q-Gi(w)

1<j<n,j#i
or equivalently,
(t-vw= [ -G
1<j<n,j#i

Multiplying both sides by(1 — G;(vy;)), we get,
(1= =Gi(w) = [[ A=)

1<j<n

2) In the homogeneous case, by symmetry, the average
collision probability must be the same for every node.
If the collision probabilities correspond to a fixed point
(see 3, next), then this fixed point will be of the
form (v,v,---,v) wherey solvesy = T'(G(y)) (since
Ii(-) =T(-)andG,(-) = G(-) forall 1 <i < n).Sucha
fixed point ofy = I'(G(v)) is guaranteed by Brouwer’s
Fixed Point. The uniqueness of such a balanced fixed
point was studied in [1]. We reproduce this result in
Theorem 5.1.

3) There is, however, the possibility that even in the
homogeneous case, there is an unbalanced solution of
v = T'(G(v)). By simulation examples we observe
in Section IV that when there exist unbalanced fixed
points, the balanced fixed point of the system does
not characterise the average performance, even if there
exists only one balanced fixed point. In Section V-A,
we provide a condition for homogeneous IEEE 802.11
and IEEE 802.11e type nodes (with exponential back-
off) under which there is a unique balanced fixed point
and no unbalanced fixed point. In such cases, it is
now well established, that the unique balanced fixed
point accurately predicts the saturation throughput of the
system.

4) For the homogeneous case the back-off process can be
exactly modeled by a positive recurrent Markov chain
(see [1]). Hence the attempt and collision processes will
be ergodic and, by symmetry, the nodes will have equal
attempt and collision probabilities. In such a situation
the existence of multiple unbalanced fixed points will
suggest short term unfairness or multistability. We will
observe this phenomenon in Section IV.



5) Consider a system of homogeneous nodes having un- ~ G0
balanced solutions for the fixed point equatign = 0.9r ;(11(1)“6(3;?)

I'(G(v)) (i.e., there exists, j such thaty; # v;), then
from Equation 4, we see thdf(y;) = F(v;), or the
function F' is many-to-one. Hence for a homogeneous
system of nodes, if the functioh’ is one-to-one then
there cannot exist unbalanced fixed points. In Section V-
B we use this observation to obtain a sufficient condition
for the uniqueness of the fixed point in the nonhomoge-
neous case.
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IV. NONUNIQUE FIXED POINTS AND MULTISTABILITY: 0.

SIMULATION EXAMPLES

o ; ; ; ; |
0 04 05 06 07 08
collision probability ( y)

01 02 03 09 1

A. Example 1

Consider a homogeneous system (let us call it SystemEjy- 1. Example System-I: The balanced fixed point. Plot&/6f), F(7)

with n = 10 nodes. The functior(-) of the nodes is given glls; ;*%gvfthae(:;):)x?r;ﬂéf (1—G(3))? vs. the collision probabiltyy; we
by,

() = L+ +7+92+... t
ey T P 164+ + )

The system corresponds to the case whre= oo, by =
b1:b2:b3 1andb4:b5:b6:...:64(bi
are distributed uniformly over the integers in [CW;] for
appropriateCW;). From the form of functionG(-), we can
see that a node which is currently at back-off stage more
likely to remain at that stage astékes4 successive collisions
to make the attempt rate of the nodel. Likewise, a node
that is in the larger back-off stagés = b5 = --- = 64, will
retry continuously with mean inter-attempt slots of 64 Litti
succeeds. Observe that only one node can be at back-off stage
0 at any time. This leads to the apparent multistability of the % o1 oz o‘.acomgiign prgt‘.)sabm tg.‘(e y)ofv
system. '

Figure 1 plotsG(v), the COfresP(_)nding‘(_’Y) =(1-y01- Fig. 2. Example System-l: Demonstration of unbalanced fpxeiits. Plots
G(v)) and shows the balanced fixed point of the system fefy, =1 — (1 - G(¥))®(1 — G(1 — (1 — G(7))?)) (the curve drawn with
n = 10 nodes. The balanced fixed point of the system ShOW’ﬁ_tS and lines) anc_! the function for the fixed point equatiomf, (see text)
in the figure is obtained using the fixed point equatipn= |S"9 Pluses and lines.

1 — (1 - G(v))°. Observe that the functiof’() is not one-
to-one (the functior¥'(-) not being one-to-one does not imply,

that there exist multiple fixed point solutions; see Rema&rks and lines and the |nter'sect|on (?f this curve with the *y=xidli
5), shows the corresponding solutions far We see that there are

Figure 2 shows the existence of unbalanced fixed points %}yee solutions in each case. The smallest valueg ¢dpprox.
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System-l. These fixed points are obtained as follows. Assu é') p,\?w? uptr\:v |§r;r:heblalrgestt;/?lu%@j - t 'f;% (a?pro_x. |
that we are interested in fixed points such that# v, = -97). Notice that the balanced fixed point of the systemss a

ceo = . GiVen s, = -+ = ~,, the attempt probability of & fixed point in the plot (compare with Figure 1). Then there

the nodes2,---,n is given by G(vy2). Hence, the collision
probability of nodel is given byy; =1 — (1 — G(y2))" %
The attempt probability of nodewould then bez (v, ). Using
the decoupling assumption, the collision probability of ar
the othern — 1 nodes would then bd, — (1 — G(y2))"~2(1 —
G(v1)) = 2. Thus we obtain a fixed point equation fgs
(and hence for all the othey;,3 < j < n). In Figure 2
we plot1 — (1 — G(7))%(1 — G(1 — (1 — G(»))?)) (plotted

is one remaining unbalanced fixed point whose values can be
read off the plot. We note that there could exist many other
unbalanced fixed points for this system of equations, as we
have considered only a particular variety of fixed pointg tha
have the property that; # vo = -+ = vy,.

In order to examine the consequences of multiple unbal-
anced fixed points we simulated the back-off process with
the back-off parameters of System-I. The following remarks

as the line marked with dots), the intersection of which Witﬁummarise our simulation approach in this paper.

the “y=x" line shows the solutions fofz(= -+ = ~,). In
the same way, we obtain the fixed point equation forby
eliminating o, - - -
equations. This functiton is plotted in in Figure 2 usingsas

,Yn» from the multidimensional system of

Remarks 4.1 (On the Simulation Approach used):

1) We have developed an event-driven simulator written in
the “C” language based on the coupled multidimensional
backoff process of the various nodes, to compare with



2)

3)

the analytical results. In this simulator, we do not simu-
late the detailed wireless LAN system (as is done in an
ns-2 simulator), but only the backoff slots. We will refer
to this as the CMP (Coupled Markov Process) simulator.
The main aim of the CMP simulator is to understand
the backoff behaviour of the nodes and its dependence
on the different backoff parameters. From the point of
view of performance analysis, it may also be noted that
once the back-off behaviour is correctly modelled the
channel activity can easily be added analytically, and
thus throughput results can be obtained (see [3] and
[1]). Note that, for IEEE 802.11 type networks, a good
match between analysis that uses a decoupled Markov
model of the back-off process and ns-2 simulations has
already been reported in earlier works (see the literature
survey in Section 1). In addition, for some cases, ns-2
simulations have also been provided in comparison with
the CMP simulator and the analytical results.

Thus our simulation is programmed as follows. The
system evolves over back-off slots. All the nodes are
assumed to be in perfect slot synchronisation. The actual

number of collisions and attempts in framéd < ¢ < k,
for nodej. The long-term average is similarly calculated

k .
as% Z?:l % wheren is the number of nodes.
Notice that the Ié)ng—term average collision rate is a
batch biased average of the short-term collision rates.
Hence, when looking at the graphs, it will be incorrect
to visually average the short-term collision rate plots
in an attempt to obtain the long-term average collision
rate. This is because when a node is shown to have a
low collision probability, it is the one that is attempting
every slot (while the other nodes attempt with a mean
gap of64 slots), and hence it sees a low probability of
collision. In this cased;(-) is large and’;(-) < A;(-).
On the other hand, when a node is shown to have a high
collision probability it is attempting at an average rate
of 6—14 and almost all its attempts collide with the node
that is then attempting in every slot. In this cade(-)
is small andC;(-) ~ 1. Thus, in obtaining the overall
average, it is essential to account for the large variation
in A;(-) between the two cases. [ |

coupled evolution of the back-off process is modeled. In Figure 4 we plot a (simulation) snap shot of the short term
The back-off distribution is uniform and the residuahverage collision probability of 2 of the 10 nodes of System-
back-off time is the state for each node. At every slo@nd the average collision probability of the nodes (The ayer
depending on the state of the back-off process, there ésecalculated over all frames and all nodes. Since the nodes
three possibilities: the slot is idle, there is a successfare identical, the average collision probability is the saior
transmssion, or there is a collision. This causes furthaHl the nodes). Observe that the short term average has a huge

evolution of the back-off process.

variance around the long term average. It is evident that ove

Our simulation approach, which we primarily use td000’s of slots one node or the other monopolises the channel
study the back-off behaviour of the nodes, takes fe(@nd the remaining nodes see a collision probability déiring
seconds to complete a simulation run, in comparisdhose slots). This could be described as multistabilityo8kl

with the ns2 simulations which takes any time betweefinto the fairness index (see Figure 10) plotted as a function
few minutes to an hour depending on the number of the frame size used to calculate throughput suggests that
nodes in the system. The coupled back-off evolutiohystem-I exhibits significant unfairness in service evearov
approach we use captures all the essential features oasonably large time intervals.

single cell system with ideal channel (no capture, fading Implication for the use of the balanced fixed poiNbtice

or frame error) and where there is perfect synchronisalso that the average collision rate shown in Figure 4 is fibou
tion among the nodes (which is typical for single celP.25, whereas the balanced fixed point shown in Figure 1
systems). The simulation provides the attempt rates ad@ows a collision probability of about 0.68ence we see that
collision probabilities directly, which can be used withn this case, where there are multiple fixed points, the bedan

the throughput formula provided in [1] to obtain thefixed point does not capture the actual system performance.

throughput of the nodes.

4) In all our simulationsp; are distributed uniformly over B. Example 2

5)

the integers in I, CW;] for appropriateC'W,;. We note

Let us now consider yet another homogeneous example (let

here that the backoff behaviour of IEEE 802.11e EDCfs call it System-Il) withn = 20 nodes. The functio(-) of
with the backoff range(, CW] can be modeled in the the nodes is given by,

same way as IEEE 802.11 DCF with the backoff range
[1,CW + 1] and the value of AIFS reduced hly (see
[13], [21]). Figure 3 shows this equivalence. Thus, the

G(7)

B 1+y+72 44797
1437+ 992 2793 4 - + 21877

“0 sampling problem” found in IEEE 802.11 DCF is nofThe system corresponds to the case wh&re= 7, by = 1,

observed in IEEE 802.11e EDCA.

p =3 andb, = pFby for all 0 < k < K. (b; are uniformly

In Figures 4, 7 and 9, for the purpose of reportingistributed in [1,C'W;] for appropriateCWW,;) We notice that
the short term unfairness results, the entire duration of this example the way the back-off expands is similar to
simulation is divided intok frames, where the size ofthe way it expands in the IEEE 802.11 standard, except that
each frame is 10,000 slots. The short-term average of tthee initial back-off is very small (1 slot) and the multiplie

collision probability of each nodg 1 < j < n, is calcu-

C;(4)
lated as YW O)

is 3, rather than 2. Figure 5 plot§(y), the corresponding
whereC; (i) and A, (¢) correspond to the F(y) = (1 —v)(1 — G(v)) and the balanced fixed point of

the system fom = 20 nodes. The balanced fixed point of the
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Fig. 3. |EEE 802.11e EDCA backoff compared with a “DCF lik€heme wWithAI F'S* := AIFS — aSlotTime and BC* := BC + 1, where BC' = 8
is the residual backoff counter value. We note that becatisieeoway IEEE 802.11e EDCA decrements backoff, [0,CW] isialty equivalent to [1, CW+1]
(for AIFS appropriately defined).
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Fig. 4. Example System-l: Snap-shot of short term averagésioo . ) )

probability of 2 of the 10 nodes. Also plotted is the averagdligion Fig. 5. Example System-Il: The balanced fixed point. Plot&'6f), F(v) =
probability of the nodes (averageaver all frames and nodgsThe 95% (1 —7)(1 — G(7)) and1 — (1 — G())* vs. the collision probabilityy;
confidence interval for the average collision probabiliggs|within 0.7% of ~the line “y=x"1is also shown. Notice that the functidri is not one-to-one.
the mean value.

system shown in the figure is obtained using the fixed point 0ol = %Yo

equationy =1 — (1 — G(v))*°. ~h
As in the case of System-I, Figure 6 shows the existence o

of multiple unbalanced fixed points for System-Il. The fixed 07t

points we have shown correspond to the case whetgé v, = 206/

.-+ =, and are obtained just as discussed for System-I.
Figure 7 plots a snap shot of the short term average collision

probability (from simulation) of 2 of the 20 nodes and the

average collision probability of the nodes (same for all the

nodes). Observe that the short term averages vary a lot as 02}

compared to the long term average, suggesting multistabili

Again, as in the case of System-l, comparing the average

collision probability with the balanced fixed point of the % o1 02 03 08 08 0p )07 08 08 1

system in Figure 5, we see that the fixed point does not capture '

the actual system performance. Fig. 6. Example System-Il: Demonstration of unbalanceddfigeints. Plots
Discussion of Examples 1 and 2From the simulation of 72 =1 — (1 — G(7))*¥(1 — G(1 — (1 — G(v))*?)) (the curve drawn

examples, we can make the following inferences with dots and lines) and the function for the fixed point e@rafor v; (see
! ' text) using pluses and lines.

1) When there are multiple unbalanced fixed points in
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Fig. 7. Example System-Il: Snap-shot of short term averagiison Fig. 8. Example System-lll: Plots a&(v), F(v) = (1 — v)(1 — G(v))
probability of 2 of the 20 nodes. The average collision philits is also and1 — (1 — G(v))? vs. the collision probabilityy; the line “y=x" is also
plotted in the figure (averagealer all slots and nodgsThe 95% confidence shown.

interval for the average collision rate lies within 0.7% bEtmean value.

0.4 T

T T
-o- Node 1
-©- Node 2
—+— Avg collision prob

a homogeneous system then the system can display
multistability, which manifests itself as significant shor
term unfairness in channel access.

2) When there are multiple unbalanced fixed points in
a homogeneous system then the collision probability
obtained from the balanced fixed point may be a poor
approximation to the long term average collision prob-
ability.

Similar conclusions can be drawn for nonhomogeneous sys-
tems when the system of fixed point equations have multiple
solutions. [ | % EE N SN U SN S N

It appears that the existence of multiple-fixed points is a L o S SR
consequence of the form of th@(-) function in the above
examples, Whemg(.) is similar to a switching curve; see, Fig. 9.__ Example System-lll: Snap-shot of sh0|_'t term averag&_is_ion
for example, Figure 1 where there is a very high attemfiE2 B L0 % 07 0ec™T 60, "Codence et average
probability at low collision probabilities and a very lowcoliision rate lies within 0.2% of the mean value.
attempt probability at high collision probabilities.

o
o w
w 3]

short term average collision probability
=}
[}
5]

Figure 9 plots a snap shot of the short term average collision
probability (from simulation) of 2 of the 10 nodes and the

Consider a homogeneous system in which back-off i@verage collision probability of the nodes of the Example
creases multiplicatively as in IEEE 802.11 DCF (let us caffystem-IIl. Notice that the short term average collisiotera
it System-IIl), withn = 10 nodes. The functioi(-) is given is close to the average collision rate (the vertical scale in
by, this figure is much finer than in the corresponding figures
1 5 . for System-1 and System-Il). Also, the average collisiotera
G(y) = toty Sty matches well with the balanced fixed point solution obtained

16 + 32y 4 642 + ... + 204847 in Figure 8.

The system corresponds to the case whire= 7, p = 2 Remark:Thus we see that in a situation in which there is a
and by = 16 and b, = p*by for all 0 < k < K (b; unique fixed point not only is there lack of multistabilitytb
are uniformly distributed in [LCW;] for appropriateCT;). also the fixed point solution yields a good approximation to
These parameters are similar to those used in the IEEE 802the long run average behaviour. n
standard. Figure 8 plot§7(-), the corresponding?(y) =
(ﬁ — 7)1 - ?(7)) ang the unique balancedd fixed point OF. Short Term Fairness in Examples 1, 2, 3
the system. (Notice that’ is one-to-one and uniqueness of ) ) 2
the fixed point will be proved in Section V-A.) The balanced Figure 10 plots the throughput faimess '”dﬁ%
fixed point of the system is obtained using the fixed poirfivherer; is the average throughput of notlever the measure-
equationy = 1—(1—G(v))?. The balanced fixed point yieldsment frame, see [18]) against the frame size used to measure
a collision probability of approximately 0.29. throughput. The fairness index is obtained for each frante an

C. Example 3
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Lemma 5.2:F(~) is one-to-one i) <~ < 1if F'(y) #0
forall 0 <~ <1. [ ]
Remarks 5.1:
When F'(-) is one-to-one irD <y <1 andG(-) is such that

A 0 < G(y) <1forall 0 <~ <1, the following hold
# () F(7) =0iff v =1,
B (i) F(0) >0, and
7 1 (i) F(v) is a decreasing function of. ]
Now the derivative off’ is

F'(y)=-14+G() -G (1)

Lemma 5.3:If K > 1,p > 2 andG(-) is as in Equation 5,
thenG'(v) < 0 and|G'(y)| < 2 forall 0 < < 1. m

Clearly,G(7) < &~ and1 > (1—v)>0forall 0 <~y < 1.

— b 0

Substituting into the expression fét (), we get,

Jains fairness measure
o o N o o
N w S [$;1 [=2}
T T T
&

o
—B

10 10 10° 10° 10° 10° 10
averaging interval (in slots)

Fig. 10. Throughput fairness index is plotted against thaler of slots used
to measure throughput. The dotted lines mark the 95% cordedérterval.

/ 1+2p
: : : : Fy)<—-1+
is averaged over the duration of the simulation. Also ptbite bo

the figure is the 95% confidence interval. We note that valuellﬁus if in addition to the other condition in Lemma 5.3. if
of this index will lie in the intervall0, 1], and smaller values ’ .
of the index correspond to greater unfairness between %g?virtue of the remark following Theorem 5.1

nodes. The performance of all the three example systems a S heorem 5.2°For a functionG(-) defined as in Equation
compared. Notice that Example System-Ill (similar to IEEI% . o
if K> 1,p>2andby > 2p + 1, then the systermy =

802.11 DCF) has the best fairness properties. The syst : : . L
achieves fairness of 0.9 over 1000’s of slots. However, f%w)) has a unique fixed point which is balanced. - ®

Example System-l and IlI, similar performance is achieve?gemark: It can be shown that if Lemma 5.3 holds 16X.) as

only over 1,000,000 and 100,000 slots. The unfairnessi{\Equa’[ion 5 it also holds for any case in whith = p"by

) . 0<k<m<Kandb, = p™by for m < k < K.
Example Systems-I and Il can be attributed to their appar —
mﬁltis?abilit))i ou ' app e latter situation closely matches the IEEE 802.11 stahda

. : - : ith b = 16,p = 2, K = 7,m = 5). Hence a homogeneous
In Section V we establish conditions for the uniqueness Qf" 0 P ’ L ) i S
the solutions to the multidimensional fixed point equation. IEEE 802.11 WLAN h‘f"s a unique f|xed. pomti which is glso
balanced. In general, if the functiaf(-) is arbitrary (as in

Equation 1) but monotone decreasing, there exists a unique
balanced fixed point for the system as long as the function
(I —=v)(1 —G(y)) is one-to-one.

> 1+ 2p, then F'(v) < 0 and the following result holds

V. ANALYSIS OF THEFIXED POINT
A. The Homogeneous Case

The following two results are adopted from [1].

Lemma 5.1:G(+) is nonincreasing iny if by, k > 0, is a
nondecreasing sequence. In that case, urilgss by for all
k, G(v) is strictly decreasing iny. [ | ] ) )

Theorem 5.1:For a homogeneous system of nodes, N this section, we will extend our _results_ to systems
I'(G(v)) : [0,1] — [0, 1], has a unique fixed point ., k > 0, with _nonhomogeneous nqde;. _AIFS will be m_trodu_ced in
is a nondecreasing sequence. m Section VI. Nonhomogeneity is introduced by using différen
Remark: The fixed point(y,v, - - - ,+) is the unique balanced values ofby,p and K in different nodes.
fixed point fory = I'(G(~)). From Equation 4, we see that Consider a nonhomogeneous system afodes, withG; (-)

a necessarycondition for the existence of unbalanced fixe@ monotonically decreasing function afg(~y) := (1—+)(1—
points in a homogeneous system of nodes is that the function(y)) being one-to-one for all. Let there be two fixed point
F(y) = (1 —4)(1 — G(v)) needs to be many-to-one. Insolutionsy = (y1,72,..., 1) and A = (A, Az, ..., Ay) for
other words, if the function1 — 7)(1 — G(v)) is one-to- the above system (see Section lll for the fixed point equa}ion
one and |f»7 = (717»-)/2, . ;'Yn) is a solution of the system and there exist&,1 < k < n, such thaty, # A\. From the
v =T(G(7)), then~y; = ~; for all i, ;. m nhecessary condition (Equation 4) we require that, for:all

Consider the exponentially increasing back-off case f@nd for someJ; > 0 and J> > 0 (clearly, Ji, J2 # 0, see

which G(-) is given by, Remarks 5.1),

2 K
Gl)= —— TtV A ) (1 =%)(1 = Gi(w)) =
bo(1+py +p?y? + ...+ pKaK) (1= X)L = Gi(\)) = Jo
Clearly, G() is a continuously differentiable function and so ' o
is F(y) = (1—=+v)(1 —G(y)). The following simple lemma is Since(1—+)(1—G;(v)) is one-to-one, applying this tg, and
a consequence of the mean value theorem. Ak, We requireJ; # Jo. Without loss of generality, assume

B. The Nonhomogeneous Case




J1 < Jy. Hence,y; > \; for all ¢ (see Remarks 5.1). Usingdeveloped in [13]. However, we develop the analysis in the

Equation 3 we have, more general framework introduced in [1] and extended here
No— - H(l —G00) in Section 1l. We shpw that gnder.the cor_ldition thfé(t-) is

! I one-to-one there exists a unique fixed point for this problem

iz as well. The analysis is presented here for two different;AIF
> 1-JJ-G(w) class case, but can be extended to any number of classes. Also
J#i in this section, we consider only the case in which there & on
= T gueue (of an AIFS class) in each node. Extension to the case
a contradiction. Hence, it must be that = J, or there exists of multiple queues per node is done in Section VII.
a unique fixed point. Let us begin by recalling the basic idea of AIFS based
Notice that the arguments above immediately imply theervice differentiation (see [14]). In legacy DCF, a node
following result. decrements its back-off counter, and then attempts to -trans

Theorem 5.3:If G;(~) is a decreasing function gfforall ¢ mit only after it senses an idle medium for more than a
and(1—+)(1—G;(v)) is a strictly monotone function 00, 1], DCF interframe space (DIFS). However, in EDCA (Enhanced

then the system of equatiofs = G;(~;) and~y; = I';(81,..., Distributed Channel Access), based on the access category

Bi, ..., Bn) has a unique fixed point. B of a node (and its AIFS value), a node attempts to transmit
Where nodes use exponentially increasing back-off, thé nenly after it senses the medium idle for more than its AIFS.

result then follows. Higher priority nodes have smaller values of AIFS , and hence

Theorem 5.4:For a system of nodes< ¢ < n, with G,;(-) obtain a lower average collision probability, since thesdes
as in Equation 5, that satisfy; > 1, p, > 2 andby, > 2p;+1, can decrement their back-off counters, and even transmit, i
there a exists a unique fixed point for the system of equatiostots in which lower priority nodes (waiting to complete ithe
vi=1-[[4(1—=Gj(y)) for1 <i<n. B AIFSs) cannot. Thus)odes of higher priority (lower AIFS) not
Remark: The above result has relevance in the context of thly tend to transmit more often but also have fewer collisio
IEEE 802.11e standard where the proposal is to use diffgompared to nodes of lower priority (larger AIF)he model
ences in back-off parameters to differentiate the throughp we use to analyze the AIFS mechanism is quite general and
obtained by the various nodes. While Theorem 5.4 only statg&scomodates the actual nuances of AIFS implementatioas (se
a sufficient condition, it does point to a caution in choosing 6] for how AIFS and DIFS differs) when the AIFS parameter
the back-off parameters of the nodes. values and the sampled back-off values are suitably adjuste
Figure 11 compares the collision probability obtained gsinSee Figure 3 on how the actual AIFS can be modeled using
the fixed point analysis for a homogeneous system, with n2DCF like” scheme.
simulation and the CMP simulator. The plot shosvdifferent
cases, Priority 0, 1 and 2, corresponding to the IEEE 802.1]e i . :
EDCA defaul)t/settings for Ao/o,pAc_w nd AG.BE” A” The Fixed Point Equations
Let us consider two classes of nodes of two different
I B priorities. The priority for a class is supported by using=8l
ogl 1 as well asby, p and K. All the nodes of a particular priority
o have the same values for all these parameters. There are
n) nodes of Classl and n(?) nodes of Clas9). Class1
1 corresponds to a higher priority of service. The AIFS for<Sla
T 0 exceeds the AIFS of Clask by [ slots. Thus, after every
Lo transmission activity in the channel, while Classodes wait
R 1 to complete their AIFS, Clask nodes can attempt to transmit
LB S in thosel slots. Also, if there is any transmission activity (by
e Class1 nodes) during thosé slots, then again the Clags
e PapRe ' — proiyo || nodes wait for another additionatlots compared to the Class
f #7 Cmna | 1 nodes, and so on.
foc As in [3] and [1], we need to model only the evolution of
S . L the back-off process of a node (i.e., the back-off slotsrafte
removing any channel activity such as transmissions or col-
_Frir?- 1ld_ﬁ Plotts of collision prO_t:jabili;y g)r a_thoyogene:l@fmlog gogle& lisions) to obtain the collision probabilities. For convemce,
B e o st US Call the slots in which only Clagenodes can attempt as
the “+” correspond to the ns-simulations and “O” correspond to @aP €xcess AlFSlots, which will correspond to the subscriptd
simulator. The95% confidence interval lies withinl% of the simulation in the notation. In theemainingslots (corresponding to the
estimate. subscriptR in the notation) nodes of either class can attempt.
Let us view such groups of slots, where different sets of sode
VI. ANALYSIS OF THEAIFS MECHANISM contend for the channel, as differecdntention periodsLet

Our approach for obtaining the fixed point equations whe#s define
the AIFS mechanism is included is the same as the one@i(l):: the attempt probability of a Class 1 node foriall <

o o
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R we obtain,

14 ) GQQR 1 2 e gl
) C@ 1-qEA@1-qEA r(BA) = FapA T dpat g
N——7

N -1, d
- 1+ qea+aha+ -+ dpa + 725
! qi‘j‘A
Fig. 12. AIFS differentiation mechanism: Markov model f@maining m(R) = 17ar - (8)
number of AIFS slots. L4+ qea+qi,+ -+ qlE}} + lqEA
—4r

The average collision probability of a node is then obtained
i < n(M, in the slots in which a Class 1 node carby averaging the collision probability experienced by a &od
attempt (i.e., all the slots) over the different contention periods. The average coltisi
ﬁfo):: the attempt probability of a Class 0 node foriall < probability for Classl nodes is given by, for alf, 1 < i <
i < n®, in the contention periods during whichnV,

Class 0 nodes can attempt (i.e., slots that are not e
E)fcess AIFS slots) o | 751) — 2(EA)(1 - H (1— ﬁ;l)))
Note that in making these definitions we are modeling the =1t
attempt probabilities for Class 1 as being constant over all e n(©
slots, i.e., the Excess AIFS slots and the remaining slots. + a(R)(1—( H (1 _ﬁ(l)) H(l _6(0))))(9)
J J

This simplification is just an extension of the basic decimgpl
approximation, and has been shown to yield results thathmatc o -
well with simulations (see [13]). We provide results using o Similarly, the average collision probability of a Clagsode

J=1.5#i j=1

simulation approach in Section IX. is given by, for alli, 1 < i <n,

Now the collision probabilities experienced by nodes will e NO)
depend on the contention periodxtess AlIFSr remaining N0 =g (H(1 - gj(,l)) H (1- gj(,‘)))) (10)
slots) that the system is in. The approach is to model the =1 =1t

evolution over contention periods as a Markov Chain over the

states(0,1,2,---,1), where the states, 0 < s < (I — 1), X . .
(0,1,2,---,1) < s < ) qthe analysis of [13] and also establishes uniqueness of the

denotes that an amount of time equalstslots has elapsed _ . . S
since the end of the AIFS for Clags These states corresponc]l'xed point and the property that the fixed point is balanced
over nodes in the same class. DefiGé")(-) and G(¥)(.)

to the excess AlFS$eriod in which only Class 1 nodes can” "~ . .
attempt. In theremainingslots, when the state is = 1, all as in Equation 1 (except that the superscripts here denote
nodes can attempt ’ ' the class dependent back-off parameters, with nodes wéthin
In order to obtain the transition probabilities for this May class h_a_vmg th(_a same parameters_,). Then th? averageamlisi
chain we need the probability that a slot is idle. Using th%robabmty obtained from the previous equations can beluse

decoupling assumption, the idle probability in any slotidgr 10 obtain the attempt rates by using the relations
the excess AlF®eriod is obtained as, 1) _ (1)) (0) _ ~(0)((0)
P B = G )(%‘ ), andﬁj =G! )('Yj ) (11)

Our analysis in the remaining section now generalises

E)

) forall 1 <i<n® 1< j < n®, We obtain fixed point
ieA = H(l —B) (6) equations for the collision probabilities by substitutitte

=1 attempt probabilities from Equation 11 into Equations 9 and
Similarly, the idle probability in any of the remaining sdols 10 (and also into Equations 6 and 7). We have a continuous

obtained as, mapping from[0, 1]+ to [0, 1]+ It follows from
e () Brouwer’s fixed point theorem that there exists a fixed point.
= JJa-8") [ -8 (7)
i=1 j=1 B. Uniqueness of the Fixed Point

The transition structure of the Markov chain is shown in Lemma 6.1:If F() is one-to-one, then collision probabili-
Figure 12. As compared to [13], we have used a simplificatidies of all the nodes of the same class are identical; i.e., th
that the maximum contention window is much larger thari  fixed points are balanced within each class. [ |
this were not the case then some nodes would certainly attempTheorem 6.1:The set of Equations 9, 10 and 11 (together
before reachind. In practice, is small (e.g., 1 slot or 5 slots; with 8, 6 and 7), representing the fixed point equations for
see [2]) compared to the maximum contention window.  the AIFS model, has a unique solution if the corresponding

Let 7(EA) be the stationary probability of the system beinfiinctions GV and G(*) are monotone decreasing atfd®)
in the excess AIFeriod; i.e., this is the probability that theand F(©) are one-to-one. ]
above Markov chain is in states 0, or 1,-0r, or (I —1). In  Remark:lt follows from the earlier results in this paper (see,
addition, letr(R) be the steady state probability of the systerfor example, Theorem 5.2) that @) (-) and G()(-) are of
being in the remaining slots, i.e., statef the Markov chain. the form in Equation 5, and i > 1,p® > 2, andb{” >
Solving the balance equations for the steady state pratiedil 2p(* + 1, for i = 0,1, then the fixed point will be unique.



C. Simulation Results (Fixed Point Analysis, CMP and ns-2 o7

Simulations)
0.6f
Although the numerical accuracy of the fixed point analysis
has been reported before (see [3], [13]), for completeriass,
Figures 13 and 14, we compare the collision probability ob-
tained using the fixed point analysis with ns-2 simulatiod an
the CMP simulator. Figure 13 plots the collision probalgt
of AC_VO (access category for voice; the high priority) nodes
and ACBE (access category for best-effort traffic, e.g., TCP;
the low priority) nodes, with the number of ABE nodes
fixed to4. Figure 14 plots the collision probabilities of AZI
(access category for video; the high priority) nodes andB¥ o
(the low priority) nodes with the number of ABE nodes 203 merhghpiodynodes
fixed to 12. AC_VO, AC_VI and AC.BE correspond to the
IEEE 802.11e EDCA access categories. As observed in trie 14. Plots of collision probability of HP - Priority 1 (A®I) nodes and
| h del K Il wh LP - Priority 2 (AC.BE) nodes with the number of Priority 2 nodes fixed
plots, the AIFS moae Wor_ S very well w ene\{e(< CWmi_n to 12. The lines correspond to the fixed point analysis, the€ ‘torrespond
of the traffic classes. Additional plots comparing the asigly to the ns-simulations and “o0” correspond to the CMP simulaftne 95%
with the CMP simulator have been provided ( figures 15, 1qgnfidence interval lies within% of the simulation estimate.
and 17) in support of our analysis.
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v 8 nunfbem”ﬁgh p,m?itymdjs 890 Fig. 15. Plots of collision probability of HP - Priority 1 (A@1) nodes and
LP - Priority 2 (AC.BE) nodes with the number of Priority 2 nodes fixed8to

- i i - The lines correspond to the fixed point analysis and the sisntmrrespond

Fig. 13. Plots of collision probability of HP - Priority 0 (A®O) nodes - . : ) e

and LP - Priority 2 (ACBE) nodes with the number of Priority 2 nodes fixed!© the .CMP s_|mu|ator. The5% confidence interval lies withiri% of the

to 4. The lines correspond to the fixed point analysis, the' ‘torrespond Simulation estimate.

to the ns-simulations and “o0” correspond to the CMP simulaite 95%

confidence interval lies withil% of the simulation estimate.

VII. MULTIPLE ACCESSCATEGORIES PERNODE

Remarks 6.1 (AIFS Differentiation and Multistabilitylt In this section we further generalize our fixed point anal-
has been observed that (see Section VIII) as the numberysfs to include the possibility of multiple access categ®ri
nodes in the system increases, AIFS provides non-preeepfior queues) per node. We considernodes andc; access
service to high priority nodes, starving the low prioritycategories (ACs) per node the ACs can be of either AIFS
nodes. This may lead to long periods of time when higtlass (for simplicity, we consider only two AIFS classesylan
priority nodes get serviced while the low priority nodes; = c§.1> + c§.0> (the superscripts refering to the AIFS classes
wait. We capture this behaviour using the Markov model ias before). The ACs in a node need not have the s@mg
Figure 12. This cannot be viewed as multistability (as s@en $ince there are multiple ACs per node, each with its own
Section 1V), because AIFS always gives preferential accesack-off process, it is possible that two or more ACs in a
to the high priority nodes, while starving the low prioritynode complete their back-offs at the same slot. This is then
nodes, and never the other way. Further, in our analysis oalledVirtual Collision, and is resolved in favour of the queue
AIFS, the attempt probabilit() of a classi corresponds to with the highestCollision Priority in the node. We label the
only those slots in which classcan attempt (rather than all ACs from 1 to ¢;, with AC 1 corresponding to the highest
slots). The variation in attempt rate and collision prolighi collision priority in the node and AC:; corresponding to
due to AIFS, is captured using the Markov model shown itne least collision priority. Unlike the single access gaty
Figure 12. per node case where a collision is caused whenever any two
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A. Without AIFS
P

o
©
T

Let ~; ; be the collision probability of ACj of node: and
Bi,; be the attempt probability of AG of noded, when the
AC can attempt. The fixed point equations for this system are,

o
o
T

o
3
T

%0,5 foraIIi:l,---,n(andjzl,---,ci),
§_0.5
8ol Biy = Gii(Vij) (12)
% ’ j—1 n Ck
o3 vig = 1=J]0=8m) [I TIO-8)@3)
0.2 m=1 {k=1,k#1} I=1

0.1

where G; ;(-) depend on the back-off parameters of AC
' 2 3 4 5 6 1 8 9 10 of nodei. The term[]/"_ (1 — f;.,) in the above equation
fumber figh priorty nodes corresponds to the higher priority ACs in the same node.
Fig. 16. Plots of collision probability of HP - Priority 1 (A®1) nodes and Observe that the7; ;(-) definition allows the possibility of
LP - Priority 3 (AC.BK) nodes with the number of Priority 3 nodes fixedtto  different back-off parameters, p, K') within a node.
lo the OMP smulator. Thes?% sonfdence. intenal fies witnin? of the  Theorem 7.1:The fixed point equations in, obtained by
simulation estimate. substituting Equations 12 in Equations 13 has a unique fixed
point whengG; ; is monotone decreasing atd ; () := (1 —
Y)(1 — G; (7)) is one-to-one for al = 1,---,n andj =
0.45 ———— —— 1, ¢. ]

041 *

* _— B. With AIFS
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1 ACs can be modeled using the approach in Section VII-A).
Define forl < i <n,1<j <g¢, C;; € {0,1} to be the
AIFS class of ACj in nodei. Writing the fixed point equations
for 7,5 s.t. C; ; = 1, we obtain,

o
N
a1

collision probability

o
)

o
i
o

n

number of high priority nodes {k:l,k?ﬁi} {1<l<ck:Ck 1:1}

. .. L .. j—1 n Ck
Fig. 17. Plots of collision probability of HP - Priority 2 (AGE) nodes and J
LP - Priority 3 (AC_BK) nodes with the number of Priority 3 nodes fixedsto + w(R) H (1= Bim) H H(l — Bri))
The lines correspond to the fixed point analysis and the sisntmrrespond me1 (k=1 ki) I=1

to the CMP simulator. Th&5% confidence interval lies within% of the ’

simulation estimate. .o .
and foré, j s.t.C; ; = 0, we obtain,

j—1 n Ck

nodes (equivalently, ACs) attempt in a slot, here, a AC sees g = 1= };[1(1 = Bim) k—g , llill(l ~ ) (19)
a collision in a slot only when a AC of some other node B (=Lt} 1=
or a higher priority AC of the same node attempts in th"ﬁndﬁi_j = Gyj(vi,). T(EA) and(R) are defined as before

slot. A low priority AC of a node cannot cause collision to(see Equation 8), withz4 andgx defined as
a higher priority AC in the same node. In Section VII-A we '
II -8

will study multiple access categories per node without AIFS
(i.e., all the ACs wait only for DIFS) and consider AIFS later dpA =
1 {1SlSCk:CkJ:1}
Ck
| () (16)
=1

=

in Section VII-B. k

We assume that, in a node (sgythe AIFS of Clas$) ACs
(with c§.0> ACs) exceeds the AIFS of the higher priority Class
1 ACs (with c§1> ACs) by slots. This assumption conforms
with the way access categories are defined in the IEEE 802.11&heorem 7.2:The fixed point equations (14) and (15) have
standard. Also, when collision priorities are interchashgéth a unique solution whert:; ; are monotone decreasing and
AIFS priorities, the actual performance of the system woulH; ;(-) are one-to-one for alf = 1,---,n and for each,
be hard to characterise. j=1,---¢. [ |

Il
=

qr
k

1

In this section, we analyse the system where nodes have
ACs of either AIFS class (the case where there are only Class

1 j—1
T B N IR vig = 1=@(EA) [[a-6m) I I a-8w
m=1

(14)



VIII. THROUGHPUTDIFFERENTIATION: AN ANALYTICAL  probabilitiesy()(co,n) and the attempt rates(") (co, n) are

STUDY related by
It should be noted that all the results in this section are yD(oo,n) = 1- o (0P =1)B® (00,n)+n(? 8 (00,n))
for the fixed point solution. Hence, when we use the term _ 1 o~ (BD (c0,m)+(n® ~1)5® (s0,m))
“collision probability” and “attempt rate” it is only in saaf as (oo n) = —€

a good match between the fixed point analysis and simulation (19)
has already been reported in earlier literature (see Setlio Substituting 50 (o0, n) = Ggg(v(.)(oo’n)) in the above

t\Ne W'l.l c_onsu?ter tV\t’O altlltern:t:cves fOKl’( tthe %lmum equations gives the desired fixed point equations governing
retransmission attempts allowed for a packet, nantely- oo, o system. Trivially, we see that,

and K finite. In this section, for the finitd{ case, the form

of the functionG(), for all v, 0 < v < 1 is, (1 = 7D (o0, n))e= BV om = (1 = 5O (o0, n))eA"" (om)
l+y+724...+9K (20)
G(’Y) = bo(1 2.2 KK (17) . (2) —_ag®
o(1+py+p*y* +... +pfyK) Lemma 8.1:For i € {0,1}, Fx'(7) i= (1 —7)e %=1
It is clear that for finite X the attempt rate of a node isiS one-to-one for ally,0 <~ < 1if b4 > 2p + 1. u

lower bounded, and hence as the number of nodes increases ttheorem 8.1:In Case 1, withK' = oo, when F{!) is one-
infinity the collision probability of any node goes to 1. Henc to-one fori € {0,1},

for this case, we will obtain insights regarding performanc 1) ™) (co,n) < (9 (00, n) for all n

differentiation only for a finitely large number of nodes.rFo  2) lim,, . 7" (c0,n) T 1, lim, oo 7 (c0,n) 1 ;

the infinite K* case, however, we will study (as in [1]) the 3) lim, ... (n™ M) (c0,n) + n® 3 (c0,n)) 1 1n(p%1)

asymptotics of performance differentiation as the numtfer o ]

nodes tends tao. In the K = oo case, the functiorG(v) Theorem 8.2:In Case 1, withK = oo, the rati(% of the

simplifies to, throughputs of Class 1 and Class 2 convergei%plp as
(1=~p) 0<y<i n — 00. "
Gol(y) = 8“(1_7) 17 (18) Remark: Thus, for example, ib\" = 16, b’ = 32, and

T p = 2 then the ratio of the Class 1 to Class 0 node throughput

will be approximately30/14 for largen.
2) Finite K, Approximate Analysis for Large: With finite
(balanced fixed point) asymptotic analysis as— oo was K, as the numper of nodes in_creases, the collision probﬁbilit
of either class increases fo(since the attempt rate is lower

performed in [1]. o) i . . ]
Consider a set of nodes, divided into two classes, Classbounded) andz" is small (since it decreases "k??o K1)

and Clasg), with Class1 corresponding to a higher priority see Eq.u_a.\tlon 17). Then the difference b_etween the 'coII|S|on
of service.For simplicity, we assume that) and n(®), the probabilities (we drop the argumemsandr in the following)

number of nodes of Class and Class0 respectively, are (1) — @) = (GO (4(0) _ g1 (5(1)))
related as,n¥ = an,n(® = (1 — a)n for somen and ©_ a_

: : : 1= GO (4O @ =1) (| _ (1) (4 1)))nM-1)
2,0 < a < 1. Let y(V(K,n) and 3 (K, n) be the fixed (1=GT0T) (1=G0)
point solutions for the collision probability and attematter
of a Classl no<(j)e fora g|venKOand total number of nodes  zjso becomes insignificant. Hence, we can assumeythat
Similarly, lety(”) (&, n) and 5°) (K, n) be the corresponding ,(0) For equal packet length transmission, the ratio of the

In the nonhomogeneous case we will Wri(é(oi)(y) and
Gé%)(fy). For the homogeneous case witi = oo, the

values for a Class$ node. throughputs of a Class node to a Clas$ node corresponds
We will study three cases: to the ratio of their success probabilities, hence the thinpuit
Case 1:5" < b, p) = pO = p, ATFSD) = ATFS© = ratio is given by,
DIFS

GO - GOEM)™ 11— GO )

Case 2:b\") = b\”) = by, p») < p©, ATFSD = AIFS© =

DIFS GOHO)(1 = GO (D)) (1 = GO (50”1
Case 3:5\" = b = by, p) = p(© = p, ATFSD < ATFS©) %
. . . . - Y
Note that in the analysis in earlier sections, we used the = TGO 6O) (21)
Binomial model for the number of attempts in a slot. With (1-GO (™))
n — oo, in this section, we WI|| use the P_0|sson batch mod@sing ~(1 ~ 4 writing this as~, and using the fact that
for the number of attempts in a slot (as in [1]). GO (v) ~ 0 for largen, we have
GO () 1 (0)
. - _Geony Gy by
A. Case 1: Differentiation by (21) = GO0 Y GO(y) 3D
1) K = oo, Asymptotic Analysis as — oo: With (1-GO(y)) 0

the random number of attempts of each class in a badkfollows that when service differentiation is provided the
off slot being modeled as Poisson distributed, the colisidack-off window, for a large number of nodes, the throughput



(0) . i) -
ratio roughly corresponds té?T), which, for large values of Theorem 8.4:In Case 3, withK = oo, when F{) is one-
0

i . to-one fori € {0, 1},
b(()o) and bél) is almost that same as that obtained for the (0.1}

asymptotic analysis witli = oo in Theorem 8.2
Remark:For finite K case, this observation (throughput ratio
p—1

(0)
is approximately equal td2-) is well known. This result
PP yed ) 4) lim,— 00 (93 (co,n) =0 ]

has been shown analytically (using similar approximajongemark: Again we see that using AIFS for differentiation,
and also has been observed in simulations (se(_a (6], [12] aRflen K = oo and largen, completely suppresses the class
[15]). 1t has been observed in [1] that for & given nUmbgfi the larger value of AIFS. Observe that Parts 3 and 4

of nodes,n, there will exist aK(n) such that the system q¢ Theorem 8.4 imply that the individual node attempt ratio
performance will not vary much for al’ > K(n). Hence, an g™ (co.n)

. ) ) o= goes tooo asn — oc. Some insight into this result
asymptotic analysis would suffice for such cases. MoreoveX?) (co,n) =~ o . .
. . . - Will be obtained from the analysis in the following section.
we have obtained this result in a much more general setting . : -
using the functiorG(-) 2) Finite K, Approximate Analysis:
9 Lemma 8.2:In Case 3 for finiteK(, with [ = 1, if the fixed

point collision probabilities are/(!) and~(?), then the ratio

1) 7P (o0,n) <7 (c0,n) for all n
2) limy, o0 ’y(l)(oo,n) T %7hmn—>oo 7(0)(Oovn) T %
3) lim, oo nMBM (00, n) 1 In(-L2:)

B. Case 2: Differentiation by of the throughputs of Class 1 to Class O is given by
It may be noted that in the current version of IEEE 802.11e _GWuW)
; : : (—cmMy) 1
standard this mechanism no longer exists [2]. oI
1) K = oo, Asymptotic Analysis a8 — oo: The fixed [(EEIOIMON qr
point equation governing the collision probability and the
attempt rate is the same as Equation 19. The following timeore _ o o u
summarizes the main results for Case 2. , Using this result and approximatirig — G (")) ~ 1 as
Theorem 8.3:In Case 2, withK = co, when £ is one- before, the ratio of throughput equals
to-one fori € {0, 1}, the following hold: G ()
1) v (00,n) <7 (c0,n) for all n 7(17?()1)((7()1))) 1 ~ Gili(’YEl;) 1 (22)
. . GO 0 0 0
2) Ty e 7 (00, m) T gy oo 7O (00, m) T 3 = K
. (1)
3) limy,—ce MM (00, ) Tln(,—ﬁ)_ﬂ For general, we can expect a factor Iikg%— in the previous
4) limy, 0o 0930 (c0,n) = 0 B expression. For low loads, whe is not clg(s,)e t(o)O, the dom-
. H _ 1 1
Remark:Thus we see that, witk = co and a large number inating term in the previous expression %m(vw))_ At high

of nodes, unlike initial back-off based differentiatiorhet |
persistence factor based differentiation completely segges
the class with the larger value of [ ]
2) Finite K, Approximate Analysis for Large: For fi- IX. NUMERICAL STUDY AND DISCUSSION
nite K, with the approximatiomy® ~ ~( and the fact T _ _
that GO)(v)) ~ 0, the throughput ratio approximates to In Flgure 18 we plot throughput ratios obtained from a
(14p@ 74O 2 4 @K ) (see Equation 21). Hence, as th simulation of_the C(_)upled back-off processes pf two clas$es
(1+pW y+pM 242+, fpH EqK) ) U ' fodes (the simulation approach is explained in Remarks 4.1)
collision probability of the system increases with loade thyye note that this is the throughput ratio if the packet sizes
ratio of the throlughpouts of Class 1 to Class 0 also increasgsine two classes are equal. If the packet sizes are unequal
(depending o), p(® and the value of(). We note that as hen we only need to multiply the throughput ratio plotted
n — oo, the throughput ratio for the finit&" case is finite, pere py the ratio of the packet lengths of the two classes.
unlike the asymptotic casés( = oc). However, the ratio ends a|so plotted is the analytical results obtained from our dixe

oads, both the terms contribute to throughput differditia
depending on the values ef! andn(©.

to infinity when we considefs’ — co. point approach. The following remarks help in interpretihg
results in Figure 18.
C. Case 3: Differentiation by AIFS Remarks 9.1:

1) K = oo, Asymptotic Analysis fon — oo: In this case 1) Consider AIFS based differentiation. For fir?gé (tlf;e
service differentiation is provided only by AIFS and we let attempt rates are bounded below, and the tex 8«»3
G = G = G (i.e., the back-off parametets andp are is bounded, but ag: (1) +-n(9)) — oo the idle probability
the same). With the assumption that the number of attempts ., — 0 ensuring (see Equation 22) that the individual
in each slot is Poisson distributed, the fixed point equation node throughput ratio goes te for finite X as well
for the AIFS model are (see Equations 9 and 10) (similar to the asymptotic results in Theorem 8.4). In

— (W —1)8D (con) addition, whenn() increases;r(EA) increases tal.
(BA)A —e )+ Hence, the | iority nodes (with larger AIFS) rarel
D 15D (s0.m) @ 5O (s0.m) ence, the lower priority nodes (with larger _) rarely
m(R)(1— e ’ ™) get a chance to attempt and the throughput ratio goes to
A O(oo,n) = (1—e VB (eom) =P 1) (c0m)y infinity; this is demonstrated by the simulation results
in Figure 18, plots with4+ and x. Whenn() is kept

’y(l)(oo,n) = 7



AIFS =071, b_= 16/16, N7 = n®
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Fig. 20. Caollision probability of high priority AC (HP) anaWv priority AC

throughput of a Clas® node (lower priority). Analysis results (solid lines) (LP) in a system of nodes with two ACs. Both simulation (sim}l analysis

and simulation results (symbols). Four cases are consideredifferentiation
only by AIFS with equal number of nodes(!) = n(9); «: differentiation by
AIFS and bybg with equal number of nodes,(1) = n(9); o: differentiation
only by bg with equal number of nodes,(!) = n(9); o: differentiation only
by AIFS with, 5 = n(1) « n(®_ In all casesp = 2 and K = 7 for either
class. For the simulation results, the 95% confidence iatdi@s within 1%
of the average value.
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Fig. 19. Collision probability of high priority AC (HP) anaWv priority AC
(LP) in a system of nodes with two ACs. Both simulation (simyl analysis
(ana) are plotted. The back-off parameters of both the A€sil(ithe nodes)
are identical withby = 16 and AIFS = DIFS. Also plotted is the collision
probability (obtained from simulation) for single AC perdecase with same
back-off parameters and twice the number of nodes. In alttisesp = 2 and
K = 7. For the simulation results, th@5% confidence interval lies within
1% of the mean value.

constant anch(*) is increased (which is more typical),

(ana) are plotted. For the high priority AGy = 16 and AIFS = DIFS, while
for the low priority AC we haveby = 32 and AIFS = DIFS + 1 slot. Also
plotted is the collision probability (from simulation) ofvb classes of nodes
when the two ACs of a node are considered as independent ASsparate
nodes. In all the casgs= 2 and K = 7. For the simulation results, tH&%
confidence interval lies within% of the mean value.

in Cases 1 andu%. Ibis is captured by the first term in
the _expressiqr% L.

Notice that similar results for AIFS hold even when the
functionsG™") andG(® are not identical (see Figure 18,
plot with x). A comparison between the plots with
and x in Figure 18 shows the effect of using bokh
and AIFS for throughput differentiation. Thigy based
differentiation causes the entire curve to shift up (in
favour of the higher priority class), and AIFS still causes
the ratio to increase with increasing [ |

Figures 19 and 20 plot performance results for the multiple
ACs per node case. In Figure 19, we consider a set of homo-
geneous nodes each with two access categories. The back-off
parameters for either AC are the samig £ 16,p =2, K =7
and AIFS = DIFS). The figure plots the collision probability
of the higher priority (HP) AC and the low priority (LP) AC in
simulation as well as the analysis. Also plotted in comperis
is the collision probability (from simulation) for the siley
AC per node case with twice the number of nodes. Notice
that, except for smath, the performance of the high priority
AC and the low priority AC are almost identical (the back-off
parameters are identical), and close to the performancleof t
single AC per node case (see Remark 9.2 below).

In Figure 20, we again consider a set of nodes each with

3)

the collision probability of Clas$ nodes increases totwo access categories. The higher priority AC ligs= 16

1 and their success probability tends(toHowever, the

and AIFS = DIFS, while the low priority AC hag, = 32

collision probability of Clasd nodes remains much lessand AIFS = DIFS +1 slot. p = 2 and K = 7 for either case.
than1 depending on the value of") and hence again Figure 20 plots the collision probability of the high prityri
the throughput ratio tends teo (see Figure 18, plots AC and the low priority AC from simulation as well as the
with o). Figure 18 also shows the throughput ratio wheanalysis. Also plotted is the collision probability for tio

only by is used for differentiation (plots wit); notice

classes of nodes (from simulation) obtained by modeling the

that, as shown earlier, the throughput ratio is just thevo ACs in a node as independent ACs in separate nodes.
reciprocal of the ratios of the initial back-off durationsNotice again that except for smatl, the performance of the

and does not change with
2) For Case 3, in genera}(!) and~(® are different, unlike

multiple queue per node case is close to the performance of
the single queue case.



Remarks 9.2:The above observations from Figures 19 andlgorithms, when the number of sources grow large, the syste
20 can be understood as follows. From the fixed point equa-indeed decoupled, providing a theoretical justificatimi
tions in Section VII, we see that for the high priority AC indecoupling arguments used in the analysis.
any node, only one term corresponding to the low priority AC
of the same node is missing (for the systems in Figures 19 X|
and 20 with two ACs), in comparison to the case in which
all the ACs are in2n separate nodes. Hence, :asncreases,  'his work was supported by the Indo-French Centre for
the effect this single AC in the same node diminishes, and tRgomotion of Advanced Research (IFCPAR) under research
performance of the multiple queue per node case coincidedltract No. 2900-IT and by a travel grant from IBM India
with the performance of the single queue per node case edt®search Laboratory.
with one of the original ACs.
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APPENDIX
A. Proof of Lemma 5.1

We have
L+y+9%-+9%

CO) = R b T T R T Kb
and we need to show that the derivative of this function with
respect toy is negative. Taking the derivative we find that we
need to show that

K K K K
YA DoAY <D A DY
k=0 j=1 k=0 j=1

ie.,

K K K K
DS by <N by

k=0 j=1 k=0 j=1

able at, http://ece.iisc.ernetimhurag/papers/anurag/ramaiyan-etal05fpor, equivalently, we need to show that

general.pdf.gz, 2005.

2K min{n,K}
oAy b=t =0
n=1 j=max{(n—K),1}
k=(n—j)
min{n,K}

Now we consider each terf, j(b; —bg) and

j=max{(n—K),1}
. . k=(n—j) .
show that it is nonnegative. To this enjd, define
m(n) = {(j,k): j+k=n1<j<KO0<k<K},

where| - | denotes set cardinality. Whén= j, jb; — jb, =0
and the corresponding term vanishes from the sum. Also,
equald only whenj = n andl < n < K. Hence, simplifying
the above expression, we get,

max{(an),l}JrL%jfl

D

j=max{(n—K),1}

((n—3) = 7) (bn—j—=b;)+n(bn—bo)1 (1 <n<k}

which is nonnegative since, in the range of the sym—
Jj)—j>0andb,_; —b; > 0. Itis also easily seen that the
derivative of G(-) is strictly negative fory > 0 if the b, are
not all equal, this implies that:(-) is strictly decreasing in
this case.

B. Proof of Lemma 5.3
u(v)

DefineG(v) := oo We have
u() L+y+92+9%
v(7) bo(L+yp+ -+ +yFpF + -+ 45pK)
(E)' B v —vu
v N 02

Since, by Lemma 5.1G'(-) < 0, (%) <0forall0 <~y <1.
Also, with K > 1, u,u’,v andv are nonnegative for all
0 <~ <1. Hence, foralld <y<1

Differentiatingv, we get,

v = bo(p+ 2%y + 3P 4 -+ KpKa KT



Multiplying with «, we have,

/

vu =

bo(p + 20>y + 3p®y> + -+ + KpRyK 1)
A+y+ 4+
bop(1 + 2py + 3p*y° + - --
A+v+72+--+75)
bop(1 + (1 4 2p) + ~+*(1 + 2p + 3p?)
+73 (14 2p+ 3p* +4p*) + - --
M+ 2p 4 KR

K1 +2p+ -+ KpiTh)

K 2p 4 KpKTY

o 22 (K — 1)K 4 KpRY
+? N (EKpRT)

+ KpKfl,YKfl)

We see that,

v'u < bop(1+7(2+2p) +~2(3 + 3p + 3p?)

Forp > 2,

Hence,

’

vu

IA

IA

+73(4 4+ dp + 4p* + 4p*) + - -
A TNE + Kp+ -+ KpiTh)
(K +Kp+ -+ KpK1)
TN Kp + -+ KpKTh)
+_._+W2K71(KPK72 —|—KpK’1)
N KpRTY)

l4+p+p*+-+p" <p't!

bop((1+ 1) +v(2p + 2p) + 7*(3p” + 3p%)
+93(4p® + 4p) + - -

+"YK_1(KPK_1 +KpK_1)

S (KpR T+ Kpi )
+’YK+1(KPK71+KPK71)

Fo K (R 4 K
+"}/2K_1(KpK_l +KpK_1))

bo2p(1 +~(2p) +7*(3p%) + 7*(4p%)

+o KPR + R (KpR Y
+7K+1(KPK71) N ,YQKfl(KpKfl)
+’)/2K_1(KpK_1))

But we know that,

v? =

We see that, for > 2,y > 2, (x —1)(y —1) > 1 = zy >
x +y. Hence, forK > 2,p > 2, K < (K — 1)p. Repeating GO (y (D) > GO (D)
the above argument fofK' — 1) and p and so on, we get

Bo(1+py +p*y° + -+ pyT)?
b5(1+(2p) +72(3p%) + ¥ (4p°) + -+ +
YN KPR + R (K +1)p™)
AT KPR + B (K - 1)pn?)
e TP PR ()

2
0
2
0

K<(K—-n)p"for0<n<K-1.

Now, comparingy'« andv? term by term in powers ofy
and using the fact thak’ < (K —n)p™ for K > 2,p > 2 and
0<n<K -1, we see that,

VU < 2_p
V2 — by

For the caseK = 1 andp > 2, we havev = byp and
vu= bop(1 + ). Also, v2 = bZ(1 + 2py +v?). Hence,

1/_U _ bop(1 +7)

v (L4 2py +9?)
p_ (1+47)

bo (1+2py+7?)

< lz<ig£

~ b0 T bo

C. Proof of Lemma 6.1
Rewriting Equation 9, for al, 1 < i < n(}), we get,

n®
(-4 = I a-8")mEa)
j=1,j#i
n©
+ a® JJa-6"
k=1

Multiplying by (1 — ") and using the fact thag!" =
G (1), we have,

1-N1-GV(Y)) = n(EA)gpa +(R)ar

(23)

Observing Equation 23, we see that the right hand side
is independent ofi. Hence, if the left hand side function,
FO(5) := (1 —)(1 = GW(v)), is one to one, then") =

7](.1) for all 1 < 4,7, < n(M. Similarly, we can see from
Equation 10 that, for alf, 1 < i < n(9,

1= -G0¢0") = g

Hence againy(” = 1" for all 1 < i,j,< n(, if FO is
one to one.

(24)

D. Proof of Theorem 6.1

From Lemma 6.1, we already know that the fixed point
is balanced within a class. Now, assume that there exist two
vector fixed point solutionssy and A, with the first n(})
elements ofy arey(!) and the remaining.(?) elements are
~(©), Similarly, the firstn(*) elements of\ are A(!) and the
nextn(®) elements are\(“).

Let us, in this proof, denote the value @f (see Equation 7)
for the fixed pointy as gr(v) and for the fixed point\ as
gr(X); similarly, we do forgg 4 and for other variables.

Lemma D.1:Let v and A be two fixed point solutions and
let F(©) be one-to-one. If() < X1 theny(® > X Also,
A = XD jff 4(0) = (0,

Proof: Without loss of generality, let") < A(1), Then
(see Lemma 5.1). Hence,

(1— G(l)(v(l)))"(l) <(1- G(l)()\(l)))n(l)



If we assumey(® < X, then gr(v(?) > ¢r(\?) (see E. Proof of Theorem 7.1
Equation 24). Hence, we require The fixed point equations are, for all= 1,---,n (and

(1=GD (D)) (1 =GO (4 ))n(0) 5 (11 (\(1D))r(1) (1 IFE0)¢4¢0)50k0)

j—1 n Cr
Or _
’ Yij = 1-— (1 - Bim) (1 — Br,u)
(1= GO (D)0 > (1 - GO AD))m© ’ ml_:Il {k—g#} ll;ll
which implies~y(® > X which is a contradiction. where 3;; = G ;(7:;). Clearly, by Brouwer's fixed point
If 7O = X0, then gr(v(?) = qr(A?). Hence,(1 — theorem, there exists a fixed point solution for the above

GO (D)) n® (1 G(l)()\(l))) “ or, (1) = A1), system of equations. Rewriting the above equation, we get,
Hence, ify() < XM, theny©) > A©) Let 75())\(0) ; 0 en
then gn(+®) # qn(A®). Hence, (1 — G“)(v“’)) 7 (1)) = [[Q-6m0 [ TIC-80

(1= GOALNY Or, 4D £ A\, | m=1 (k=1 k#i} =1
Now, using Equation 8, write the right hand side of Equa- . .
tion 23 as aNot|ce that, for2 < j < ¢,
- ! L=7)1=0ij) = (I—=7-1)(1—Bij—1)(1—Bij
qEA(1+qEA+---+q"Ej)+qu_E;R (L =7,5)1 = Bij) (L =7i-1)(1 = Bij—1)(1 = Bij)
J(gpa,qr,l) =

- ; or,
Lt qoa+aba+ - + s + 124

(=75 = (=7-1)1~=0Bij-1) (25)

when (1 — 3; ;) > 0.

Let us assume that there exists two fixed point solutions
(v and A) for the system. Without loss of generality, assume
that for some node and its ACj, v;; < Asj;. Then, the

Lemma D.2:1f v < A, then J(gpa(7),qr(7),1) >
J(QEA()‘)7QR(A)J)
Proof:
ConsiderJ(qra, qr,1).

1 -1 aa following lemma shows that;,; < A;; forall k =1,---,n
J(QEA,(]R,Z) = qEA( tapat +qEA)+lqR1_qR andl:]-,"'ack
L4+ qpa+ - +dgs + ff—q*‘R Lemma E.3:Whenevery and X are the fixed point solu-
_ N _ tions, and ify;; < A;; for somei = 1,---,n andj €
Expanding and rewriting the above equation, we get, {1, Ci} then ., < Ay for all & = 1,---,n and all
-1 l=1,-
= 4£4 + 954424 — 0R) =1 Iea (QEA qpi) Proof Let vi,j < Ai; for somei € 1,---,n andj €
qeA +pA(gEA — qr) + + dpalgpa — - q{%f -,¢;}. Then, using the fact thg; ; are strictly monotone
which is of the form--L:— f1+f2 When~™ < X1, theny(0 decreasing, we have
(0)
AP (from the previous lemma). Hence, (1= 7)1 =Gij(viy)) > 1=Xi)A=Gij(Nij)
qea(y) — qr(v) Using Equation 25, we see that,
n® n(©
= JIa-cY6)a-TJa -6On™)) (I =7ig+1) > (1= Aij41)
’ff) fol) i.€.,7ij+1 < A\ij+1 When everj +1 € {1,---,¢;} and, again
j s using Equation 25, we have
< [Mao-e®om)a-TJa-copoy =
i=1 i=1 (I =7-1)(1 = Gij—1(vij-1)) > (1= Aij—1)(1 = Gij—1(Aij-1))

= A) —qr(A
aza(A) = 4r(Y) Or, vij—1 < Aij—1 when everj — 1 € {1,---,¢;}. Arguing

Also, we can see that, as above, we see thaf; < \;; forall I =1,---,¢;.
From the fixed point equations, we observe that forkat
qeA(Y) < qra(X) 1o, m,

QR(V) < QR()‘) n q
Using the above three inequalities, we can see that, (=)A= Gree(Ve) = ll_[l Hl(l = Gim(,m))

J : )< J ), qr(N),1 o
(gea(¥),qr(7),1) (gBa(A), qr(A), 1) (1= Mey) (1 = Grcy Mkcy)) = H H — Grm(Aim))

=1 m=1

n
If v < AM, then (1 — yM)(1 — G (yV)) > (1 — But we know that
A (1 — M (AM)), However, from the above lemma and
the right hand side of Equation 23, we see that we havelh— Vi) (1 = Gic,(Vie)) > (1= Aie,)(1 = Gie, (Aie,))
contradiction.



since~; ., < A ¢,. Hence, we have, where qp, , = 1n 1(1 = Biom) I 1<tz ppiy [Tk, (1
— Grioy(Mke)) Br1)- Notice that .7’ is similar to gr except for terms

(1= ko) (I = Groep (Vrier)) > (1= A )(1
corresponding to the Clags (with lower collision priority)
Or, Vk,er, < Ak, forall 1 <k < n. Arguing as before for ACs in nodei. Hence, ifv©® > A®©, then not only is

noder, we thus haveye < Awu for all k=1 a4 g, (4) < gea(A) andga(y) < gr(A), but alsor,, (7) <
—hh qr, ;(A). Expanding(1 — - ;)(1 — G j(-,5)), we get,

(1 =) =Gij(4) =
(14 qpa+ g5, +-

Hence, ify and X are two fixed point solutions for the sys-
tem of equations, we see that, < A\;; forall i=1,---,n
(andk =1,-- -, ¢;), which is clearly a contradiction (the proof
is similar to that in Section V-B and is not provided). Hence,
the system of equations for the multiple access categoees p
node case (without AIFS) has a unique fixed point solution. _

-+ qEA)QEA + 4R j

1QR

Tpa
1—qr

1+(JEA+q,2v5A++qE_A +
qea + qea(qea — qr) + - + 454 (q8a — qr) + 45 (qr.. ;) — @

qra +qea(gea —qr) + -+ d5i(gea — qr) + (1 — qr)

F. Proof of Theorem 7.2

Considerc; access categories per node/wth <Y ACs Wheriq’f“‘ T4R = q’f“‘( i T =0y (1 = Pr))
@,---,cMywith ATFSM, and the remaining O ACs P+ andgp”’ —qr = qp v [1{i—1,cizoy (1 = Bia)). Clearly,
-,ci) with AIFS = ATFS™M + [ slots. The fixed point if v(©) > X(©) thengpa(v)—qr(v) < qEA(/\) —qr(X\) and

equations for the system are given in Equations 14 and 1%z, (v) — qr(v) < qr,,;(A) — qr(A). Also, we know that

As before, by Brouwer’s fixed point theorem, there exists B— gr(v) > 1 —gr(\). From the above observations, we see
fixed point for the system of equations. Assume that therstexihat, (1 — ~; ;)(1 — G;;(7vi,;)) < (1 = Xi;)(1 — Gi;(Nij)),
two fixed point solutions for the above system of equationshich clearly implies thaty; ; > ), ;. Hence we have/(!) >
~ and X with v; ; and \; ; as elements. A which is a contradiction.

Let us, in this proof, denote the value of; (see Equa-  Also, we can see thay®) = A jff 4 = X(©) (the
tion 16) for the fixed pointy asqr() and for the fixed point proof is similar to that in Theorem 6.1 and is not provided
A asqgr(A); similarly, we do forgr 4 and for other variables. here).

In a node:, consider two ACs of the same AIFS class, i.e.,
jandj—1s.t.C;; = C; ;1. As in the proof of Theorem 7.1,

it can be shown from Equation 14 or 15, that G. Proof of Lemma 8.1

Considery such thatd < v < 1. Then,Gu(y) = 2=22)
L—7ij) = (1=75-1)1—Gij-1(7ij- P bo(1=7)
(= %5) (= 7%5-2)( 3-1(%3-1)) Differentiating (1 — v)e~%=), we have,
or,
(1 —755) =Fij—1(7ij-1) = e FeM(-1) + (1 —7)e =M (-G (7))
Hence, using the one-to-one propertyfdf; (-) if i; < Xij,  But Gl (7) = & ((11 —2;. Substituting it in the previous

then~; , < A; & for all k such thatC; ; = C; i,

_ _ ) equation, we get,
Now consider all those nodes with; ., = 0, i.e., the least

collision priority AC in a node is of AIFS clas8. We then
have, using Equations 15 and 16,

(1= 7ie)1 = Gie,(Vier)) = ar(v)

(I =Xie)(I = Gie,(Nie))) = ar(N)
i.e., E7Ci (’W,Ci) = QR(V) and F‘l(w(/\hﬁ) = QR()‘)' If
qr(Y) > qr(N), then~; .. < i, for all i s.t. Ci., = 0.
If gr(v) = qr(A), then~; ., = A\, forall i s.t. C; ., = 0.
Combining the above two results, we see that forigfl s.t.
Ci; =0, eitherqy; ; > X ; Or v 5 = Aij OF v 5 < Ag ;.

1 (1-
~Gon) (_1 -y ((1 _f))2>

e—Goo('y) <_ _ i (1 B p))
bo (1 —)
e~ G~ is always positive (sincé} (7) <1). Foro < 7 <
1 , the absolute value q} (1 ) is maximum wheny = -, at
P

WhICh the value equalsﬂ— =1 —%. Hence, the second

term is always less thap+-1+ )’i) But, if by > 2p+1, clearly,
the second term is negative. Hence, the derivative is always

Without loss of generality, assume that the collision pFObﬂega’uve and never equal to zero for @i ~ < 1 . Hence, the

bility of Class0 ACs is more iny than inX (7(©) > A(©) ~(0)

andX(©) are the vector of collision probabilities correspondin

to AIFS class0 in the vectorsy and A respectively). Hence,

qr(Y) < qr(N). Also, g4 (v) < qza(X) (the proofis similar
to that provided for AIFS with single AC per node and is nof? Poth the intervals) SYTsy

provided), which impliesy() < A1),
Now consider the expressiof(-) for the least collision
priority Class1 AC, sayj, of any nodei,

(1=, -
(1= -

%Of

G(7) is one-to-one in the rang}ag v< 2

L <y <1, Gu(y) = 0. Hence,(1 — 7)e~ %~ is one-
to- one for ally, L <~ < 1. Also, the function is decreasing
L and+ < 4 < 1. Hence,
[ ]

function(1—~)e~

G-(7) is one-to-one for alD g v < 1.

(1 =7)e”

H. Proof of Theorem 8.1

Gij(vig)) = 7(EA ¥)qea(y) + 7(R,¥)4r ,, (Y)\We shall prove Theorem 8.1 by first proving Lemmas H.4
Gij(Nij)) = m(EA,v)aepa(A) + 7(R,7)qr, ;, (%) H.8.



Lemma H.4:In Case 1, withK = oo, YV (oo,n) < ~M(o0,n) < (¥ (c0,n) for all n > N for someN. Hence,

79 (00, n) for all n. BV (00,n) = BO(co,n) = 0 for all n > N. However,
Remark:Thus, as expected, the collision probability for theubstituting in Equation 19 gives a contradiction.

higher priority class is smaller, for each Now assume tha}(©)(co,n) > for all n > N for some
Proof: Sinceb” > b, we see from Equatlon 18 that, N. Since,y(") (o0, n) is a strictly i mcreasmg function of, we

for everyy € [0,1], G(l)( ) > G(O)( ). Hencee &M < can, without loss of generality, assume that) (00, n) > %
e=G ™ Hence,(1 —~)e~ G0 < (1—7)e=6<'™). Since for all n > N for someN. Hence,3 ) (00, n) is zero for all
the fixed point satisfies Equation 20, it ls Necessary that> N. But we know that the collision probability of Clags
7D (00,n) < 79 (00, n) holds (sincg(l —~)e~ £ is one- also increases with and the limit of the collision probability
to-one decreasing). B of Classl and Clas9) are equal. Hencey(!) (00, n) exceeds

Lemma H.5:In Case 1, withK = oo, v!)(co,n) and 1 foralln > N’ for someN’, which is a contradiction.

79 (c0,n) are strictly increasing functions of. since 71 (c0,n) and 4% (co,n) are less thanl, the

Proof: Considernl < n2. We know that inequality in Lemma H.4 becomes strict, i.e{! (co,n) <

(1 = ~vM(o0,nl))e —BM (c0,nl) 79 (00, n) for 6}” n (when b(()o) > b(()l), Ggg)(’y) < Gg,)(fy)

_ a- NG (00, n1))e —8© (00,n1) forall 0 <~ < 5). ]

)

N Combining the above Lemmas, we see thél (co,n) <
(1 =~y (o0, n2))e™” 7 (0, n) for all n (From Lemma H.8). Using the fact that

= (1 -9 (c0,n2))e=#" (n2) B (00, n) — 0 asn — oo andy™ (oo, n) < ¥ (00, n) < 5

. . 1

If v(D(oo,nl) = M (c0,n2), then using Lemma 8.1 we o all . we get limy—x .7( ).(OO(’,?) G asln o

see thaty® (0o, n1) = 1) (00, n2). Hence SO (oo, nl) = (fro.m Equat'lon 18). Substltutlng (00, m) i 15 asn —

80)(0c,n2) and f(D(cc,n1) = D (oc,n2). Since both N (I)Equatlons 19, we see thatnnﬁoo(n_( )M (00, n) +
50 (c0,-) and 8D (00, -) cannot be zero, and asl < n2, n©50 (co,n)) 1 In(;%), thus completing the proof of

substituting in Equation 19, we get a contradiction. Theorem 8.1.

Assume thaty(V)(co,n1) > ~1)(co0,n2). Then, from
Equation 20 and Lemma 8.1, it follows that” (co,n1) >

7 (00,n2). Also if collision probabilities decrease with,

(o0,n2)

. Proof of Theorem 8.2

it would imply that the attempt rates increase with i.e., In the following, for notational simplicity, we drop the
BD (00,n1) < BV (00,n2) and 8O (oo, nl) < BO (oo, n2). argument(oco,n). Consider the necessary condition, that a
But from Equations 19, we see that, fixed point solution satisfies.
1D (oo,nl) = 1-— e V-0V e+ @50@on)  (1-7M)1-GPHW)) = 1-9)1-6RH?)
—((n2® — M (co,n n2 30 (o n . . .
< 1 - (2D (o Fn2 AT (e0n2)  gince we are interested only in the range< v < ;la we
= 7W(o0,n2) can substitute fof7..(v) = % and further simplify the
equation to,

Thus we have a contradiction and the result is proved.m
Lemma H.6:In Case 1, withK = oo, the attempt rates 1 1
' ' _~M — M — DV ARSI (V)
BV (00,n) and B (o0, n) tend to zero as — oo. (=7 - b(l)(1 p) = (1=77) b(O)(1 7p)
Proof: If not, the exponent in the collision probability _
equation (Equation 19) tends teco taking the collision Rearranging the terms, we have,
probabilities to1. However, we know that the attempt rate

1 1
is zero for ally > 1, leading to a contradiction (since we are (O -4y = (1= 7 Wp) — oL 7 Op)
interested only in the cage> 1). ] by by
Lemma H.7:In  Case 1, with K = 00, Further

lim,, 00 Y (00, n) = lim,, 00 7 (00, n)
Proof: We have

(1) (1) (1 = 40
1
0 < 5M(00, ) — 79 (00,n) Ty 00 =) = 1T
= (P =1)BD (00,n)+(n P ~1)5? (c0,n)) T o T
(e*f’(l)(o"’") _ e,ﬁm)(oo,n)) Let us rewrite the left hand side of this equation as follows
< (eiﬁ(l)(oo’”) — eiﬁ(o)(oo’")) — oo 0 b(()l) (7@ — 4y — @ (v9p —7Wp)
— ~(D) o — @
Hence proved. ] (1=~Wp) g) (1=~Wp) o
Lemma H.8:In Case 1, withK = oo, yV(o0,n) < _ b —1Wp) — (1 —70p)
70 (00,n) < % for all n. p (1 —~Wp)

Proof: We first observe thaty(co,n) < 4 for bV (1—~@p)
all n. Otherwise, by Lemma H.4 and Lemma H.%, < ?( a (1 _’7(1)}7)>



Substituting back this expression for the left hand side inK. Proof of Theorem 8.4

the original equation, we have Lemma K.11:In Case 3,7V (c0,n) and 49 (co,n) are
b (1—~0p) bV (1 — 4 ©p) strictly increasing functions of.
7 ( - m) = - Wm Proof: Rewriting the fixed point equations for AIFS, we
0 have,
Rearranging terms, we obtain (1— 7(1)(007n))efﬁ“)(oo,n) — efnmﬁ“)(oo,n)(ﬂ(EA) +
RPN e L (R r(R)e 9 e
P L=~Wp) \ p B (1= 7O (00,n))e#"om)  —  o=nM5D (0,m) =5 (o0,n)
Finally the calculation yields (27)
©) ) .
1=Wp)/by” (b —p) (26) Considernl < n2,
(1 —~©Op)/b) ®§Y = p) Assume that 79 (co,n1) > 4 (c0,n2) (hence,
For equal packet length case, the ratio of the throughput 6%0)(007”1) < 5(0)52?,?2).)- As 79 (c0,n) decreases
the nodes equals the ratio of their success probabilities itVith 7, (1 — 7)e"®") increases. Hence,qr =

Ca MM (00 m)—n @ GO (oo.m) . ;
slot (see, for example, [3] and [1]) which, upon simplificatj € B ’_) B (eaim) Increases withn. _Slnce_ qr
yields (we reintroduce the dependenceroim the notation) ~increases withn and 3(”)(co,n) is non-decreasing with,

- — VBV (o) strictly i ith

) 1_ 5O we requiregea = e strictly increase withn.

N b ((1(;0’”) ( (f) (c0,n)) Hence, 5V (00, n) strictly decreases witm (or 4™ (co,n)
(1= 6D(o0,n)) 5000, n) strictly increase withn). From Lemma D.2, we see that as

As n — oo, BV (c0,n) and B (co,n) tends t00. Also ¢z, andgr both increase withy, the R.H.S. of the first of
we know that3®) (co,n) is of the form -A=1"(e:mr) 504 Equations 27 also increases with From the monotonicity of

by7 (1=0) (00,m) — )e—CM) 5 ing wi i
+O)(s0,m) < L for all n. Since (.1 e , we havefy (00, n) decreasing withh which
P yields a contradiction.
lim v (c0,n) = lim 7 (co,n) Assume that/ (V) (co, n1) > (M (c0, n2) (hences™ (oo, n)

. (1) . (0) increases withn). Hence,gza = e "8 (1) decreases
we havelimy, oo (1-7(00, 7)) = limy, oo (1=7""(00,m)).  with n. From the second of Equations 27, we see that if
Hence, using Equation 26, the ratio of the throughputs, 85, decreases, then(® (oo, n) must strictly increase with

0) _ . . .
n — 0o, can be seen to convergegé‘l)fp; asn — oo. n (otherwise, the R.H.S. will decrease with and from the

o 7P monotonicity of the L.H.S., we get a contradiction). Since
J. Proof of Theorem 8.3 7 (c0,n) increases with, ¢ decreases with. Using the

Lemma J.9:For Case 2, withk = oo, andFo(é) one-to-one factthatgrza andgr decreases with and from Lemma D.2,
1) 7(1)(00 n) < 7(0)(00 n) for all n we see that the R.H.S. of the first equation also decreasks wit

2) 7V (c0,n) and~© (oo, n) strictly increase with n, which implies thaty(!) (0o, n) increases witm, which is a

3) 3 (00, n) and B (co,n) tend to0 asn — oo contradiction. ) .

4) vM(0,n) < 4O (00, 1) < L=, ¥n Assume that vV (co,n1) = ~W(c0,n2) (clearly,

5) lim M (00,n) = lim " 0 (00,n) = L M (c0,n) > 0 for all n). Thengpa decreases witm. So
n—oo Y 1) = Moo Y T pM from the R.H.S. of the second of Equations 27, we need that

0) . . . .
The proof follows in similar lines as in Lemmas H.4 - H.8' (00, n) strictly increase W't.m' SO’qR.aISO decreases with
. . n. Hence, the R.H.S. of the first equation decreases from the
and hence is not provided here.

X Lemma D.2 and hence we obtain a contradiction.
: — (0) 3(0)
Lemma J.10:In Case 2, Withi = oo, n5 (00, n) — 0 Similarly, if 4 (co,n1) = (% (c0,n2), qr is constant.

aSn;;Oc;(;.. Since Sincee—""8 (o) s non-increasing, we require that 4
' . (0) g(0)
1 1 be non-decreasing;g = e~™ 7 (®"gp,). Hence, we re-
lim v (co,n) = lim 7 (c0,n) = > o quire (M) (0o, n) strictly decreasing wit. Hence (") (00, n)
nee nee p p strictly increases with.. Hence, the L.H.S. of the first equation
we have,3(®)(co,n) = 0 for all n > N for someN. Hence, decreases with. However, sincejx is a constant angzs 4
limy, —oe 793 (00, n) = 0. B is non-decreasing, we have the R.H.S. of the first equation
Remark: Thus, the aggregate attempt rate of the Clagees non-decreasing, which is a contradiction.
to zero, while the aggregate attempt rate of the Clagsverns Hence,y(") (o0, n) strictly increases with. m
the system performance. From the above lemma, we can see th&t(co, ) goes to
From Lemma J.9, we see that') (co,n) < 79 (co,n) for  zero asn — oo.
all n andlim,,—.cc 7™M (00,n) T Sy, limy—oc 7P (c0,n) T Lemma K.12:In Case 3, withK = oo, vV (co,n) <

7. Lemma J.10 shows thatm,, .o n(?) 5% (00,n) = 0. 7 (c0,n) < L for all n.

Igience, substituting in the fixed point(l)equations for Case 2, Proof: From Equations 27 we can easily see that
we getlim, o nt" 31 (0o, n) 1 In(-f=7) completing the v (00, n))e=B" (0m) > (1 —'7(0)(00,@))55(0)(0"7"). Since
proof of Theorem 8.3. we assumed that the functio, () is the same for both



the classes, and since we know that— ~v)e=¢~() is a %( (EA) + n(R)(1 — GO (40))n”)

strict monotone decreasing function, we hay€') (co,n) < = GO (7© -
79 (00, n) for all n. (- G(O()’)E"y(o)))) (R)(1 — GO ((0))n®
i i 1) 1 GO (4
As in Lemma H.8, it can be setgn that (oo,ln) <3 (1_6(1()@(1)))) (EA) 1
for all n. Now suppose that, that(®) (co,n) > 5 foral = GO (7)) T(R)(1 — GO (y(0)))n® +

n > N for some N (y()(co,n) are strictly increasing — (1—G®( gamma())

functions ofn). With 3 (co,n) = 0 for all n > N, the Consider the term inside the bracket,
only factor that governs the collision probability of Class T(EA)
and0 is (n) —1)M andn(® 31, However, we know that OO
31 (00,n) goes to zero, o) (oo, n) — 7% (00, n), which T(B)1 = GO()
requiresy(" (oo, n) > - for somen > N, leading to a
contradiction. Hencey!) (00, ) < 7 (00, n) < + for all
n. Also, wheny() < 1, the inequality between the collision

+1

Let I = 1. From Equation 8, we see thét((T) = L
Substituting, we get,

probabilities becomes strict, i.ey(!)(c0,n) < 79 (00, n) 1 —anr o 1
(We already know thaty") (0o, n) < 7(9)(co,n). The result gea(l = GO(yO))n
follows from the Equations 27 and the fact thG@lt () is a n(®

We know thatgg 4 (1—G (@ (y(0))»
expression simplifies to

. ) X = gr. Hence, the above
strictly decreasing function of when(0 < < %). ] — R

Lemma K.13:In Case 3, withK = oo, n(? ) (0o, n) —

1-— 1
0 asn — oo. qR—|—1:—
Proof: Since 3 (c0,n) > 0 Mmoo AR
The throughput ratio thus simplifies to
1— e—(n(l)_l)g(l)(oom,) < 1— e—(n(1>—1)l3(1)(00777')_”(0)5(0)(007") G(1)( (1))
a-comy 1
If n®p0(c0,n) converges to a positive value, then % q

this inequality becomes strict in the Ilimit. Hence,
lim, oo YV (00,n) < lim, oo 79 (c0,n), which is a
contradiction, since both")(co,n) and 4(?)(co,n) tend to
L asn — oo (this follows sincey)(co,n) < L for all n
and 3()(co,n) tend to0 asn — oo). Hence,n(? 3 (co, n)
goes to zero. [ |
Using Lemmas K.11 and K.12, we see that) (co,n) <
79 (00,n) for all n andlim, .o y)(c0,n) T 1. From the
previous Lemma, we see that?) () (oo, n) — 0. From the
Fixed point equations for AIFS and Lemma K.13, we obtain
lim,, o0 n(Y 31 (c0,n) 1 In(;£7), completing the proof of
Theorem 8.4.

L. Proof of Lemma 8.2

Consider the case of finit& with n(!) Class1 nodes and
n(® Class0 nodes. The success probability for a Clagsode
is given by (we dropK andn in the notation)

GO () ((EA)1 — D ()T 4
r(R)(1 = GO ()1 - OO

and the success probability for a Classode equals
GOHMNm(R)(1 ~ D)) (1= GO ()

The ratio of throughput of a Clask node to a Clas$® node
is then given by,

GO (V) (r(BA) + m(R)(1 — GO (())"”)
GO (yO)r(R)(1 — GO (vD)) (1 — GO) (y(©))®@-D)




