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ABSTRACT
We consider the vector fixed point equations arising out of
the analysis of the saturation throughput of a single cell
IEEE 802.11e wireless local area network with nodes that
have different back-off parameters, including different Arbi-
tration InterFrame Space (AIFS) values. We consider bal-
anced and unbalanced solutions of the fixed point equations
arising in homogeneous and nonhomogeneous networks. We
are concerned, in particular, with (i) whether the fixed point
is balanced within a class, and (ii) whether the fixed point
is unique. Our simulations show that when multiple un-
balanced fixed points exist in a homogeneous system then
the time behaviour of the system demonstrates severe short
term unfairness (or multistability). Implications for the use
of the fixed point formulation for performance analysis are
also discussed. We provide a condition for the fixed point
solution to be balanced within a class, and also a condi-
tion for uniqueness. We then provide an extension of our
general fixed point analysis to capture AIFS based differen-
tiation; again a condition for uniqueness is established. An
asymptotic analysis of the fixed point is provided for the
case in which packets are never abandoned, and the number
of nodes goes to ∞. Finally the fixed point equations are
used to obtain insights into the throughput differentiation
provided by different initial back-offs, persistence factors,
and AIFS, for finite number of nodes, and for differentiation
parameter values similar to those in the standard.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—Access schemes; I.6.4 [Simulation
and Modeling]: Model Validation and Analysis

General Terms
Performance
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1. INTRODUCTION
A new component of the IEEE 802.11e medium access

control (MAC) is an enhanced DCF (EDCF), which pro-
vides differentiated channel access to packets by allowing
different backoff parameters (see [2]). Several traffic classes
are supported, the classes being distinguished by different
back-off parameters. Thus, whereas in the legacy DCF all
nodes have a single back-off “state machine” all with the
same back-off parameters (we say that the nodes are ho-
mogeneous), in EDCF the nodes can have multiple back-off
state machines with different parameters, and hence are per-
mitted to be nonhomogeneous.

This paper is concerned with the saturation throughput
analysis of single cell networks with nonhomogeneous nodes.
We limit our study to the case in which each node has one
EDCF queue; the further generalisation to multiple traffic
classes per node can also be done using the same techniques
but is not reported here for lack of space. Thus in the non-
homogeneous case our analysis is applicable to a single cell
ad hoc network of IEEE 802.11e nodes (single cell mean-
ing that all nodes are within control channel range of each
other), with each node offering traffic of a single class. We
consider an ideal channel (without capture, fading or frame
error) and assume that packets are lost only due to collision
of simultaneous transmissions.

Much work has been reported on the performance evalua-
tion of EDCF to support differentiated service. Most of the
analytical work reported has been based on a decoupling ap-
proximation proposed initially by Bianchi ([3]). While keep-
ing the basic decoupling approximation, in [1] Kumar et al.
presented a significant simplification and generalisation of
the analysis of the IEEE 802.11 back-off mechanism. This
analysis led to a certain one dimensional fixed point equa-
tion for the collision probability experienced by the nodes in
a homogeneous system (i.e., one in which all the nodes have
the same back-off parameters). In this paper we consider
multidimensional fixed point equations for a homogeneous
system of nodes, and also for a nonhomogeneous system of
nodes. The nonhomogeneity could arise due to different ini-
tial back-offs, or different back-off multipliers, or different
amounts of time that nodes wait after a transmission before
restarting their back-off counters (i.e., the AIFS (Arbitra-



tion InterFrame Space) mechanism of IEEE 802.11e). We
consider balanced solutions of the resulting multidimensional
fixed point equations (i.e., solutions in which all the coordi-
nates are equal), and also unbalanced fixed points.

The main contributions of this paper are the following:

1. We provide examples of homogeneous systems in which,
even though a unique balanced fixed point exists, there
can be multiple unbalanced fixed points, thus suggest-
ing multistability. We demonstrate by simulation that,
in such cases, significant short term unfairness can be
observed and the unique balanced fixed point fails to
capture the system performance.

2. Next, in the case where the backoff increases multi-
plicatively (as in IEEE 802.11), we establish a simple
sufficient condition for the uniqueness of the solution
of the multidimensional fixed point equation in the ho-
mogeneous and the nonhomogeneous cases.

3. We perform an analytical study of the differentiation
provided by each of the three mechanisms that we
model. We then provide an asymptotic analysis of the
service differentiation (as the number of nodes become
large), and also some approximate results for a finite
number of nodes.

A survey of the literature: There has been much re-
search activity on modeling the performance of IEEE 802.11
and IEEE 802.11e medium access standards. The general
approach has been to extend the decoupling approximation
introduced by Bianchi ([3]). Without modeling the AIFS
mechanism, the extension is straightforward. Only the ini-
tial back-off, and the back-off multiplier (persistence factor)
are modeled. In [4], [5] and [6], such a scheme is studied
by extending Bianchi’s Markov model per traffic category.
In this paper, in Section 3, we will provide a generalisa-
tion and simplification of this approach. We will provide
examples where nonunique fixed points can exist, the con-
sequences of such nonuniqueness, and also conditions that
guarantee uniqueness.

AIFS technique is a further enhancement in IEEE 802.11e
that provides a sort of priority to nodes that have smaller
values of AIFS. After any successful transmission, whereas
high priority nodes (with AIFS = DIFS) wait only for DIFS
(DCF Interframe Space) to resume counting down their back-
off counters, low priority nodes (with AIFS > DIFS) defer
the initiation of countdown for an additional AIFS−DIFS
slots. Thus a high priority node decrements its back-off
counter faster than a low priority node and also has fewer
collisions.

Among the approaches that have been proposed for mod-
eling the AIFS mechanism (for example, [7], [8], [9], [10], [11]
and [12]) the ones in [11] and [12] come much closer to cap-
turing the service differentiation provided by the AIFS fea-
ture. In [11] the authors propose a Markov model to capture
both the different back-off window expansion approach and
AIFS. AIFS is modelled by expanding the state-space of the
Markov chain to include the number of slots elapsed since
the previous transmission attempt on the channel. In [12]
the authors observe that the system exists in states in which
only nodes of certain traffic classes can attempt. The ap-
proach is to model the evolution of these states as a Markov
chain. The transition probabilities of this Markov chain are

obtained from the assumed, decoupled attempt probabili-
ties. This approach yields a fixed point formulation. This is
the approach we will discuss in Section 6.
Relation of the existing literature to our work: We
note that the analyses in [11] and [12] are based on Bianchi’s
approach to modeling the residual back-off by a Markov
chain. In this paper, we have extended the simplification re-
ported in [1] (which was for a homogeneous system of nodes)
to nonhomogeneous nodes with different backoff parameters
and also AIFS based priority schemes. Thus, in our work,
we have provided a simplified and integrated model to cap-
ture all the essential service differentiation mechanisms of
IEEE 802.11e.

In the previous literature, it is assumed that the collision
rate experienced by a node of each traffic category is con-
stant over time. There appears to have been no attempt
to study the phenomenon of short term unfairness in the
fixed point framework. Also, all the existing work assumes
that the collision probabilities of all the nodes of a given
traffic category are the same. Thus there appears to have
been no earlier work on studying the possibility of unbal-
anced solutions of the fixed point equations. In addition,
the possibility of nonuniqueness of the solution of the fixed
point equations arising in the analyses seems to have been
missed in the earlier literature. In our work, we study the
fixed point equations for IEEE 802.11e networks and take
into account all these possibilities.
Outline of the paper: In Section 2 we review the gen-
eralised back-off model that was first presented in [1]. In
Section 3 we develop the multidimensional fixed point equa-
tion for the homogeneous and nonhomogeneous cases, and
obtain the necessary and sufficient conditions satisfied by
the solutions to the fixed point equations. We provide ex-
amples in Section 4 to show that even in the homogeneous
case there can exist multiple unbalanced fixed points and
show the consequence of this. In Section 5.1, we analyse the
fixed point equations for a homogeneous system of nodes and
obtain a condition for the existence of only one fixed point.
In Sections 5.2 and 6, we extend the analysis to nonhomo-
geneous system of nodes, with different back-off parameters.
In Section 7 we provide an analytical study of the service dif-
ferentiation provided by the various mechanisms. Section 8
concludes the paper and discusses future work. The proofs
of all lemmas and theorems, if not in the paper, are provided
in [18].

2. THE GENERALISED BACK-OFF MODEL
There are n nodes, indexed by i, 1 ≤ i ≤ n, each with one

EDCF queue. We adopt the notation in [1] whose authors
consider a generalisation of the back-off behaviour of the
nodes, and define the following back-off parameters (for node
i)

Ki := At the (Ki + 1)th attempt either the packet being
attempted by node i succeeds or is discarded

bi,k := The mean back-off (in slots) at the kth attempt for
a packet being attempted by node i, 0 ≤ k ≤ Ki

Definition 2.1. A system of n nodes is said to be ho-

mogeneous, if the back-off parameters of the nodes Ki,
bi,k, 0 ≤ k ≤ Ki are the same for all i, 1 ≤ i ≤ n. A
system of nodes is called nonhomogeneous if the back-off
parameters of the nodes are not identical.



Remark: IEEE 802.11e permits different backoff parame-
ters to differentiate channel access obtained by the nodes in
an attempt to provide QoS. The above definitions capture
the possibility of having different CWmin and CWmax val-
ues, different exponential back-off multiplier values and even
different number of permitted attempts. For ease of discus-
sion and understanding, we will postpone the topic of AIFS
until Section 6. Hence in the discussions up to Section 5.2,
all the nodes wait only for a DIFS after a busy channel.

It has been shown in [1] that under the decoupling as-
sumption, introduced by Bianchi in [3], the attempt proba-
bility of node i (conditioned on being in back-off) for given
collision probability γi is given by,

Gi(γi) :=
1 + γi + · · · + γKi

i

bi,0 + γibi,1 + · · · + γKi
i bi,Ki

(1)

Remark: When the system is homogeneous then we will
drop the subscript i from Gi(·), and write the function sim-
ply as G(·).

3. THE FIXED POINT EQUATION
It is important to note that in the present discussion all

rates are conditioned on being in the back-off periods; i.e.,
we have eliminated all durations other than those in which
nodes are counting down their back-off counters (see [1]).
This suffices to obtain the collision probabilities. Now con-
sider a nonhomogeneous system of n nodes. Let γ be the
vector of collision probabilities of each node. With the slot-
ted model for the back-off process and the decoupling as-
sumption, the natural mapping of the attempt probabilities
of other nodes to the collision probability of a node is given
by

γi = Γi(β1, β2, . . . , βn) = 1 −
n

Y

j=1,j 6=i

(1 − βj)

where βj = Gj(γj). We can now expect that the equilibrium
behaviour of the system will be characterised by the solu-
tions of the following system of equations. For 1 ≤ i ≤ n,

γi = Γi(G1(γ1), · · · , Gn(γn))

We write these n equations compactly in the form of the
following multidimensional fixed point equation.

γ = Γ(G(γ)) (2)

Since Γ(G(γ)) is a composition of continuous functions it is
continuous. We thus have a continuous mapping from [0, 1]n

to [0, 1]n. Hence by Brouwer’s fixed point theorem there
exists a fixed point in [0, 1]n for the equation γ = Γ(G(γ)).

Consider the ith component of the fixed point equation,
i.e.,

γi = 1 −
Y

1≤j≤n,j 6=i

(1 − Gj(γj))

or equivalently,

(1 − γi) =
Y

1≤j≤n,j 6=i

(1 − Gj(γj))

Multiplying both sides by (1 − Gi(γi)), we get,

(1 − γi)(1 − Gi(γi)) =
Y

1≤j≤n

(1 − Gj(γj))

Thus a necessary and sufficient condition for a vector of
collision probabilities γ = (γ1, · · · , γn) to be a fixed point
solution is that, for all 1 ≤ i ≤ n,

(1 − γi)(1 − Gi(γi)) =
n

Y

j=1

(1 − Gj(γj)) (3)

where the right-hand side is seen to be independent of i.
Define Fi(γ) := (1 − γ)(1 − Gi(γ)). From Equation 3

we see that if γ is a solution of Equation 2, then for all
i, j, 1 ≤ i, j ≤ n,

Fi(γi) = Fj(γj) (4)

Notice that this is only a necessary condition. For example,
in a homogeneous system of nodes, the vector γ such that
γi = γ for all 1 ≤ i ≤ n, satisfies Equation 4 for any 0 ≤
γ ≤ 1, but not all such points are solutions of the fixed point
Equation 2.

Definition 3.1. We say that a fixed point γ (i.e., a solu-
tion of γ = Γ(G(γ))) is a balanced fixed point if γi = γj for
all 1 ≤ i, j ≤ n; otherwise, γ is said to be an unbalanced

fixed point.

Remarks 3.1.

1. It is clear that if there exists an unbalanced fixed point
for a homogeneous system, then every permutation is
also a fixed point and hence, in such cases, we do not
have a unique fixed point.

2. In the homogeneous case, by symmetry, the average
collision probability at each node must be the same for
every node. If the collision probabilities correspond to
a fixed point (see 3, next), then this fixed point will be
of the form (γ, γ, · · · , γ) where γ solves γ = Γ(G(γ))
(since Γi(·) = Γ(·) and Gi(·) = G(·) for all 1 ≤ i ≤
n). Such a fixed point of γ = Γ(G(γ)) is guaranteed
by Brouwer’s Fixed Point. The uniqueness of such a
balanced fixed point was studied in [1]. We reproduce
this result in Theorem 5.1.

3. There is, however, the possibility that even in the ho-
mogeneous case, there is an unbalanced solution of
γ = Γ(G(γ)). By simulation examples we observe
in Section 4 that when there exist unbalanced fixed
points, the balanced fixed point of the system does not
characterise the average performance, even if there ex-
ists only one balanced fixed point. In Section 5.1, we
provide a condition for IEEE 802.11 type nodes with
geometric backoff under which there is a unique bal-
anced fixed point and no unbalanced fixed point for a
homogeneous system of nodes. In such cases, it is now
well established, that the unique balanced fixed point
accurately predicts the saturation throughput of the
system.

4. For the homogeneous case the back-off process can be
exactly modeled by a positive recurrent Markov chain
(see [1]). Hence the attempt and collision processes
will be ergodic and, by symmetry, the nodes will have
equal attempt and collision probabilities. In such a
situation the existence of multiple unbalanced fixed
points will suggest short term unfairness or short term
multistability. We will observe this phenomenon in
Section 4.



5. Consider a system of homogeneous nodes having un-
balanced solutions for the fixed point equation γ =
Γ(G(γ)) (i.e., there exists i, j such that γi 6= γj), then
from Equation 4, we see that F (γi) = F (γj), or the
function F is many-to-one. Hence for a homogeneous
system of nodes, if the function F is one-to-one then
there cannot exist unbalanced fixed points. In Sec-
tion 5.2 we use this observation to obtain a sufficient
condition for the uniqueness of the fixed point in the
nonhomogeneous case.

4. NONUNIQUE FIXED POINTS AND MUL-
TISTABILITY: SIMULATION EXAMPLES

4.1 Example 1
Consider a homogeneous system (let us call it System-I)

with n = 10 nodes. The function G(·) of the nodes is given
by,

G(γ) =
1 + γ + γ2 + γ3 + . . .

1 + γ + γ2 + γ3 + 64(γ4 + γ5 + . . . )

The system corresponds to the case where K = ∞, b0 =
b1 = b2 = b3 = 1 and b4 = b5 = b6 = · · · = 64. From the
form of function G, we can see that a node which is currently
at backoff stage 0 is more likely to remain at that stage as
it takes 4 successive collisions to make the attempt rate of
the node < 1. Likewise, a node that is in the larger back-off
stages b4 = b5 = · · · = 64, will retry continuously with mean
inter-attempt slots of 64 until it succeeds. Observe that only
one node can be at backoff stage 0 at any time. This leads
to the apparent multistability of the system.

Figure 1 plots G(γ), the corresponding F (γ) = (1−γ)(1−
G(γ)) and shows the balanced fixed point of the system
for n = 10 nodes. The balanced fixed point of the system
shown in the figure is obtained using the fixed point equa-
tion γ = 1 − (1 − G(γ))9. Observe that the function F (·) is
not one-to-one (the function F (·) not being one-to-one does
not necessarily imply that there exist multiple fixed point
solutions; see Remarks 3.1, 5).

Figure 2 shows the existence of unbalanced fixed points
for System-I. These fixed points are obtained as follows. As-
sume that we are interested in fixed points such that γ1 6=
γ2 = · · · = γn. Given γ2 = · · · = γn, the attempt probability
of the nodes is given by G(γ2). Hence, the collision proba-
bility of node 1 is given by γ1 = 1− (1−G(γ2))

n−1. The at-
tempt probability of node 1 would then be G(γ1). Using the
decoupling assumption, the collision probability of any of the
n−1 nodes would then be, 1−(1−G(γ2))

n−2(1−G(γ1)) = γ2.
Thus we obtain a fixed point equation for γ2 (and hence
for all the other γj , 3 ≤ j ≤ n). In Figure 2 we plot
1 − (1 − G(γ))8(1 − G(1 − (1 − G(γ))9)) (plotted as line
marked with dots), the intersection of which with the “y=x”
line shows the solutions for γ2 = · · · = γn. In the same
way, by eliminating γ2 from the multidimensional system of
equations, we can obtain a fixed point equation for γ1. This
function is also plotted in Figure 2 (using pluses and lines)
and the intersetion of this curve with the “y=x” line shows
the solutions for γ1. We see that there are three solutions
in each case. The smallest values of γ1 (approx. 0.14) pairs
up with the largest value of γ2 = · · · = γn (approx. 0.97).
Notice that the balanced fixed point of the system is also a
fixed point in the plot (compare with Figure 1). Then there
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Figure 1: Example System-I: The balanced fixed
point. Plots of G(γ), F (γ) = (1 − γ)(1 − G(γ)) and
1− (1−G(γ))9 vs. the collision probability γ; we also
show the “y=x” line.

is one remaining unbalanced fixed point whose values can be
read off the plot. We note that there could exist many other
unbalanced fixed points for this system of equations, as we
have considered only a particular variety of fixed points that
have the property that γ1 6= γ2 = · · · = γn.

In order to examine the consequences of multiple unbal-
anced fixed points we simulated the back-off process with
the back-off parameters of System-I. The following remarks
summarise our simulation approach in this paper.

Remarks 4.1 (On the Simulation Approach used).

1. All the simulation results reported in this paper are
based on simulations of the coupled multidimensional
back-off processes of the various nodes. We are not
simulating the actual Wireless LAN system (as is done
in an ns2 simulation). The main aim of the simula-
tions is to understand the backoff behaviour of the
nodes with respect to the different backoff parame-
ters. From the point of view of performance analysis,
it may also be noted that once the back-off behaviour
is correctly modelled the channel activity can easily be
added analytically, and thus throughput results can be
obtained (see [3] and [1]). Note that a good match be-
tween analysis that uses a decoupled Markov model of
the back-off process and ns2 simulations has already
been reported in earlier work (see the literature survey
in Section 1).

2. Thus our simulation is programmed as follows. The
system evolves over back-off slots. All the nodes are
assumed to be in perfect slot synchronisation. The ac-
tual coupled evolution of the backoff process is mod-
eled. The backoff distribution is uniform and the resid-
ual backoff time is the state for each node. At every
slot, depending on the state of the back-off process,
there are three possibilities: the slot is idle, there is
a successful transmssion, or there is a collision. This
causes further evolution of the back-off process.
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Figure 2: Example System-I: Demonstration of un-
balanced fixed points. Plots of 1 − (1 − G(γ))8(1 −
G(1 − (1 − G(γ))9)) (the curve drawn with dots and
lines) and the function for the unbalanced fixed
point equation for γ1 (see text).

3. In Figures 3 and 5, for the purpose of reporting the
short term unfairness results, the entire duration of
simulation is divided into k frames, where the size of
each frame is 10,000 slots. The short-term average of
the collision probability of each node j, 1 ≤ j ≤ n,

is calculated as
Cj(i)

Aj(i)
where Cj(i) and Aj(i) corre-

spond to the number of collisions and attempts in
frame i, 1 ≤ i ≤ k, for node j. The long-term aver-

age is similarly calculated as 1
n

Pn

j=1

Pk
i=1 Cj(i)

P

k
i=1 Aj(i)

where

n is the number of nodes. Notice that the long-term
average collision rate is a batch biased average of the
short-term collision rates. Hence, when looking at
the graphs, it will be incorrect to visually average the
short-term collision rate plots in an attempt to obtain
the long-term average collision rate. This is because
when a node is shown to have a low collision probabil-
ity, it is the one that is attempting every slot (while
the other nodes attempt with a mean gap of 64 slots),
and hence it sees a low probability of collision. In this
case Aj(·) is large and Cj(·) � Aj(·). On the other
hand, when a node is shown to have a high collision
probability it is attempting at an average rate of 1

64
and almost all its attempts collide with the node that
is then attempting in every slot. In this case Aj(·) is
small and Cj(·) ≈ Aj(·). Thus, in obtaining the linear
average, it is essential to account for the large variation
in Aj(·) between the two cases.

In Figure 3 we plot a (simulation) snap shot of the short
term average collision probability of 2 of the 10 nodes of
System-I and the average collision probability of the nodes
(The average is calculated over all frames and all nodes.
Since the nodes are identical, the average collision probabil-
ity is the same for all the nodes). Observe that the short
term average has a huge variance around the long term av-
erage. It is evident that over 1000’s of slots one node or the
other monopolises the channel (and the remaining nodes see
a collision probability of 1 during those slots). This could be
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Figure 3: Example System-I: Snap-shot of short
term average collision probability of 2 of the 10
nodes. Also plotted is the average collision probabil-
ity of the nodes (averaged over all slots and nodes).
The 95% confidence interval for the average collision
probability lies within 0.7% of the mean value.

described as short term multistability. A look into the fair-
ness index (see Figure 6) plotted as a function of the frame
size used to calculate throughput suggests that System-I ex-
hibits significant unfairness in service even over reasonably
large time intervals.

Implication for the use of the balanced fixed point: No-
tice also that the average collision rate shown in Figure 3 is
about 0.25, whereas the balanced fixed point shown in Fig-
ure 1 shows a collision probability of about 0.62. Hence we
see that in this case, where there are multiple fixed points,
the balanced fixed point does not capture the actual system
performance.

4.2 Example 2
Let us now consider yet another homogeneous example

(let us call it System-II) with n = 20 nodes. The function
G(·) of the nodes is given by,

G(γ) =
1 + γ + γ2 + · · · + γ7

1 + 3γ + 9γ2 + 27γ3 + · · · + 2187γ7

The system corresponds to the case where K = 7, b0 = 1,
p = 3 and bk = pkb0 for all 0 ≤ k ≤ K. We notice that in
this example the way the back-off expands is similar to the
way it expands in the IEEE 802.11 standard, except that
the initial back-off is very small (1 slot), and the multiplier
is 3, rather than 2. We observe that, similar to Example
System-I, this system also has multiple (unbalanced) fixed
points and exhibits short-term unfairness in service (A de-
tailed comment on System-II is provided in [18]).

Discussion of Examples 1 and 2: From the simulation
examples, we can make the following inferences

1. When there are multiple unbalanced fixed points in a
homogeneous system then the system can display short
term multistability, which manifests itself as significant
short term unfairness in channel access.

2. When there are multiple unbalanced fixed points in
a homogeneous system then the collision probability
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Figure 4: Example System-III: Plots of G(γ), F (γ) =
(1 − γ)(1 − G(γ)) and 1 − (1 − G(γ))9 vs. the collision
probability γ; the line “y=x” is also shown.

obtained from the balanced fixed point may be a poor
approximation to the long term average collision prob-
ability.

3. Similar conclusions can be drawn for nonhomogeneous
systems when the system of fixed point equations have
multiple solutions.

It appears that the existence of multiple-fixed points is a
consequence of the form of the G(·) function in the above
examples, where G(·) is similar to a switching curve; see, for
example, Figure 1 where there is a very high attempt prob-
ability at low collision probabilities and a very low attempt
probability at high collision probabilities.

4.3 Example 3
Consider a homogeneous system in which backoff increases

multiplicatively as in IEEE 802.11 DCF (let us call it System-
III), with n = 10 nodes. The function G(·) is given by,

G(γ) =
1 + γ + γ2 + · · · + γ7

16 + 32γ + 64γ2 + · · · + 2048γ7

The system corresponds to the case where K = 7, p = 2 and
b0 = 16 and bk = pkb0 for all 0 ≤ k ≤ K. Figure 4 plots
G(·), the corresponding F (γ) = (1 − γ)(1 − G(γ)) and the
unique balanced fixed point of the system (Notice that F is
one-to-one and uniqueness of the fixed point will be proved
in Section 5.1) The balanced fixed point of the system is
obtained using the fixed point equation γ = 1− (1−G(γ))9 .
The balanced fixed point yields a collision probability of
approximately 0.29.

Figure 5 plots a snap shot of the short term average colli-
sion probability (from simulation) of 2 of the 10 nodes and
the average collision probability of the nodes of the Exam-
ple System-III. Notice that the short term average collision
rate is close to the average collision rate (the vertical scale in
this figure is much finer than in the corresponding figures for
System-I and System-II, see [18]). Also, the average colli-
sion rate matches well with the balanced fixed point solution
obtained in Figure 4.
Remark: Thus we see that in a situation in which there
is a unique fixed point not only is there lack of short term
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Figure 5: Example System-III: Snap-shot of short
term average collision probability of 2 of the 10
nodes. Also plotted is the average collision prob-
abilty obtained by the nodes. The 95% confidence
interval of the average collision rate lies within 0.2%
of the mean value.

multistability, but also the fixed point solution yields a good
approximation to the long run average behaviour.

4.4 Short Term Fairness in Examples 1, 2, 3
Figure 6 plots the throughput fairness index 1

n

(
Pn

i=1 τi)
2

P

n
i=1

τ2
i

(where τi is the average throughput of node i over the mea-
surement frame, see [15]) against the frame size used to mea-
sure throughput. The fairness index is obtained for each
frame and is averaged over the duration of the simulation.
Also plotted in the figure is the 95% confidence interval. We
note that values of this index will lie in the interval [0, 1], and
smaller values of the index correspond to greater unfairness
between the nodes. The performance of all the three exam-
ple systems are compared. Notice that Example System-III
(similar to IEEE 802.11 DCF) has the best fairness proper-
ties. The system achieves fairness of 0.9 over 1000’s of slots
(or packets). However, for Example System-I and II, simi-
lar performance is achieved only over 100,000 and 1,000,000
slots (or packets). The unfairness of Example Systems-I and
II can be attributed to their apparent multi-stability.

In the subsequent sections we establish conditions for the
uniqueness of the solutions to the multidimensional fixed
point equation.

5. ANALYSIS OF THE FIXED POINT

5.1 The Homogeneous Case
The following two results are adopted from [1].

Lemma 5.1. G(γ) is nonincreasing in γ if bk, k ≥ 0, is a
nondecreasing sequence. In that case, unless bk = b0 for all
k, G(γ) is strictly decreasing in γ.

Theorem 5.1. For a homogeneous system of nodes, Γ(G(γ)) :
[0, 1] → [0, 1], has a unique fixed point if bk, k ≥ 0, is a non-
decreasing sequence.

Remark: The fixed point (γ, γ, · · · , γ) is the unique bal-
anced fixed point for γ = Γ(G(γ)). From Equation 4, we
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Figure 6: Jain’s throughput fairness index is plot-
ted against the number of slots used to measure
throughput. The dotted lines mark the 95% con-
fidence interval.

see that a necessary condition for the existence of unbal-
anced fixed points in a homogeneous system of nodes is that
the function F (γ) = (1 − γ)(1 − G(γ)) needs to be many-
to-one. In other words, if the function (1 − γ)(1 − G(γ))
is one-to-one and if γ = (γ1, γ2, . . . , γn) is a solution of the
system γ = Γ(G(γ)), then γi = γj for all i, j.

Consider the multiplicatively increasing back-off model for
which G(·) is given by,

G(γ) =
1 + γ + γ2 + · · · + γK

b0(1 + pγ + p2γ2 + · · · + pKγK)
(5)

Clearly, G(γ) is a continuously differentiable function and
so is F (γ) = (1− γ)(1−G(γ)). The following simple lemma
is a consequence of the mean value theorem.

Lemma 5.2. F (γ) is one-to-one if F
′

(γ) 6= 0 for all 0 ≤
γ ≤ 1.

Remarks 5.1.

When F (·) is one-to-one, the following hold
(i) F (γ) = 0 iff γ = 1,
(ii) F (0) > 0, since G(γ) ≤ 1 for all 0 ≤ γ ≤ 1, and
(iii) F (γ) is a decreasing function of γ.
Now the derivative of F is

F
′

(γ) = −1 + G(γ) − G
′

(γ)(1 − γ)

Lemma 5.3. If K ≥ 1, p ≥ 2 and G(·) is as in Equation 5,

then |G
′

(γ)| ≤ 2p

b0
for all 0 ≤ γ ≤ 1.

Clearly, G(γ) ≤ 1
b0

and G
′

(γ) ≤ 0 and (1 − γ) ≥ 0 for all

0 ≤ γ ≤ 1. Substituting into the expression for F
′

(γ), we
get,

F
′

(γ) ≤ −1 +
1 + 2p

b0

The following result is then immediate.

Theorem 5.2. For a function G(·) defined as in Equa-
tion 5 if K ≥ 1, p ≥ 2 and b0 > 2p + 1, then the system
γ = Γ(G(γ)) has a unique fixed point which is balanced.

Remark: It can be shown that if Lemma 5.3 holds for G(·)
as in Equation 5 it also holds for any case in which bk = pkb0

for 0 ≤ k ≤ m ≤ K and bk = pmb0 for m < k ≤ K. The
latter is the situation in the IEEE 802.11 standard (with
b0 = 16, p = 2, K = 7, m = 5). Hence a homogeneous
IEEE 802.11 WLAN has a unique fixed point which is also
balanced. In general, if the function G(·) is arbitrary (as in
Equation 1) but monotone decreasing, there exists a unique
balanced fixed point for the system as long as the function
(1 − γ)(1 − G(γ)) is one-to-one.

5.2 The Nonhomogeneous Case
In this section, we will extend our results to systems with

nonhomogeneous nodes. AIFS will be introduced in Sec-
tion 6. Nonhomogeneity is introduced by varying b0, p and
K of the nodes.

Consider a nonhomogeneous system of n nodes, with Gi(·)
a monotonically decreasing function and the function (1 −
γ)(1 − Gi(γ)) being one-to-one for all i. Let there be two
fixed point solutions γ1 = (γ1,1, γ1,2, . . . , γ1,n) and γ2 =
(γ2,1, γ2,2, . . . , γ2,n) for the above system. From the neces-
sary condition (Equation 4) we require that, for all i, and
for some J1 > 0 and J2 > 0,

(1 − γ1,i)(1 − Gi(γ1,i)) = J1

(1 − γ2,i)(1 − Gi(γ2,i)) = J2

Since (1 − γ)(1 − Gi(γ)) is one-to-one, we require J1 6= J2.
Without loss of generality, assume J1 < J2. Hence, γ1,i >
γ2,i for all i. Using Equation 3 we have,

γ2,i = 1 −
Y

j 6=i

(1 − Gj(γ2,j))

≥ 1 −
Y

j 6=i

(1 − Gj(γ1,j))

= γ1,i

a contradiction. Hence, we require J1 = J2 or there exists a
unique fixed point.

Notice that the arguments above immediately imply the
following result.

Theorem 5.3. If Gi(γ) is a decreasing function of γ for
all i and (1− γ)(1−Gi(γ)) is a monotone function in [0, 1],
then the system of equations βi = Gi(γi) and γi = Γi(β1, . . . ,
βi, . . . , βn) has a unique fixed point.

Where nodes use exponentially increasing back-off, the
next result then follows.

Theorem 5.4. For a system of nodes with Gi(·) as in
Equation 5 that satisfy Ki ≥ 1, pi ≥ 2 and b0i > 2pi + 1,
there a exists a unique fixed point for the system of equations
γi = 1 −

Q

j 6=i(1 − Gj(γj)) for 1 ≤ i ≤ n.

Remark: The above result has relevance in the context of
the IEEE 802.11e standard where the proposal is to use dif-
ferences in back-off parameters to differentiate the through-
puts obtained by the various nodes. While Theorem 5.4
only states a sufficient condition, it does point to a caution
in choosing the back-off parameters of the nodes.

6. ANALYSIS OF THE AIFS MECHANISM
Our approach for obtaining the fixed point equations is

the same as the one developed in [12]. However, we develop



the analysis in the more general framework introduced in
[1]. We show that under the condition that F (·) is one-to-
one there exists a unique fixed point for this problem as well.
The analysis is presented here for the two priority class case,
but can be extended to any number of classes.

Let us begin by recalling the basic idea of AIFS based
service differentiation (see [13]). In legacy DCF, a node
decrements its back-off counter and attempts to transmit
only after it senses an idle medium for more than a DCF in-
terframe space (DIFS). However, in EDCF (Enhanced Dis-
tributed Coordination Function) based on the access cate-
gory of a node (and its AIFS value), a node attempts to
transmit only after it senses the medium idle for more than
its AIFS. Higher priority nodes have smaller values of AIFS
(though not less than DIFS), and hence obtain a lower av-
erage collision probability, since these nodes can decrement
their back-off counters, and even transmit, in slots in which
lower priority nodes (waiting to complete their AIFSs) can-
not. Thus, nodes of higher priority (lower AIFS) not only
tend to transmit more often but also have fewer collisions
compared to nodes of lower priority (larger AIFS).

6.1 The Fixed Point Equations
Let us consider two classes of nodes of two different pri-

orities. The priority for a class is supported by using AIFS
as well as b0, p and K. All the nodes of a particular priority
have the same values for all these parameters. There are
n(1) nodes of Class 1 and n(0) nodes of Class 0. Class 1 cor-
responds to a higher priority of service. The AIFS for Class
1 is DIFS, and for Class 0 the AIFS is DIFS+l slots. Thus,
after every transmission activity in the channel, only Class
1 nodes attempt to transmit in the first l slots following an
idle DIFS, while Class 0 nodes wait to complete their AIFS.
Also, if there is any transmission activity (by Class 1 nodes)
during those l slots, then again the Class 0 nodes wait for
another l slots following an idle DIFS, and so on.

As in [3] and [1], we need to model only the evolution of
the back-off process of a node (i.e., the back-off slots after
removing any channel activity such as transmissions or colli-
sions) to obtain the collision probabilities. For convenience,
let us call the slots in which only Class 1 nodes can attempt
as Excess AIFS slots, which will correspond to the subscript
EA in the notation. In the remaining slots (corresponding
to the subscript R in the notation) nodes of either class can
attempt. Let us view such groups of slots, where different
sets of nodes contend for the channel, as different contention
periods. Let us define

β
(1)
i := the attempt probability of a Class 1 node for all

i, 1 ≤ i ≤ n(1), in the slots in which a Class 1 node can
attempt (i.e., all the slots)

β
(0)
i := the attempt probability of a Class 0 node for all

i, 1 ≤ i ≤ n(0), in the contention periods during which
Class 0 nodes can attempt (i.e., slots that are not Ex-
cess AIFS slots)

Note that in making these definitions we are modeling the
attempt probabilities for Class 1 as being constant over all
slots, i.e., the Excess AIFS slots and the remaining slots.
This simplification is just an extension of the basic decou-
pling approximation, and has been shown to yield results
that match well with simulations (see [12]).
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Figure 7: AIFS differentiation mechanism: Markov
model for remaining number of AIFS slots.

Now the collision probabilities experienced by nodes will
depend on the contention period that the system is in. The
approach is to model the evolution over contention periods
as a Markov Chain over the states (0, 1, 2, · · · , l), where the
state s, 0 ≤ s ≤ (l − 1), denotes that an amount of time
equal to DIFS +s slots has elapsed since the end of the pre-
vious channel activity. These states correspond to the Ex-
cess AIFS period in which only Class 1 nodes can attempt.
In the remaining slots, where the state is s = l, all nodes
can attempt.

In order to obtain the transition probabilities for this
Markov chain we need the probability that a slot is idle. Us-
ing the decoupling assumption, the idle probability in any
slot during the Excess AIFS period is obtained as,

qEA =

n(1)
Y

i=1

(1 − β
(1)
i ) (6)

Similarly, the idle probability in any of the remaining slots
is obtained as,

qR =
n(1)
Y

i=1

(1 − β
(1)
i )

n(0)
Y

j=1

(1 − β
(0)
j ) (7)

The transition structure of the Markov chain is shown in
Figure 7. As compared to [12], we have used a simplification
that the maximum contention window is much larger than
l. If this were not the case then some nodes would certainly
attempt before reaching l. In practice, l is small (e.g., 1 slot
or 5 slots; see [2]) compared to the maximum contention
window.

Let π(EA) be the stationary probability of the system
being in the Excess AIFS period; i.e., this is the probability
that the above Markov chain is in states 0, or 1, or · · · , or
(l−1). In addition, let π(R) be the steady state probability
of the system being in the any of the remaining slots, i.e.,
state l of the Markov chain. Solving the balance equations
for the steady state probabilities, we obtain,

π(EA) =
1 + qEA + q2

EA + · · · + ql−1
EA

1 + qEA + q2
EA + · · · + ql−1

EA +
ql

EA

1−qR

π(R) =

ql
EA

1−qR

1 + qEA + q2
EA + · · · + ql−1

EA +
ql

EA

1−qR

(8)

Average collision probability of a node is then obtained by
averaging the collision probability experienced by a node
over the different contention periods. Average collision prob-



ability for Class 1 nodes is given by, for all i, 1 ≤ i ≤ n(1),

γ
(1)
i = π(EA)(1 −

n(1)
Y

j=1,j 6=i

(1 − β
(1)
j ))

+ π(R)(1 − (
n(1)
Y

j=1,j 6=i

(1 − β
(1)
j )

n(0)
Y

j=1

(1 − β
(0)
j ))) (9)

Similarly, the average collision probability of a Class 0 node
is given by, for all i, 1 ≤ i ≤ n(0),

γ
(0)
i = 1 − (

n(1)
Y

j=1

(1 − β
(1)
j )

n(0)
Y

j=1,j 6=i

(1 − β
(0)
j )) (10)

Our analysis in the remaining section now generalises the
analysis of [12] and also establishes uniqueness of the fixed
point and the property that the fixed point is balanced over
nodes in the same class. Define G(1)(·) and G(0)(·) as in
Equation 1 (except that the superscripts here denote the
class dependent back-off parameters, with nodes within a
class having the same parameters). Then the average col-
lision probability obtained from the previous equations can
be used to obtain the attempt rates by using the relations

β
(1)
i = G(1)(γ

(1)
i ), and β

(0)
j = G(0)(γ

(0)
j ) (11)

for all 1 ≤ i ≤ n(1), 1 ≤ j ≤ n(0). We obtain fixed point
equations for the collision probabilities by substituting the
attempt probabilities from Equation 11 into Equations 9 and
10 (and also into Equations 6 and 7). We have a continuous

mapping from [0, 1]n
(1)+n(0)

to [0, 1]n
(1)+n(0)

. It follows from
Brouwer’s fixed point theorem that there exists a fixed point.

6.2 Uniqueness of the Fixed Point

Lemma 6.1. If F (·) is one-to-one, then collision probabil-
ities of all the nodes of the same class are identical; i.e., the
fixed points are balanced within each class.

Theorem 6.1. The set of Equations 9, 10 and 11 (to-
gether with 8, 6 and 7), representing the fixed point for the
AIFS model, has a unique solution if the corresponding func-
tions F (1)(·) and F (0)(·) are one-to-one.

Remark: It follows from the earlier results in this paper
(see, for example, Theorem 5.2) that if G(0)(·) and G(1)(·)

are of the form in Equation 5, and if K(i) ≥ 1, p(i) ≥ 2, and

b
(i)
0 ≥ 2p(i) + 1, for i = 0, 1, then the fixed point will be

unique.

7. THROUGHPUT DIFFERENTIATION: AN
ANALYTICAL STUDY

It should be noted that all the results in this section are
for the fixed point solution. Hence, when we use the term
“collision probability” and “attempt rate” it is only in so
far as a good match between the fixed point analysis and
simulation has already been reported in earlier literature
(see Section 1).

We will consider two alternatives for K, the maximum
retransmission attempts allowed for a packet, namely K =
∞ and K finite. In this section, for the finite K case, the

form of the function G(γ), for all γ, 0 ≤ γ ≤ 1 is,

G(γ) =
1 + γ + γ2 + · · · + γK

b0(1 + pγ + p2γ2 + · · · + pKγK)
(12)

It is clear that for finite K the attempt rate of a node is lower
bounded, and hence as the number of nodes increases to in-
finity the collision probability of any node goes to 1. Hence,
for this case, we will obtain insights regarding performance
differentiation only for a finitely large number of nodes. For
the infinite K case, however, we will study (as in [1]) the
asymptotics of performance differentiation as the number of
nodes tends to ∞. In the K = ∞ case, the function G(γ)
simplifies to,

G∞(γ) =

(

(1−γp)
b0(1−γ)

0 ≤ γ < 1
p

0 γ ≥ 1
p

(13)

In the nonhomogeneous case we will write G
(1)
∞ (γ) and G

(0)
∞ (γ).

For the homogeneous case with K = ∞, the (balanced fixed
point) asymptotic analysis as n → ∞ was performed in [1].

Consider a set of nodes, divided into two classes, Class 1
and Class 0, with Class 1 corresponding to a higher priority
of service. For simplicity, we assume that n(1) and n(0),
the number of nodes of Class 1 and Class 0 respectively,
are related as, n(1) = αn, n(0) = (1 − α)n for some n and

α, 0 < α < 1. Let γ(1)(K, n) and β(1)(K, n) be the fixed
point solutions for the collision probability and attempt rate
of a Class 1 node for a given K and total number of nodes n.
Similarly, let γ(0)(K, n) and β(0)(K, n) be the corresponding
values for a Class 0 node.

We will study three cases:

Case 1: b
(1)
0 < b

(0)
0 , p(1) = p(0) = p, AIFS(1) = AIFS(0) =

DIFS

Case 2: b
(1)
0 = b

(0)
0 = b0, p(1) < p(0), AIFS(1) = AIFS(0) =

DIFS

Case 3: b
(1)
0 = b

(0)
0 = b0, p(1) = p(0) = p, AIFS(1) < AIFS(0)

Note that in the analysis in earlier sections, we used the
Binomial model for the number of attempts in a slot. With
n → ∞, in this section, we will use the Poisson batch model
for the number of attempts in a slot (as in [1]).

7.1 Case 1: Differentiation by b0

7.1.1 K = ∞, Asymptotic Analysis as n → ∞

With the random number of attempts of each class in a
back-off slot being modeled as Poisson distributed, the colli-
sion probabilities γ(·)(∞, n) and the attempt rates β(·)(∞, n)
are related by

γ(1)(∞, n) = 1 − e−((n(1)−1)β(1)(∞,n)+n(0)β(0)(∞,n))

γ(0)(∞, n) = 1 − e−(n(1)β(1)(∞,n)+(n(0)−1)β(0)(∞,n))

(14)

Substituting β(·)(∞, n) = G
(·)
∞ (γ(·)(∞, n)) in the above equa-

tions gives the desired fixed point equations governing the
system. Trivially, we see that,

(1 − γ(1)(∞, n))e−β(1)(∞,n) = (1 − γ(0)(∞, n))e−β(0)(∞,n)

(15)



Lemma 7.1. For i ∈ {0, 1}, F
(i)
∞ (γ) := (1 − γ)e−G

(i)
∞ (γ)

is one-to-one for all γ, 0 ≤ γ ≤ 1 if bi
0 ≥ 2p + 1.

Theorem 7.1. In Case 1, with K = ∞, when F
(i)
∞ is

one-to-one for i ∈ {0, 1},

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. limn→∞ γ(1)(∞, n) ↑ 1
p
, limn→∞ γ(0)(∞, n) ↑ 1

p

3. limn→∞(n(1)β(1)(∞, n)+n(0)β(0)(∞, n)) ↑ ln( p

p−1
)

Theorem 7.2. In Case 1, with K = ∞, the ratio of the

throughputs of Class 1 and Class 2 converges to
b
(0)
0 −p

b
(1)
0 −p

as

n → ∞.

Remark: Thus, for example, if b
(1)
0 = 16, b

(0)
0 = 32, and p =

2 then the ratio of the Class 1 to Class 0 node throughput
will be approximately 30/14 for large n.

7.1.2 Finite K, Approximate Analysis for Large n

With finite K, as the number of nodes increases, the col-
lision probability of either class increases to 1 (since the

attempt rate is lower bounded) and G(·) is small (since it
decreases like 1

b0pK+1 , see Equation 12). Then the difference

between the collision probabilities (we drop the arguments
K and n in the following)

γ(1) − γ(0) = (G(0)(γ(0)) − G(1)(γ(1)))

(1 − G(0)(γ(0)))(n
(0)−1)(1 − G(1)(γ(1)))(n

(1)−1)

also becomes insignificant. Hence, we can assume that γ(1) ≈
γ(0). For equal packet length transmission, the ratio of the
throughputs of a Class 1 node to a Class 0 node corresponds
to the ratio of their success probabilities, hence the through-
put ratio is given by,

G(1)(γ(1))(1 − G(1)(γ(1)))n(1)−1(1 − G(0)(γ(0)))n(0)

G(0)(γ(0))(1 − G(1)(γ(1)))n(1) (1 − G(0)(γ(0)))n(0)−1

=

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

(16)

Using γ(1) ≈ γ(0), writing this as γ, and using the fact that
G(·)(γ) ≈ 0 for large n, we have,

≈

G(1)(γ)

(1−G(1)(γ))

G(0)(γ)

(1−G(0)(γ))

≈
G(1)(γ)

G(0)(γ)
=

b
(0)
0

b
(1)
0

It follows that when service differentiation is provided by the
back-off window, for a large number of nodes, the through-

put ratio roughly corresponds to
b
(0)
0

b
(1)
0

, which, for large values

of b
(0)
0 and b

(1)
0 is almost that same as that obtained for the

asymptotic analysis with K = ∞ in Theorem 7.2
Remark: For finite K case, this observation (throughput ra-

tio is approximately equal to
b
(0)
0

b
(1)
0

) is well known. This result

has been shown analytically (using similar approximations)
and also has been observed in simulations (see [6], [11] and
[14]). It has been observed in [1] that for a given number of

nodes, n, there will exist a K(n) such that the system per-
formance will not vary much for all K > K(n). Hence, an
asymptotic analysis would suffice for such cases. Moreover,
we have obtained this result in a much more general setting,
using the function G(·).

7.2 Case 2: Differentiation by p
It may be noted that in the current version of IEEE 802.11e

standard this mechanism no longer exists [2].

7.2.1 K = ∞, Asymptotic Analysis as n → ∞

The fixed point equation governing the collision probabil-
ity and the attempt rate is the same as Equation 14. The
following theorem summarizes the main results for Case 2.

Theorem 7.3. In Case 2, with K = ∞, when F
(i)
∞ is

one-to-one for i ∈ {0, 1}, the following hold:

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. limn→∞ γ(1)(∞, n) ↑ 1

p(1) , limn→∞ γ(0)(∞, n) ↑ 1

p(1)

3. limn→∞ n(1)β(1)(∞, n) ↑ ln( p(1)

p(1)−1
)

4. limn→∞ n(0)β(0)(∞, n) = 0

Remark: Thus we see that, with K = ∞ and a large num-
ber of nodes, unlike initial back-off based differentiation,
the persistence factor based differentiation completely sup-
presses the class with the larger value of p.

7.2.2 Finite K, Approximate Analysis for Large n

For finite K, with the approximation γ(1) ≈ γ(0) and the
fact that G(·)(γ(·)) ≈ 0, the throughput ratio approximates

to (1+p(0)γ+p(0)2γ2+···+p(0)K
γK )

(1+p(1)γ+p(1)2γ2+···+p(1)K
γK )

(see Equation 16). Hence, as

the collision probability of the system increases with load,
the ratio of the throughputs of Class 1 to Class 0 also in-
creases (depending on p(1), p(0) and the value of K). We
note that as n → ∞, the throughput ratio for the finite K
case is finite, unlike the asymptotic case (K = ∞). However,
the ratio tends to infinity when we consider K → ∞.

7.3 Case 3: Differentiation by AIFS

7.3.1 K = ∞, Asymptotic Analysis for n → ∞

In this case service differentiation is provided only by

AIFS and we let G
(1)
∞ = G

(0)
∞ = G∞ (i.e., the back-off pa-

rameters b0 and p are the same). With the assumption that
the number of attempts in each slot is Poisson distributed,
the fixed point equations for the AIFS model are (see Equa-
tions 9 and 10)

γ(1)(∞, n) = π(EA)(1 − e−(n(1)−1)β(1)(∞,n)) +

π(R)(1 − e−(n(1)−1)β(1)(∞,n)−n(0)β(0)(∞,n))

γ(0)(∞, n) = (1 − e−n(1)β(1)(∞,n)−(n(0)−1)β(0)(∞,n))

Theorem 7.4. In Case 3, with K = ∞, when F
(i)
∞ is

one-to-one for i ∈ {0, 1},

1. γ(1)(∞, n) < γ(0)(∞, n) for all n

2. limn→∞ γ(1)(∞, n) ↑ 1
p
, limn→∞ γ(0)(∞, n) ↑ 1

p



3. limn→∞ n(1)β(1)(∞, n) ↑ ln( p

p−1
)

4. limn→∞ n(0)β(0)(∞, n) = 0

Remark: Again we see that using AIFS for differentiation,
when K = ∞ and large n, completely suppresses the class
with the larger value of AIFS. Observe that Parts 3 and 4 of
Theorem 7.4 imply that the individual node attempt ratio
β(1)(∞,n)

β(0)(∞,n)
goes to ∞ as n → ∞. Some insight into this result

will be obtained from the analysis in the following section.

7.3.2 Finite K, Approximate Analysis

Lemma 7.2. In Case 3 for finite K, with l = 1, if the
fixed point collision probabilities are γ(1) and γ(0), then the
ratio of the throughputs of Class 1 to Class 0 is given by

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

1

qR

Using this result and approximating (1 − G(i)(γ(i))) ≈ 1
as before, the ratio of throughput equals

G(1)(γ(1))

(1−G(1)(γ(1)))

G(0)(γ(0))

(1−G(0)(γ(0)))

1

qR

≈
G(1)(γ(1))

G(0)(γ(0))

1

qR

(17)

For general l, we can expect a factor like 1
ql

R

in the previous

expression. For low loads, when qR is not close to 0, the

dominating term in the previous expression is G(1)(γ(1))

G(0)(γ(0))
. At

high loads, both the terms contribute to throughput differ-
entiation depending on the values of n(1) and n(0).

7.4 Numerical Study and Discussion
In Figure 8 we plot throughput ratios obtained from a

simulation of the coupled back-off processes of two classes of
nodes (the simulation approach is explained in Remarks 4.1).
We note that this is the throughput ratio if the packet sizes
of the two classes are equal. If the packet sizes are unequal
then we only need to multiply the throughput ratio plotted
here by the ratio of the packet lengths of the two classes.
The following remarks help in interpreting the results in
Figure 8.

Remarks 7.1.

1. For finite K the attempt rates are bounded below, and

the term G(1)(γ(1))

G(0)(γ(0))
is bounded, but as (n(1) + n(0)) →

∞ the idle probability qR → 0 ensuring (see Equa-
tion 17) that the individual node throughput ratio goes
to ∞ for finite K as well (similar to the asymptotic

results in Theorem 7.4). In addition, when n(1) in-
creases, π(EA) increases to 1. Hence, the lower pri-
ority nodes (with larger AIFS) rarely get a chance to
attempt and the throughput ratio goes to infinity; this
is demonstrated by the simulation results in Figure 8,
plots with + and ?. When n(1) is kept constant and
n(0) is increased (which is more typical), the collision
probability of Class 0 nodes increases to 1 and their
success probability tends to 0. However, the collision
probability of Class 1 nodes remains much less than
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AIFS = 0/1, b0 = 16/16, n(1) = n(0)

AIFS = 0/0, b0 = 16/32, n(1) = n(0)
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Figure 8: Ratio of the throughput of a Class 1
(higher priority) node to the throughput of a Class
0 node (lower priority). Analysis results (solid lines)
and simulation results (symbols). Four cases are
considered: +: differentiation only by AIFS with
equal number of nodes, n(1) = n(0); ?: differentia-
tion by AIFS and by b0 with equal number of nodes,
n(1) = n(0); •: differentiation only by b0 with equal
number of nodes, n(1) = n(0); ◦: differentiation only
by AIFS with, 5 = n(1) � n(0). In all cases p = 2 and
K = 7 for either class. For the simulation results,
the 95% confidence interval lies within 1% of the
average value.

1 depending on the value of n(1) and hence again the
throughput ratio tends to ∞ (see Figure 8, plots with
◦). Figure 8 also shows the throughput ratio when
only b0 is used for differentiation (plots with •); notice
that, as shown earlier, the throughput ratio is just the
reciprocal of the ratios of the initial back-off durations,
and does not change with n.

2. For Case 3, in general, γ(1) and γ(0) are different, un-
like in Cases 1 and 2. This is captured by the first

term in the expression G(1)(γ(1))

G(0)(γ(0))

1
qR

.

3. Notice that the above results for AIFS hold even when
the functions G(1) and G(0) are not identical (see Fig-
ure 8, plot with ?). A comparison between the plots
with + and ? in Figure 8 shows the effect of using
both b0 and AIFS for throughput differentiation. The
b0 based differentiation causes the entire curve to shift
up (in favour of the higher priority class), and AIFS
still causes the ratio to increase with increasing n.

8. SUMMARY
In this paper we have studied a multidimensional fixed

point equation arising from a model of the back-off process of
the EDCF access mechanism in IEEE 802.11 and 11e Wire-
less LANs. Our first concern was the consequences of the
nonuniqueness of the fixed point solution and conditions for
uniqueness. We demonstrated via examples of homogeneous
systems that even when the balanced fixed point is unique,
the existence of unbalanced fixed points coexists with the
observation of severe short term unfairness in simulations.



Further, in such examples the balanced fixed point solution
does not capture the long run average behaviour of the sys-
tem. With these observations in mind, we concluded that it
is desirable to have systems in which there is a unique fixed
point, even for a nonhomogeneous system.

We have provided simple sufficient conditions on the node
back-off parameters that guarantee that a unique fixed point
exists. We have shown that the default IEEE 802.11 param-
eters satisfy these sufficient conditions. The IEEE 802.11e
standard motivated us to consider the nonhomogeneous case,
and in this case our results suggest certain safe ranges of
parameters that guarantee the uniqueness of the fixed point
while providing service differentiation.

Using the fixed point analysis, we were also able to obtain
insights into how the different back-off parameters provide
throughput differentiaton between the nodes in a nonhomo-
geneous system. We observed that using initial back-off win-
dow, in general, a fixed throughput ratio can be achieved.
On the other hand, using p and AIFS the service can be
significantly biased towards the high priority class, with the
differentiation increasing in favour of the high priority class
as the load in the system increases.

This paper concerns with the saturation throughput anal-
ysis of an IEEE 802.11e single cell WLAN without fading
and capture. Also we only consider one EDCF queue per
node in this work. In our recent work, we have studied
multiple EDCF queues per node (see [18]). We have also
developed a general framework to analyse single cell sys-
tems with capture in [16]. Extending to multi-cell scenario,
in [17], performance analysis of IEEE 802.11 networks com-
prising intefering co-channel cells was studied using the fixed
point approach.

Future work on the topic of this paper can include an
analytical linkage between a coupled Markov model of the
back-off process and the fixed point analysis. The fixed point
approach is simply a heuristic that is found to work well in
some cases. Our work in this paper suggests where it might
not work and where it might work. An analytical study of
this is an important future research problem. On the topic
of QoS differentiation using the back-off parameters it will
be important to map actual required system performance to
various combinations of the back-off parameters.
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