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Performance Evaluation
of an IEEE 802.15.4 Sensor Network

with a Star Topology†

Chandramani Kishore Singh‡ and Anurag Kumar‡

Abstract— One class of applications envisaged for the
IEEE 802.15.4 LR-WPAN (low data rate - wireless personal area
network) standard is wireless sensor networks for monitoring
and control applications. In this paper we provide an analytical
performance model for a network in which the sensors are at
the tips of a star topology, and the sensors need to transmit
their measurements to the hub node so that certain objectives
for packet delay and packet discard are met. We first carry
out a saturation throughput analysis of the system; i.e., it is
assumed that each sensor has an infinite backlog of packets and
the throughput of the system is sought. After a careful analysis
of the CSMA/CA MAC that is employed in the standard, and
after making a certain decoupling approximation, we identify an
embedded Markov renewal process, whose analysis yields a fixed
point equation, from whose solution the saturation throughput
can be calculated. We validate our model against ns2 simulations
(using an IEEE 802.15.4 module developed by J. Zheng [13]). We
then show how the saturation analysis can be used to obtain an
analytical model for the finite arrival rate case. This finite load
model captures very well the qualitative behavior of the system,
and also provides a good approximation to the packet discard
probability, and the throughput.

Keywords: wireless sensor networks, performance anal-
ysis, LR-WPANs

I. INTRODUCTION

Low rate-wireless personal area networks (LR-WPANs)
are designed to serve a variety of applications with a focus
on enabling wireless sensor networks. The IEEE 802.15.4
standard [1] has evolved to realize the physical (PHY) and
multiple access control (MAC) layers of such LR-WPANS.
The ZigBee alliance has developed the network and upper
layers [2]. The overall objective of our work reported here
is to analyse the performance of such networks for industrial
sensing and measurement applications. The aim is to replace
existing wired sensor networks (based, e.g., on the Fieldbus
standard) with wireless ad hoc sensor networks. The end to end
applications, however, will initially remain unchanged. Hence
the concern is whether the wireless network will be able to
carry the measurement and alarm traffic with the same level
of performance as the wired network.

In this paper we provide the results of our analysis of a star
topology sensor network based on the IEEE 802.15.4 standard.
Here we limit our work to the situation in which packets flow
only from the sensors to the head of the hub of the star (i.e.,
the PAN coordinator). We first obtain the saturation throughput
of the network. Then we provide some results on performance
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with finite rate arrivals of measurements. The following is a
preview of our main contributions and findings.

1) We provide a fixed point analysis, based on a decou-
pling approximation as in [8] and [3] for the saturation
throughput analysis of IEEE 802.15.4 networks. This
analysis captures the saturation throughput with a max-
imum error of 5% (see Figure 16).

2) We find that the design of the CSMA/CA MAC in IEEE
802.15.4 is such that the aggregate saturation throughput
decreases sharply with the number of nodes. We show
that, staying within the framework of the standard, it
is possible to modify the backoff parameters so that
the saturation throughput decreases only slightly when
the number of nodes increases. It is also found that
packet discard probability is much reduced after these
modifications (see Figures 18 and 19).

3) A simple heuristic finite load analysis that is based
on our saturation analysis is performed. Simulations
show that the analysis captures very well the qualita-
tive behaviour of delay, throughput, and packet discard
probabilities, and for the latter two also provides a good
analytical approximation (see Figures 21 and 22).

Related Literature: There is little published literature on the
analytical modeling of IEEE 802.15.4 networks. Zheng and
Lee [9] have provided a qualitative as well as quantitative
overview of the standard. Kinney has provided description
of ZigBee technology [7], along with a comparative study
of ZigBee with Bluetooth. In [14], Zheng and Lee report
on a module that they have developed for the ns2 simulator
([13]), and provide results from several sets of simulation
experiments. In [5], Golmie et al. have provide a simulation
study of the suitability of the IEEE 802.15.4 standard for the
medical environment. They have focused on scalability issues
and also have evaluated the effect of packet segmentation as
well as backoff parameters on performance metrics. In [10],
the authors have also done a simulation based performance
evaluation of the IEEE 802.15.4 slotted CSMA-CA protocol.
They discuss some of the throughput-energy-delay trade offs
inherent in this MAC protocol. Timmons and Scanlon have
done the very first analytical modeling for the IEEE 802.15.4
single cell network in relation to medical sensor body area
networks. Their much simplified analysis [12] focuses on long-
term power consumption of devices.

Our analytial approach is in the spirit of that performed
in [8] (see also [3]) for a single cell saturated IEEE 802.11
WLAN. This saturation analysis is used to develop a finite
load analysis using an approach suggested in [6, Chapter 4].
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II. LR-WPAN ARCHITECTURE AND SPECIFICATIONS

A. An Overview

Device 

   

Coordinator
PAN

Fig. 1. A star topology LR-WPAN sensor network

Figure 1 shows a star topology sensor network comprising
a PAN coordinator and several sensors as leaf nodes. Since we
consider only a simple star topology, with flow of traffic only
from the leaf nodes to the hub, we need to consider only the
PHY and MAC standards. Throughout we assume that we are
working in the 2.45GHz band and hence the PHY data rate
is 250 Kbps, the symbol rate is 62.5 symbols/second; hence
the symbol time is 16µs. In practice wireless transceivers are
always half duplex. Hence the IEEE 802.15.4 devices require
a finite amount of time to switch between transmission and
reception. This time is denoted by aTurnaroundTime in the
standard and is equal to 12 symbol times.

We now turn to the MAC specifications. The PAN coor-
dinator can optionally work with time slots defined through
a superframe structure (see Figure 2). This option permits a
synchronous operation of the network so that nodes can go
to sleep and wake up at designated times. We assume this in
our work. Each superframe starts with the transmission of a
beacon and has active and inactive portions. The active portion
is composed of three parts: a beacon, a contention access
period (CAP), and a contention free period (CFP). A CAP
commences immediately after the beacon. All frames, except
acknowledgment frames and any data frame that immediately
follows the acknowledgment of a data request command, trans-
mitted in the CAP, must use a slotted CSMA-CA mechanism
to access the channel.

Transmitted frames are always followed by an IFS period.
Frames(MPDUs) of length up to aMaxSIFSFrameSize are
followed by a SIFS period of duration of at least aMinSIF-
SPeriod symbols, otherwise a LIFS of a duration at least
aMinLIFSPeriod symbols follows (see Figure 3).
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Fig. 2. The IEEE 802.15.4 superframe structure.
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Fig. 3. Illustration of LIFS and SIFS

B. The Slotted CSMA-CA Algorithm

The CSMA-CA algorithm is implemented using units of
time, called backoff periods, each of length aUnitBackoffPe-
riod (= 20 symbol times = 0.32 ms). Note that 10 bytes can
be transmitted in one backoff period. In slotted CSMA-CA,
the backoff period boundaries of every device in the PAN
are aligned with the superframe slot boundaries of the PAN
coordinator, and transmissions begin on the boundary of a
backoff period.

Each device maintains three variables for each transmis-
sion attempt: NB, CW and BE. NB is initialised to 0, and
counts the number of additional backoffs the algorithm has
to do while attempting the current transmission. CW is the
number of backoff periods, that need to be clear of channel
activity before the transmission can commence. MAC ensures
this by performing clear channel assessment (CCA) at the
boundary of CW consecutive backoff periods1. CW is set
to 2 before each transmission attempt. BE is the backoff
exponent. Before performing the CCAs a node a takes backoff
of random(0, 2BE − 1) backoff periods. In slotted systems
with macBattLifeExt set to TRUE, BE is initialized to lesser
of 2 and the value of macMinBE. In other cases it is initialized
to macMinBE. If either of the CCAs fails, CW is reset to two
and both NB and BE are increased by one, ensuring that BE
does not exceed aMaxBE. If the value of NB is greater than
macMaxCSMABackoff, the CSMA-CA algorithm terminates
with a Channel Access Failure status. The concerned packet
is discarded after a Channel Access Failure. Default values of
these parameters as in standard are given in following table.

If both the CCAs from a node succeed, it will transmit the
packet. This may result either in a successful transmission or a
collision. A A successful transmission is always accompanied
by the reception of a MAC acknowledgment. A MAC ac-
knowledgment is of fixed length, 11 bytes. A transmitting node
always waits for acknowledgment for macAckWaitDuration
before declaring a collision. If a packet collides with some
other packet while being transmitted, it is retransmitted with
all backoff parameters set to their initial values. A packet is

1Energy saving is an important consideration in sensor networks. In the
802.11 standard nodes keep their receivers on even during backoff periods
so that they can sense any transmission and freeze their counters during
activity periods. However, carrier sensing also requires energy. In the 802.15.4
standard, during backoff, a node’s receiver can shut down and CCA is
performed only after backoff is finished, thus saving energy.
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retransmitted at most aMaxFrameRetries times after transmis-
sion failures due to collisions, before being discarded.

The default values of these parameters, as in the standard,
are given in the following table.

Parameter Value
aMaxBE 5
aMaxframeRetries 3
macMaxCSMABackoffs 4
macMinBE 3

III. MODELING SIMPLIFICATIONS AND OBSERVATIONS

In Sections IV and V we develop an analytical model for
calculating the saturation throughput of an IEEE 802.15.4 star
network. We analyse a star network with n sensor devices. The
PAN coordinator acts as a data sink. The network is assumed
to be beacon enabled. All sensor nodes contend to send data to
the PAN coordinator. By saturation throughput it is meant that
all the nodes always have packets to send, and hence always
contend for access. Saturation throughput is one measure of
system capacity, and we will see how it can be used to develop
an approximate analysis for finite arrival rates.

A. Modeling Simplifications

Since we are interested in an application in which mea-
surements continuously flow from the sensors to the PAN
coordinator, it is assumed that the active part of the superframe
is equal to the beacon interval. Also no CFPs are assumed.
Further, we ignore the time taken to transmit the beacon and
all the time wasted at the end of each beacon interval due to
nodes not being able to complete their transmissions in the
fragment of time left at the end of a beacon interval. Thus
the channel time is assumed to comprise of an uninterrupted
sequence of backoff intervals.

Since we are analyzing the star topology, which has only
one hop transmissions, the ZigBee routing algorithm does
not come into the picture. We assume direct communication
between the nodes and the PAN coordinator. It is also assumed
that none of the devices disassociates during the whole traffic
flow, and also that communication failures never cause a
device to conclude that it has been orphaned.

The CSMA-CA algorithm described here assumes battery
life extension subfield set to 0, so that backoff countdown can
occur throughout the active portion of the superframe and the
frame transmission also can start at any of the backoff period
boundaries throughout the active portion of the superframe.

We assume also that all nodes are perfectly synchronized at
backoff period boundaries.

B. Some Observations

Whenever a node has a packet to transmit, it starts a
random backoff. When a node completes its backoff, it seeks
a reservation of the channel. For that purpose, following the
backoff, it performs a CCA, at the start of the next backoff
period, to see whether the channel is free. A CCA lasts for 8
symbol times and if the channel is found to be free at the end

of the 8th symbol time, CCA succeeds. This is because if the
channel becomes free even at the end of the 8th symbol time,
the node can turn its transmitter on within the remaining 12
symbol times and can start a new activity at the start boundary
of the next backoff period. This implies that if an activity
(successful transmission or collision) finishes before the end
of the 8th symbol time in a backoff period, the channel appears
to be virtually free from the point of view of all the nodes not
involved in the activity.

In case the first CCA succeeds, the node waits until the start
of the next backoff slot and performs one more CCA. If the
channel is again found to be free, the node starts transmission
at the start of the next backoff period boundary. In case any of
the two CCAs fails, the node again enters the backoff state and
repeats the steps mentioned above, at the end of the backoff
interval. For the first few attempts for a packet, the mean
backoff interval increases multiplicatively with each channel
access, the rate of increase being governed by the backoff
multiplier (i.e., 2), but later the backoff interval remains fixed
until the current attempt cycle terminates. The reason for using
two CCAs becomes clear from the remaining discussion in this
subsection.

A successful transmission is always accompanied by re-
ception of a MAC acknowledgment of length 11 bytes (see
Figure 4, where the last byte of the ACK is shown spilling
over into the second backoff period). Once a node finishes
reception of data, it needs a time tack (see Figure 3) before
its transmitter is turned on, and then it starts transmission
of the MAC ACK. Since, transmission of an ACK can start
at a backoff period boundary only, tack can have values
in the range: aTurnaroundTime ≤ tack ≤ aTurnaroundTime
+ aUnitBackoffPeriod. The whole transaction also includes
an interframe space time after transmission of the MAC
acknowledgment (see Figure 3).

In case data transmission finishes before the end of the
8th symbol time in its last backoff period, the receiver can
turn its transmitter on (during the remaining 12 symbol times)
before the start of the next backoff period and, hence, it can
start the transmission of the ACK at the next backoff period
boundary. But if data requires more than 8 symbol times in
its last backoff period, the receiver has less then 12 symbol
times in that backoff period and hence the turn around time
spills over into the next backoff period. So, the ACK has to
wait one more entire backoff period. In either case the channel
becomes virtually free for exactly one backoff period. Denote
that backoff period by tack∗ . Figure 4 shows these situations.

There will be a collision only if two or more nodes
start their first CCA (in the sequence of two CCAs) at the
same backoff boundary. A transmitting node always waits for
acknowledgment for macAckWaitDuration before declaring a
collision. This is the worst case delay which can occur in
reception of acknowledgment. Denote the ACK transmission
time by Tack. Then macAckWaitDuration = max(tack)+Tack =
aTurnaroundTime + aUnitBackoffPeriod + Tack. This situation
is depicted in Figure 5, where nodes 1 and 2 are shown to
collide.

While a node performs CCAs, if some activity is going on
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Fig. 4. A successful transmission.If the amount of time occupied by data
in its last backoff period is less than 8 symbol times then 12 symbol times
remain in the backoff period, sufficient to turn around and send an ACK;
then Case 1 occurs. Otherwise the turn around time spills over into the next
backoff period and the ACK must start at the beginning of the next backoff
period boundary; hence, Case 2 occurs.
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Fig. 5. A collision between two nodes. Both complete their backoffs at the
same backoff period boundary, and both CCAs of both nodes find the channel
idle. Then the packet transmissions collide.

and the channel is not virtually free, its first CCA itself will
fail. This possibility is shown through Figures 6 and 7.

On the other hand, when a node starts a CCA, if the channel
is either in second CCA (CCA 2) or in tack∗ due to some
node, then the first CCA (CCA 1) from the node will succeed,
but this node’s CCA 2 will fail. Figures 8 and 9 show the
situations where the first CCA succeeds while the second fails
for Node 2.

C. Observations about the IEEE 802.15.4 ns2 Module

A detailed look at IEEE 802.15.4 ns2 module [13] revealed
that there are a few inconsistencies between the module and
the IEEE 802.15.4 standard [1]. We made changes in the
module to remove the following discrepancies.

1) A node performing CCA decides whether the CCA
has succeeded only at the end of the 8th symbol time
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Fig. 6. Node 2 attempts while data or an acknowledgment are being
transmitted in Case 1 and Case 2 respectively. In both the cases the channel
is not virtually free. Node 2’s first CCA fails and it enters its next backoff
cycle for the same packet.
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Fig. 8. Node 2 attempts while Node 1 is in a second CCA. Its second CCA
fails even when the first has succeeded. Node 1’s transmission carries on,
while Node 2 enters into the next backoff

in a backoff period. Once the second CCA succeeds,
the remaining 12 symbol times (which is equal to
aTurnaroundTime) left in that backoff period are suf-
ficient for the node to turn its transmitter on. In the ns2
module, a node spends one extra backoff period before
starting actual transmission, whenever its second CCA
succeeds.

2) Whenever a node’s frame collides, the attempt counter
is increased by one until the counter exceeds
aMaxFrameRetries, after which the frame is discarded.
Unlike the standard, in the ns2 module a node resets this
counter when the attempt process of a packet spills over
into a new superframe.

3) In case a backoff failure occurs while attempting for a
packet, the packet is discarded. But in the ns2 module
a packet is reattempted indefinitely often after backoff
failures, and is discarded only if it faces more than
aMaxFrameRetries collisions.
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even when the first has succeeded. Node 1’s transmission carries on, while
Node 2 enters into the next backoff
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Fig. 10. A snapshot of evolution of the activity at three nodes. The fourth
time-line superposes these activities, thus depicting a cyclical evolution for
the aggregate system.

IV. THE STOCHASTIC MODEL AND A FIXED POINT
EQUATION

A. A Cyclic Evolution

Time is divided into contiguous backoff periods whose
duration is denoted by δ. All node activities are initiated at
backoff period boundaries. We need to study each node’s
individual behavior and also the aggregate channel activity.
From the point of view of the channel activity, we can define
certain cycles (see the last time line in Figure 10). There could
be a succession of idle backoff periods. An idle channel period
ends when both of the successive CCAs of one or more nodes
are successful. Once this happens, the evolution of the channel
activity in the cycle becomes deterministic; i.e., subsequently
there may be a successful transmission (as in case of Node 1
in Figure 10), or a collision between two or more nodes (like
Nodes 2 and 3 in Figure 10).
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Fig. 11. A successful transmission. It lasts for Tdata−ack +2δ duration, the
channel is virtually free at the time shown and only n−1 nodes are available
for attempt in the following backoff period.
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Fig. 12. A cycle containing collisions. Its length is Tcoll +4δ because Node
3 has attempted at the 3rd backoff period boundary after collision is over.
Only n− 2 nodes were available there to attempt at that point for new cycle.

Suppose the network consist of n contending nodes, exclud-
ing the PAN coordinator. The length of a cycle depends on the
number of nodes available to attempt in the first backoff period
of the cycle. A cycle contains a single idle backoff period of

length δ, if none of the available nodes attempts to sense the
channel at the start boundary of this backoff period (see Cycle
2 in Figure 10). It leaves all those nodes free to attempt in the
next cycle.

In Figure 11 we show a successful transmission cycle. Let us
examine this carefully. The total busy period of the transaction
is shown as Tdata−ack. Acknowledgments always start at the
boundary of a backoff period and being of fixed length 11
bytes (i.e., 22 symbols) consume only 2 symbol times in their
last backoff period. Thus, at the start boundary of this backoff
period, the channel becomes virtually free for other nodes
because a CCA that starts at this backoff period boundary
(being of 8 symbol times duration) will find the channel clear,
and hence a new cycle might be started by other nodes in
this backoff period. Thus, Tdata−ack does not include this
backoff period. Define Tdata−ack∗ as the portion of Tdata−ack,
excluding tack∗ (recalling tack∗ from Section III-B) i.e.,

Tdata−ack∗ = Tdata−ack − tack∗

It is seen that, a cycle of successful transmission lasts for
Tdata−ack+2δ duration and, only n−1 nodes are available for
attempt in the following backoff period. Note from Figure 10
that the channel is viewed as being in an idle cycle (Cycle 2)
even though the transmission of Node 1 is not complete.

In Figure 12 we depict a collision cycle. If there are 2 or
more nodes available to attempt at the beginning of a cycle,
there is a possibility of collision. If there is a collision of k
nodes, it continues for Tcoll duration. During its last backoff
period, if a collision consumes less than or equal to 8 symbol
times, again the channel remains virtually free from the point
of view of nodes not involved in collision; then, this backoff
period is not included in Tcoll. After the collision, all the k
senders wait for acknowledgment for macAckWaitDuration
before declaring channel access failure. Define a positive
integer J such that

J =
bTcoll + macAckWaitDurationc

δ
+ 2 −

Tcoll

δ

where Tcoll is the actual time spent in collision by a node.
A careful look at various parameters reveals that the only
possible values of J are 4 and 5. Thus a cycle containing
a collision activity has one of the following three possibilities.

• Case 1: k < n, and one or more of the n − k nodes
not involved in the collision perform successful CCAs,
while k nodes involved in collision are still waiting for
acknowledgments. In this case the length of the current
cycle will be Tcoll + jδ, j ∈ {2, 3, ..J} with, n− k nodes
being available to contend for next cycle. Also the next
cycle cannot be an idle cycle.

• Case 2: k < n, and all the k nodes involved in the
collision finish with their macAckWaitDurations and none
of the other n − k nodes attempts for a CCA in this
duration. In this case the length of the current cycle will
be Tcoll +(J +1)δ, and all the n nodes will be available
to contend for next cycle.

• Case 3: k = n. There will not be any node available to
attempt after the collision is over. The current cycle will
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last for Tcoll +(J +1)δ duration, and all the n nodes will
be available to contend for next cycle.

These situations are illustrated by Figure 12, which corre-
sponds to J = 4. Here the current cycle may be of lengths
Tcoll + (i + 1)δ, i = 1, 2, 3, provided that some of the nodes
other than 1 or 2, attempt at the ith backoff period boundary
after the collision is over. The cycle length will be Tcoll+5δ if
none of other nodes attempt while nodes 1 and 2 are waiting
for acknowledgments. The figure shows the case where the
cycle length is Tcoll + 4δ. In Figure 10 the channel enters
into Cycle 4, while Nodes 2 and 3 are still waiting for
acknowledgments.

B. The Stochastic Model

As shown in Section IV-A, the cycles defined are always
multiples of the backoff period. Denote the backoff period
boundaries by tk = kδ, k ≥ 0. Then denote the start times
of the cycles by the random times Ti, i ≥ 0, with Ti ∈ {tj :
j ≥ 0}, and T0(= 0) < T1 < T2 < · · ·. Associated with each
Ti, i ≥ 0, is a random variable Xi ∈ {1, 2, .........n}, which is
the number of nodes available to attempt at the instant Ti. The
cycles are indexed by i ≥ 1, with cycle i being the interval
[Ti−1, Ti). Denote the cycle length by

Ui = Ti − Ti−1

1  T

X X

T
 i

    U T
 i+1

2

 2

δ

                U                           T                                  U
                     2

                           T
                                                                                      1                                      0

                            X
                                            0

                                        0                  1                  2                  3                  4                  5                                   j                  j+1              j+2                j+3              j+4               j+5

   i
 X

 i+1

                                                                         t            t            t            t            t            t                       t           t            t             t            t            t  

                              X
                                            1

 i+1

Fig. 13. Channel cycles and notation for the Markov renewal process

We draw the following conclusions from the discussion of
Section IV-A.

• If Xi = n, then Cycle i may comprise a successful
transmission, a collision, or the cycle may be an idle one,
depending upon the number of nodes that attempt.

• If Xi = n − 1 (as would happen after a success
cycle), then cycle i may have a successful transmission,
a collision, or the cycle may be an idle one, depending
upon the number of nodes that attempt.

• If Xi < n−1, it means we are in a case like that shown in
Figure 12, i.e., at least one of these nodes has attempted,
and the following cycle cannot be an idle one. It can have
a successful transmission or a collision depending upon
how many nodes have attempted.

It is seen that, if the number of nodes available to at-
tempt at the beginning of the cycle is known, the evolution
of the cycles in the future does not depend on the past,
i.e., the random vector (Ui+1, Xi+1) and the random vector
((X0, T0), (X1, T1), · · · · · · · · · (Xi−1, Ti−1), Ti) are indepen-
dent, given Xi. Hence, although the cycles are not indepen-
dent, (Xi, Ti), i = 0, 1, 2...... is a Markov renewal process. To
analyse this we need the transition probabilities

P (Ui+1 = u, Xi+1 = k|Xi = k′)

for all possible values of u, k and k′. Also, {Xi, i ≥ 0} will
be a Markov chain. We can obtain the transition probability
matrix M for this Markov chain, and hence we can compute
the steady state probabilities πk, 1 ≤ k ≤ n.

Given the number of nodes available to attempt at the
beginning of a cycle, the conditional expectation of the cor-
responding cycle length can be developed, and we can define
the following quantities. For 1 ≤ k ≤ n (and any i) define,

EkU =
∑

u

u
∑

k′

P (Ui+1 = u, Xi+1 = k′|Xi = k)

Then, the expected duration of a cycle will be given as

EU =

n
∑

k=1

πkEkU

We can also determine the conditional expected durations for
which channel is either in second CCA, Tdata−ack or Tcoll, in
a cycle. More generally, suppose, in the ith cycle the channel
remains in event e for an amount of time for R

(e)
i . Thus,

R
(e)
i can be considered as a “reward” (corresponding to the

occurrence of event e) in the ith cycle. It can also be shown
that, for each event e of interest, R

(e)
i will be a function of

(Ui, Xi) (see Table I). By this we mean that for each event
of interest e, there is a function r(e)(u, k′), such that, for all
possible values of u, k′ and any i, if (Ui, Xi) = (u, k′) then
R

(e)
i = r(e)(u, k′). Note that {R(e)

i , i ≥ 1} are such that, given
Xi, R

(e)
i+1 and ((X0, T0), (X1, T1), · · · , (Xi−1, Ti−1), Ti) are

independent. Then we define (for any i)

EkR(e) =
∑

u

∑

k′

r(e)(u, k′)P (Ui+1 = u, Xi+1 = k′|Xi = k)

Now, the expected duration for which the channel remains in
event e in a cycle, can be obtained as

E(R(e)) =
n

∑

k=1

πkEkR(e)

Let R(e)(t) be the duration during [0, t] for which the channel
is in event e. Then by a regenerative argument (or the Markov
renewal reward theorem) we see that, with probability 1,

lim
t→∞

R(e)(t)

t
=

∑n
k=1 πkEkR(e)

∑n
k=1 πkEkU

Hence various event rates in the system can be determined
(e.g., the throughput of good packets can be obtained this
way).

C. A Decoupling Approximation

Motivated by the approach in [3] and [8], we propose
a decoupling approximation in order to analyse the above
process. Each node alternates between periods when it per-
forms backoffs and unsuccessful CCAs and periods when it
transmits (successfully or unsuccessfully). Let β denote the
rate at which a node’s backoffs complete during the time
when it is performing backoffs. Unlike the IEEE 802.11 DCF
mechanism, here nodes do not freeze their backoff timers when
the channel is reserved or when there is a collision. So it is
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e

r(e)(u, k) CCA2 Tdata−ack Tcoll Tdata−ack∗ tack∗ successfully
sent data

(δ, n) 0 0 0 0 0 0
(Tdata−ack + 2δ, n − 1) δ Tdata−ack 0 Tdata−ack − δ δ Ldata

(u, k) (Tcoll + jδ, k)
j ∈ {2, 3, . . . J} δ 0 Tcoll 0 0 0

k ∈ {1, 2, . . . (n − 2)}
(Tcoll + (J + 1)δ, n) δ 0 Tcoll 0 0 0

TABLE I
VALUES OF r(e)(u, k) FOR SEVERAL eS AND ALL POSSIBLE (u, k)S. IT CAN BE SEEN THAT R

(e)
i

CAN BE UNIQUELY DETERMINED, GIVEN (Ui,Xi).

not possible to work with “conditional time” as is done in
[8] to facilitate the fixed point analysis for 802.11 WLANs.
Instead we proceed as follows. As shown in Figure 10, the
channel evolves over cycles. At the end of each cycle we
need to determine the activity in the next cycle. The nodes
that can attempt in the next cycle are in their backoff periods.
We assume that each such node attempts independently in
a slot with probability β. Thus, if k nodes can potentially
attempt at a backoff period boundary, then we assume that the
number of attempts is binomially distributed with parameters
k and β. With this assumption, the transitions probabilities
of the Markov renewal process, and the conditional expec-
tations defined in Section IV-B can be written down; due
to lack of space we do not provide these expressions here
(these details are in the full version of the paper available
at http://www.ece.iisc.ernet.in/ ãnurag). This approach permits
us to obtain channel event rates in terms of the unknown
value β. Channel event rates, such as the probability of the
channel carrying radio activity, are then used to obtain β for
a node. This yields a fixed point equation that is developed in
Section IV-D. The fixed point equation yields β, which can
then be used to obtain the aggregate saturation throughput of
the network.

D. A Fixed Point Equation for β

Let us tag a node and obtain its β. A CCA from the
tagged node will fail if it finds the channel either in second
CCA, Tdata−ack (see Figure 11) or Tcoll (see Figure 12). Let
αCCA2, αdata−ack and αcoll be the probabilities of the channel
being in second CCA, Tdata−ack or Tcoll respectively. Then
considering each of these as an event e, we can use the analysis
in Section IV-B to obtain their time rates. These durations
can be considered as “rewards” associated with various cycles
of channel activity. Then, using the analysis in Section IV-B,
and noting that once we have tagged a node we need to find
the above probabilities for the other n − 1 nodes, the desired
probabilities are given as:

αCCA2 =

∑n−1
k=1 πkEkR(CCA2)

∑n−1
k=1 πkEkU

=: HCCA2(n − 1, β)

αdata−ack =

∑n−1
k=1 πkEkR(data−ack)

∑n−1
k=1 πkEkU

=: Hdata−ack(n − 1, β)

αcoll =

∑n−1
k=1 πkEkR(coll)

∑n−1
k=1 πkEkU

=: Hcoll(n − 1, β)

Note that the right hand sides of the above three equations
depend on β. Hence α, the probability that a tagged node’s
CCA will fail, can be given in terms of β as

α = H(n − 1, β)

where H(n− 1, β) := αCCA2 + αdata−ack + αcoll, with each
term being given as above. Also let αdata−ack∗ and αtack∗

be the fractions of time, the channel is in Tdata−ack∗ and
tack∗ respectively. These quantities can also be calculated as
functions of β, in the way shown above. Let

αdata−ack∗ =

∑n−1
k=1 πkEkR(data−ack∗)

∑n−1
k=1 πkEkU

:= Hdata−ack∗(n − 1, β)

αtack∗
=

∑n−1
k=1 πkEkR(tack∗ )

∑n−1
k=1 πkEkU

:= Htack∗
(n − 1, β)

Evidently, αdata−ack = αdata−ack∗ + αtack∗
.

Having obtained these channel probabilities in terms of
β, we now turn to obtaining β in terms of the channel
probabilities, thus leading to a fixed point equation. Recall
that all the nodes have saturated queues. A node goes through
the backoff procedure for its head-of-the-line (HOL) packet.
Each such backoff procedure can end in one of three ways:
successful transmission, collision, or backoff failure (i.e., none
of the CCAs during the backoff procedure succeeds). If there
is a success, a fresh backoff procedure is begun for the next
packet. If there is a collision, a fresh backoff procedure is
begun for the same packet and the packet is discarded after
N collisions (N = 4 in the standard, as 3 retries are allowed).
Upon the discard of a packet a fresh backoff procedure is
begun for the next packet. Finally, if there is a backoff failure
for a packet, the packet is discarded, and the next packet moves
to the HOL position. We seek β, the rate at which backoffs
complete during times when the tagged node is performing
backoffs, given the various probabilities for the the other n−1
nodes, as obtained above. Let us denote

K = the number of times channel sensing is reattempted
in a backoff cycle

bk = the mean backoff duration (in backoff periods) before
the (k + 1)th channel sensing attempt for a packet,
0 ≤ k ≤ K

It must be noted that during a backoff procedure, each backoff
will be followed by one or possibly two CCA durations before
the next backoff starts following a CCA failure.

Suppose, A
(k)
j denotes the number of attempts for the jth

backoff procedure after the kth channel access failure. Thus,
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Fig. 14. Evolution of backoff, channel sensing and busy periods for a
tagged node. The first backoff procedure had two CCAs, the second of which
succeeded. The procedure took an amount of time X

(0)
1 . The second backoff

procedure had 5 attempts and ended in backoff failure. The third had an
attempt and ended in a successful CCA. Then the backoff rate during backoff
times, over this fragment of the node’s evolution is 2+5+1

X
(0)
1

+X
(0)
2

+X
(0)
3

.

A
(0)
j will give the total number of attempts for the backoff

procedure and the sequence of backoff times will be B
(k)
j (0 ≤

k ≤ A
(0)
j − 1), with E(B

(k)
j ) = bk. Also let X

(k)
j be the time

duration for jth backoff procedure between the kth channel
access failure and the end of the backoff procedure. Then
X

(0)
j will denote the total time occupied by the jth backoff

procedure. Evolution of the backoff, channel sensing and busy
periods for a node are shown in Figure 14.

Under the decoupling approximation we observe that the
sequence X

(0)
j , j ≥ 1, are renewal life times. Viewing the total

number of attempts in the jth backoff procedure, A
(0)
j , as a

“reward” associated with the renewal cycle of length X
(0)
j , we

see from the renewal reward theorem that the attempt rate β

of a node during its backoff period is given by
E(A

(0)

j
)

E(X
(0)
j

)
. We

now derive expression for this ratio in terms of the channel
probabilities obtained earlier.

We assume that the CCAs of the tagged node “see” the
remaining n−1 nodes in steady state and hence the probability
that the tagged node’s CCA fails is α. Thus

E(A
(0)
j ) = 1 + αE(A

(1)
j )

and, further
E(A

(1)
j ) = 1 + αE(A

(2)
j )

Hence recursing (using E(A
(K)
j ) = 1) we get

E(A
(0)
j ) =

K
∑

k=0

αk

We now turn to E(X
(0)
j ). A node’s first CCA will fail if

it finds the channel in Tdata−ack∗ or Tcoll. Its first CCA will
succeed while the second will fail if the channel is in the
second CCA or tack∗ . Hence,

E(X
(0)
j ) = b0 + (αdata−ack∗ + αcoll)(δ + E(X

(1)
j ))

+ (αCCA2 + αtack∗
)(2δ + E(X

(1)
j )) + (1 − α)2δ

Using the fact that

α = αdata−ack∗ + αtack∗
+ αcoll + αCCA2

we get

E(X
(0)
j ) = b0 + αE(X

(1)
j ) + (2 − (αdata−ack∗ + αcoll))δ

Similarly

E(X
(1)
j ) = b1 + αE(X

(2)
j ) + (2 − (αdata−ack∗ + αcoll))δ

Again recursing, with E(X
(K)
j ) = bK +(αdata−ack∗ +αcoll)δ

+(αCCA2 + αtack∗
)2δ + (1 − α)2δ, we get

E(X
(0)
j ) =

K
∑

k=0

αk(bk + (2 − (αdata−ack∗ + αcoll))δ)

Thus, the attempt rate β can be obtained as

β =

∑K
k=0 αk

∑K
k=0 αk(bk + (2 − (αdata−ack∗ + αcoll))δ)

:= G(α, αdata−ack∗ , αcoll)

Now, it can be expected that the equilibrium behavior of the
system will be characterized by the solutions of the following
fixed point equation:

β = G(H(n − 1, β), Hdata−ack∗(n − 1, β), Hcoll(n − 1, β))

=: Γ(β)

Since G(·), H(·), Hdata−ack∗(·) and Hcoll(·) are continuous
functions so is Γ(·). Thus Γ(·) is a continuous map from [0, 1]
to [0, 1] and hence by Brouwer’s fixed point theorem there is
a fixed point.
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Fig. 15. Γ(β) vs β for several values of n. The intersections with the
“y = x” line yield the fixed points.

Numerical solution of the fixed point equation: We assume
operation in the 2.45GHz band and hence the PHY data
rate is 250 Kbps. The backoff multiplier is p = 2 as in
the IEEE 802.15.4 standard. In the plots we use the fol-
lowing values: K = 4, macMinBE = 3, aMaxBE = 5,
and b0 = 3.5 backoff periods. The packet size (MSDU) is
assumed to be 30 bytes throughout. Figure 15 shows plots of
G(H(n− 1, β), Hdata−ack∗(n− 1, β), Hcoll(n− 1, β)) vs. β.
The intersections of the plots with the “y = x” line yield the
fixed points. We obtain the fixed points by using the fzero()



9

function in MATLAB. At this point in our work we are unable
to analytically show uniqueness. However, in all the cases we
examined the fixed point was unique. We see that for this set
of parameters the attempt rate of the individual nodes remains
almost constant (at about 0.086) once the number of nodes
exceeds 10.

V. CALCULATION OF PERFORMANCE MEASURES

A. Throughput Calculation

To calculate the throughput, we again use the Markov re-
newal process formulated earlier in Section IV-B. Successfully
sent data in a cycle can be considered as yet another “reward”
associated with that cycle.

A successful data transmission will take place in cycle i
only if (Ui, Xi) = (Tdata−ack +2δ, n− 1). Consider Ldata as
the size of a packet. Then the expected amount of data sent in
a cycle, having k nodes to attempt at its beginning, is given
by:

EkL = LdataP (Ui+1 = Tdata−ack+2δ, Xi+1 = n−1|Xi = k)

Note that once we have β from the fixed point approach we
analyse the entire system of n nodes; hence, the summations
in this section will run up to n. Hence the expected amount
of data sent in a cycle, will be given by

E(L) =

n
∑

k=1

πkEkL

Now, using the renewal reward theorem, the aggregate
throughput of the system with n sensor nodes can be seen
to be:

Θ(n) =

∑n
k=1 πkEkL

∑n
k=1 πkEkU

Throughput calculation for a network with a single sensor:
For the case of a single node, a much simpler analysis
gives the saturation throughput. The average time required for
transmission of a packet will be b0 +2δ+δd

Tdata−ack

δ
e, where

Tdata−ack is actual time required for transmission of data and
the corresponding acknowledgment, including tack. Since a
new transaction can start at next backoff period boundary only,
Tdata−ack

δ
has been rounded up. Then,

Θ(1) =
1

b0 + 2δ + dTdata−ack

δ
eδ

For packet size 10 bytes, Ldata = 30 bytes. Taking into
account all headers, tack and acknowledgment, Tdata−ack =
122 symbol times (6.1 backoff periods). Hence dTdata−acke =
7 backoff periods. With the backoff parameters in the standard,
b0 = 3.5 backoff periods. Hence Θ(1) = 30 bytes /12.5
backoff periods = 60 kbps or 250 packets per second.

B. Packet Discard Analysis

It is known from the description of the slotted CSMA/CA
algorithm that the backoff cycle for a frame may end with
either a successful transmission, a collision or a backoff
failure. In case a backoff failure occurs, the frame is discarded

without any reattempt. If a frame collides, it is retried for
aMaxFrameRetries. A frame will collide only if while attempt-
ing for this frame, the node finds the channel in first CCA. Let
αCCA1 be the probability of the channel being in first CCA.
Then, using the approach in Section IV-B, the probability that
a frame collides, given that it is attempted, can be written as:

αCCA1 =

∑n
k=1 πkEkR(CCA1)

∑n
k=1 πkEkU

=: HCCA1(n, β)

Let pi,j be the probability of a packet being successfully
served after it has faced i collisions and is in the jth backoff
of current backoff cycle (0 ≤ j ≤ K). Then p0,0 will be the
probability that a packet is successfully served. We recall that
K and N denote macMaxCSMABackoffs and aMaxFrameRe-
tries respectively. We see that

p0,0 = 1 − (α + αCCA1) + αCCA1p1,0 + αp0,1

and, also

p0,1 = 1 − (α + αCCA1) + αCCA1p1,0 + αp0,2

Recursing (using p0,K = 1− (α+αCCA1)+αCCA1p1,0), we
get

p0,0 =

K
∑

k=0

αk (1 − (α + αCCA1) + αCCA1p1,0)

=
(1 − (α + αCCA1))(1 − αK+1)

1− α

+
αCCA1(1 − αK+1)

1 − α
p1,0

Similarly

p1,0 =
(1 − (α + αCCA1))(1 − αK+1)

1 − α

+
αCCA1(1 − αK+1)

1 − α
p2,0

Again recursing (with pN+1,0 = 0), we get

p0,0 =

N
∑

k=0

(

αCCA1(1 − αK+1)

1 − α

)k

(

(1 − (α + αCCA1))(1 − αK+1)

1 − α

)

Then, the probability of a packet being discarded will be given
by

Pdiscard = 1 − p0,0

Defining D(n) to be the packet discard rate with n nodes, it
is easily seen that

D(n) =
Θ(n)

1 − Pdiscard

Pdiscard
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C. Numerical Results

For the simulation results ns2 version 2.26 is used, with
patches for the IEEE 802.15.4 LR-WPAN code provided by J.
Zheng[13]. We have used the source code released on January
1, 2005, with modifications as discussed in Section III-C.
Static routing is implemented by using NOAH as the wireless
routing agent. This allows us to ensure multihop wireless
routing is not used. We work in the 2.45 GHz band, with the
PHY data rate 250 Kbps. The simulation scenario consist of n
nodes distributed uniformly around a circle of radius 8 meters,
with the PAN coordinator at the center. The decoding and the
sensing range thresholds of the nodes are set to 20 meters,
so that all nodes form a single cell. Nodes start associating
with the PAN coordinator one by one at regular intervals of
0.5 seconds. After 5.0 seconds of the last node having started
association, CBR traffic is initiated simultaneously from all
the nodes. The CBR packet size is kept as 10 bytes to which
20 bytes of IP header, 7 bytes of MAC header and 6 bytes of
PHY header are added. All throughput results in packets/sec
are provided for the MAC payload. To ensure saturation, the
CBR traffic interval is kept very small; each node’s buffer
receives packets at intervals of 5 ms.
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Fig. 16. Analytical and ns2 simulation results for β, Θ(n) (packets per
second), and Pdiscard vs. n. Simulation results are accompanied by 95%
confidence intervals.

The conditional attempt rates per node, β, aggregate
throughputs, Θ (packets per second), and discard probabilities,
Pdiscard, obtained through simulation are compared against
the analytical results in Figure 16, where 95% confidence
intervals are also shown for the simulation results. It can be
seen that, even after many modeling simplifications, the fixed
point analysis provides an excellent approximation, for a wide
range of the number of nodes, n. The results show that β
decreases until n = 10 and then remains almost constant with
increasing n, while the aggregate throughput increases initially
but then decreases very sharply with increasing n. The slight
increase in Θ with n is because for small n the contention
is less and increasing n increases the channel utilisation. The
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Fig. 17. Aggregate throughput (Θ in Kbps) plots for various n as a function
of β, obtained from the stochastic analysis.

discard probability increases rapidly as the number of nodes
increases and approaches approximately 1 as the number of
nodes is increased up to 50. We will see later that finite load
performance is substantially better, and, in fact, derivable from
the saturation performance.

VI. ALTERNATE BACKOFF PARAMETERS

A. Performance and Backoff Parameters

If the expression for Θ(·) in Section V-A is evaluated with
β as a free variable, for various values of β and n, then we
obtain the plots in Figure 17; note that here Θ is given in
Kbps (60 Kbps = 250 packets per second). For n ≥ 10, the
values of β for which the aggregate throughput Θ peaks are
much less than those obtained for the actual system for the
default parameters (see Figure 16). Figure 17 also shows that
once a node exceeds these attempt rates its throughput starts
decreasing as the attempt rate increases. This is the region,
in which the network operates with the current set of backoff
parameters (see Figure 16). In this regime of operation, to
maintain a constant throughput as n increases, β must decrease
sharply with n (see Figure 17); this does not occur with the
given backoff parameters. It is also observed from Figure 17
that the same throughputs can be obtained with much smaller
attempt rates, while working in a region where throughput
increases with attempt rate for a fixed number of nodes.
The attempt rates, collision probabilities and hence energy
expenditure is much less in this region. This also leads to
lower discard probabilities. It is also seen that the attempt rate
need not decrease significantly in this region to maintain a
constant throughput with increasing number of nodes.

We find that simple changes in the backoff parameters
can lead us to operate in the desired region. Figures 18
and 19 show the results for two ways of altering the backoff
parameters: (i) increasing the backoff multiplier to 3, and
(ii) changing macMinBE to 5 and aMaxBE to 7. Figure 18
shows the attempt rate, throughput and discard probability
plots after we have increased the backoff multiplier from 2 to
3. Figure 19 is for the case when macMinBE and aMaxBE
have been changed to 5 and 7 respectively. These plots show
that, with a slight change of a few backoff parameters we are
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Fig. 18. Analytical and ns2 simulation results for various parameters vs
number of nodes. Plots have been obtained using backoff multiplier p = 3.
Simulation results show 95% confidence intervals.
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Fig. 19. Analytical and ns2 simulation results for various parameters vs
number of nodes. Plots have been obtained with macMinBE = 5 and aMaxBE
= 7. Simulation results show 95% confidence intervals.

able to maintain constant throughput with increasing number
of nodes. Discard probabilities are also substantially smaller.
The large initial backoffs cause less contention in the case
of a large number of nodes, but on the other hand lead to
unnecessary wastage of backoff time when number of nodes
is small. Hence, we get worse throughputs as compared to
those with default parameters for small number of nodes (see
Figures 18 and 19). Thus it becomes interesting to consider
the possibility of adapting the backoff parameters depending
on the number of active nodes.

VII. ANALYSIS WITH FINITE ARRIVAL RATES

Each sensor node receives (generates) packets that have to
be delivered to the hub node. We assume that the rate of
“arrival” of packets at each sensor node is λ and the arrival
processes are independent and Poisson. Define Λ = nλ.

Let ρ denote the fraction of time a sensor node is nonempty
and hence contending for the channel. As before, Θ(n) and
D(n) are the aggregate throughputs and discard rates for

a network with n saturated nodes. We adopt an approach
suggested in [6, Chapter 4]. For fixed n, define

µ(n, ρ) =
n

∑

m=1

(

n
m

)

ρm(1 − ρ)n−m(Θ(m) + D(m))

and,

ν(n, ρ) =
n

∑

m=1

(

n
m

)

ρm(1 − ρ)n−mΘ(m)

Thus, given ρ, µ(ρ) is an approximation for the rate at which
packets are being removed from the queue, either by successful
transmission or discard. Similarly, ν(ρ) is an approximation
for the rate of successful transmission. It can be seen that
limρ→1 µ(n, ρ) = Θ(n) + D(n), and limρ→1 ν(n, ρ) = Θ(n).
Figure 20 shows plots of µ(ρ) vs. ρ and ν(ρ) vs. ρ for several
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Fig. 20. µ(ρ) (pkts/sec) and ν(ρ) (pkts/sec) vs. ρ for n = 10, 20, 30 and 40.

values of n. We see that µ(ρ) monotonically increases with ρ,
whereas ν(ρ) first increases and then decreases with ρ. Hence,
for each Λ < Θ(n)+D(n) there will be a unique ρ such that
µ(ρ) = Λ. We shall take this ρ to be the operating occupancy
of a node corresponding to the arrival rate Λ packet per second
into each node, i.e., for each n, we take ρ = µ−1(Λ).

Now with the above approximation we can easily obtain
various performance measures.
Aggregate throughput: The aggregate throughput of the with
n nodes can be obtained as

Φ(n, Λ) = ν(n, µ−1(Λ))

Note that, for Λ ≥ Θ(n) + D(n), Φ(n, Λ) = Θ(n).
Attempt rate per node: Corresponding to a finite arrival rate
λ, the per node attempt rate of the network (in attempts per
backoff period) can be approximately obtained as

β(n, Λ) =
1

n

n
∑

m=1

(

n
m

)

ρm(1 − ρ)n−mmβ(m)

where, β(m) is the per node attempt rate (in attempts per
backoff period) for a network with m saturated nodes.
Sojourn time distribution: As per the approximation made,
each packet is discarded with probability Pdiscard indepen-
dently of anything else. Hence we can view each node’s queue
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as having two independent Poisson arrival processes with rates
λPdiscard and λ(1 − Pdiscard). Assuming an M/M/1 model
(i.e., an exponential approximation for the service time) we
obtain the data packet mean sojourn time

∆(n, Λ) =

(

µ−1(Λ)

1 − µ−1(Λ)

)

1

λ

Using an M/G/1 model a more exact sojourn time analysis can
be done; however, this requires both first and second moments
of the packet service time.
Discard probability: The discard probability is approximately

Pdiscard = (Λ − ν(n, µ−1(Λ)))/Λ

Observations: Figures 21 and 22 show the analytical as well
as ns2 simulation results for 20 and 40 node networks. The
plots show that the analysis is able to capture the trends of all
the performance measures very well in all the cases, and the
values of β, ρ, Θ, and Pdiscard are approximated very well.
We notice that for small Λ the discard probability is small
and the aggregate throughput, Θ, increases with Λ, until Θ
peaks and then drops down to the saturation throughput (see
Figure16). Notice that with finite load more throughput can be
sustained than the saturation throughput. For measurement and
control applications, it appears that the discard probability will
determine the capacity. The mean delay approximation could
be improved by using the M/G/1 mean delay formula if we
had the second moment of service time as well.
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Fig. 21. Analysis and simulation plots for n = 20 with default parameters,
and Poisson arrivals. Simulation results show 95% confidence intervals.

VIII. CONCLUSION

We have provided an approximate saturation analysis for
a star topology IEEE 802.15.4 network whose function is to
make measurements and pass them to the PAN coordinator,
and we have validated our results against ns2 simulations.
Our analysis is based on identifying a certain Markov renewal
process embedded in the system and then using a decoupling
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Fig. 22. Analysis and simulation plots for n = 40 with default parameters,
and Poisson arrivals. Simulation results show 95% confidence intervals.

approximation that led to a fixed point equation, in much
the same spirit as [8] and [3]. Then we have shown how
this saturation analysis can be used to develop a finite load
analysis, and we found that the approach works remarkably
well for this system. In future work we propose to extend our
analysis to multihop topologies such as a multilevel star.
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APPENDIX

A. ANALYSIS OF THE THE CHANNEL EVOLUTION MRP

We see that in the Markov renewal process formulated in Section IV-A, the only feasible possibilities for (Ui, Xi) are
{(Tcoll + jδ, k), j = 2, 3.....J ; k = 1, 2, ....n− 2; , (Tdata−ack + 2δ, n− 1), (Tcoll + (J + 1)δ, n), (δ, n)}. Using the decoupling
approximation of Section IV-C, the transition probabilities for the process can be obtained as follows.

A. Transition probabilities for the MRP

1) Xi = n i.e., this cycle starts with any of the nodes being available to attempt.
a) (Ui+1, Xi+1) = (δ, n), if none of the n nodes attempts. Thus,

P (Ui+1 = δ, Xi+1 = n|Xi = n) = (1 − β)n

b) (Ui+1, Xi+1) = (Tdata−ack + 2δ, n− 1), if exactly one of the n nodes attempts. Thus,

P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n) = nβ(1 − β)(n−1)

c) (Ui+1, Xi+1) = (Tcoll + jδ, k2), if exactly n − k2(≥ 2) out of n nodes attempt. Further none of the remaining k2

nodes attempts for (j − 2) backoff periods after the collision, and at least one of them attempts in the very next
backoff period. Thus, for 1 ≤ k2 ≤ n − 2, 2 ≤ j ≤ J ,

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n) =
(

n
n − k2

)

βn−k2(1 − β)k2 ((1 − β)k2 )(j−2)(1 − (1 − β)k2 )

d) (Ui+1, Xi+1) = (Tcoll + (J + 1)δ, n), if k, 2 ≤ k ≤ n, nodes attempt, and none of the remaining n − k nodes
attempts for (J − 1) consecutive backoff periods after collision in this cycle. Thus,

P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = n) =
n

∑

k=2

(

n
k

)

βk(1 − β)(n−k)((1 − β)(n−k))(J−1)

It can be checked that
∑

u,x

P (Ui+1 = u, Xi+1 = x|Xi = n) = 1

since

(1 − β)n + nβ(1 − β)(n−1)

+

J
∑

j=2

n−2
∑

k2=1

(

n
n − k2

)

βn−k2(1 − β)k2((1 − β)k2)(j−2)(1 − (1 − β)k2)

+

n
∑

k=2

(

n
k

)

βk(1 − β)(n−k)((1 − β)(n−k))(J−1) = 1

2) Xi = n−1 i.e., this cycle starts with (n−1) of the nodes being available to attempt. This is similar to the case Xi = n.
a) (Ui+1, Xi+1) = (δ, n), if none of the n − 1 nodes attempts. Thus,

P (Ui+1 = δ, Xi+1 = n|Xi = n − 1) = (1 − β)n−1

b) (Ui+1, Xi+1) = (Tdata−ack + 2δ, n − 1), if exactly one of the n − 1 nodes attempts. Note that the node that was
not included at the start of the cycle would be ready to attempt at the end of the cycle, whether one of the other
nodes would not be able to attempt. Thus,

P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n − 1) = (n − 1)β(1 − β)(n−2)

c) (Ui+1, Xi+1) = (Tcoll + jδ, k2), if exactly n− k2(≥ 2) out of n− 1 nodes attempt. Further none of the remaining
k2 nodes attempt for (j − 2) backoff periods after the collision, and at least one of them attempts in the the very
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next backoff period. We note here that the node that is not available to attempt at the beginning of the cycle, can
attempt after Tcoll + 2δ and is included in the calculation. Thus, for 1 ≤ k2 ≤ n − 2, 2 ≤ j ≤ J ,

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n − 1) =
(

n − 1
n − k2

)

βn−k2 (1 − β)(k2−1)((1 − β)k2)(j−2)(1 − (1 − β)k2)

d) (Ui+1, Xi+1) = (Tcoll + (J + 1)δ, n), if k, 2 ≤ k ≤ n − 1, nodes attempt, and none of the remaining n − k nodes
attempts for (J − 1) consecutive backoff periods after collision in this cycle. Thus,

P (Ui+1 = Tcoll + jδ, Xi+1 = n|Xi = n − 1) =
(n−1)
∑

k=2

(

n − 1
k

)

βk(1 − β)(n−1−k)((1 − β)(n−k))(J−1)

As in case 1, it can be checked that
∑

u,x

P (Ui+1 = u, Xi+1 = x|Xi = n − 1) = 1

since

(1 − β)(n−1) + (n − 1)β(1 − β)(n−2)

+

J
∑

j=2

n−2
∑

k2=1

(

n − 1
n − k2

)

βn−k2(1 − β)k2((1 − β)k2)(j−2)(1 − (1 − β)k2)

+

(n−1)
∑

k=2

(

n − 1
k

)

βk(1 − β)(n−1−k)((1 − β)(n−k))(J−1) = 1

3) Consider k1 ∈ {1, 2, . . . , n − 2}, k2 ∈ {1, 2, . . . , n − 2}, j ∈ {2, 3, 4}. If Xi = k1 i.e., this cycle starts with k1 of the
nodes being available to attempt. It itself implies that one of them has attempted.

a) (Ui+1, Xi+1) 6= (δ, n), because at least one of the k1 nodes has attempted, and the cycle cannot be an idle one.
Thus,

P (Ui+1 = δ, Xi+1 = n|Xi = k1) = 0

b) (Ui+1, Xi+1) = (Tdata−ack + 2δ, n − 1), if exactly one of the k1 nodes attempts, given that at least one of them
has attempted. Thus,

P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = k1) =
k1β(1 − β)(k1−1)

1 − (1 − β)k1

c) (Ui+1, Xi+1) = (Tcoll + jδ, k2), if exactly n − k2(≥ 2) of k1 contending nodes attempt (n − k2 ≤ k1). To ensure
the following cycle length to be (2δ + Tcoll + (j − 2)δ), it is necessary that none of the k2 nodes attempts during
first (j − 2) backoff periods after collision but at least one of them attempts in the very next backoff period. The
next state cannot be (Tcoll + jδ, k2), if n − k2 > k1. As we have already discussed availability of less than n − 1
nodes itself implies that at least one of them has attempted. Thus,

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = k1) =
(

k1

n − k2

)

βn−k2(1 − β)(k1+k2−n)((1 − β)(n−k2))(j−2)(1 − (1 − β)(n−k2))

1 − (1 − β)k1
,

if k1 + k2 ≥ n, k1 > 1,

0, otherwise.

d) (Ui+1, Xi+1) = (Tcoll + (J + 1)δ, n), if some k, 2 ≤ k ≤ k1, nodes attempt out of the k1 nodes available to
contend. To ensure the cycle length to be (2δ + Tcoll + (J − 1)δ), it is necessary that none of the n − k nodes
attempts during first (J − 1) backoff periods after collision. Thus,
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P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = k1) =

∑k1

k=2

(

k1

k

)

βk(1 − β)(k1−k)((1 − β)(n−k))(J−1)

1 − (1 − β)k1
, if k1 > 1,

0, otherwise.

As in cases 1 and 2, again it can be checked that for k1 ∈ {1, 2, . . . , n − 2},

∑

u,x

P (Ui+1 = u, Xi+1 = x|Xi = k1) = 1

since for k1 = 1,

k1β(1 − β)(k1−1)

1 − (1 − β)k1
= 1

and for k1 > 1,

k1β(1 − β)(k1−1)

1 − (1 − β)k1

+

n−2
∑

k2=n−k1

(

k1

n − k2

)

βn−k2 (1 − β)(k1+k2−n)((1 − β)(n−k2))(j−2)(1 − (1 − β)(n−k2))

1 − (1 − β)k1

+

∑k1

k=2

(

k1

k

)

βk(1 − β)(k1−k)((1 − β)(n−k))(J−1)

1 − (1 − β)k1
= 1

1) Transition Probabilities for the Channel with Single Node:: In case of a channel comprising of single node, although a
successful transmission takes only 4 symbol times in the last backoff period, the node cannot attempt for its next packet in the
same backoff period. Hence a successful transmission consumes effectively Tdata−ack + 3δ time. A backoff period will be an
idle cycle, if the node is in backoff and doesnot attempt in that backoff period. There cannot be any collisions. Hence, only
feasible possibilities for (Ui, Xi) are (Tdata−ack + 3δ, 1) and (δ, 1)}. Transition probabilities for the Markov renewal process
can be obtained as follows.

• Xi = 1∀i

1) (Ui+1, Xi+1) = (δ, 1), if the node doesnot attempt. Thus,

P (Ui+1 = δ, Xi+1 = 1|Xi = 1) = 1 − β

2) (Ui+1, Xi+1) = (Tdataack + 3δ, 1), if the node attempts. Thus,

P (Ui+1 = Tdata−ack + 3δ, Xi+1 = 1|Xi = 1) = β

B. Transition Probabilities for the Markov Chain {Xi, i ≥ 0}

Let M be the transition probability matrix for the one dimensional Markov chain {Xi, i ≥ 0}.
For k1, k2 = 1, 2, 3, ......n− 2;
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Mk1,k2 =

J
∑

j=2

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = k1)

Mk1,n−1 = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = k1)

Mk1,n = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = k1)

+P (Ui+1 = δ, Xi+1 = n|Xi = k1)

Mn−1,k2 =

J
∑

j=2

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n − 1)

Mn−1,n−1 = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n − 1)

Mn−1,n = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = n − 1)

+P (Ui+1 = δ, Xi+1 = n|Xi = n − 1)

Mn,k2 =

J
∑

j=2

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = n)

Mn,n−1 = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = n)

Mn,n = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = n)

+P (Ui+1 = δ, Xi+1 = n|Xi = n)

C. Conditional Distribution of the Cycle Times

The conditional distribution of the cycle length Ui+1, given Xi, can be obtained as follows.
For k1 = 1, 2, ......n, j = 2, 3, ..J

P (Ui+1 = Tcoll + jδ|Xi = k1) =

n−2
∑

k2=1

P (Ui+1 = Tcoll + jδ, Xi+1 = k2|Xi = k1)

P (Ui+1 = Tcoll + (J + 1)δ|Xi = k1) = P (Ui+1 = Tcoll + (J + 1)δ, Xi+1 = n|Xi = k1)

P (Ui+1 = Tdata−ack + 2δ|Xi = k1) = P (Ui+1 = Tdata−ack + 2δ, Xi+1 = n − 1|Xi = k1)

P (Ui+1 = δ|Xi = k1) = P (Ui+1 = δ, Xi+1 = n|Xi = k1)


