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Abstract—Zak transform-based orthogonal time frequency
space (Zak-OTFS), a delay-Doppler (DD) domain modulation,
is well-suited for general wireless channels, including channels
which are highly doubly-dispersive in nature. Accurate input-
output (I/O) relation estimation and signal detection at the
receiver are crucial for reliable communication. In this paper,
we propose a deep neural network (DNN) based Zak-OTFS
receiver that jointly performs I/O relation estimation and signal
detection, considering an exclusive pilot frame. We focus on two
commonly considered DD pulse shaping filters, namely, sinc and
Gaussian filters, to demonstrate the effectiveness of the DNN
approach. A fully-connected DNN is trained to jointly learn
the DD channel within a spatial coherence period and optimize
the detection performance. Our simulation results demonstrate
that the proposed DNN approach outperforms the conventional
approach where model-free I/O relation estimation and minimum
mean square error detection are performed separately.

Index Terms—Zak-OTFS modulation, delay-Doppler domain,
I/O relation estimation, signal detection, deep neural network,
deep learning.

I. INTRODUCTION

Next generation wireless communication systems are en-
visioned to witness highly time-varying channels where the
Doppler spreads are in the kHz range, due to increased
mobile speeds and use of high carrier frequencies. Orthogonal
time frequency space (OTFS) modulation [1] is a promising
modulation scheme suitable for doubly-selective channels.
OTFS modulation multiplexes information symbols in the
delay-Doppler (DD) domain, followed by conversion from DD
domain to time domain for transmission. The received time-
domain signal is converted back to DD domain where symbol
detection is carried out. Transformation between domains can
be performed in different ways. A well known way is the
one used in multicarrier OTFS (MC-OTFS) [1]-[4], where the
transformation from DD domain to time domain is carried out
in two steps, viz., inverse symplectic finite Fourier transform
for DD domain to time-frequency (TF) domain conversion,
followed by Heisenberg transform for TF-domain to time do-
main conversion. Corresponding inverse transforms are carried
out at the receiver. An alternate way is to achieve direct
transformation from DD domain to time domain in a single
step using Zak-transform approach [5],[6],[7].

The Zak transform-based OTFS (Zak-OTFS) approach has
the advantage of achieving robust performance over a larger
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range of delay and Doppler spreads compared to the MC-
OTFS approach [6]-[8]. The basic Zak-OTFS waveform is a
quasi-periodic DD domain pulse, on which an information
symbol is multiplexed. In order to limit the transmit signal
to finite bandwidth and time duration, a DD domain pulse
shaping filter is used at the transmitter. Commonly considered
DD filters in the Zak-OTFS literature include sinc, root raised
cosine, and Gaussian filters [7]-[14]. The filtered DD domain
signal is converted to time domain using inverse Zak transform
for transmission. Input-output (I/O) relation estimation and
signal detection are crucial tasks at the Zak-OTFS receiver. In
the Zak-OTFS literature, these tasks are carried out separately.
For example, the signal detection task has been carried out
using minimum mean square error (MMSE) detection [7] and
local neighborhood search based detection [14]. Likewise, the
I/O relation estimation task has been carried out using model-
dependent and model-free approaches [7]. In this paper, we
jointly carry out the I/O relation estimation and detection tasks
in Zak-OTFS using a deep learning framework.

Over the past decade, deep learning has significantly trans-
formed various fields, enabling the resolution of complex,
non-trivial problems that were once considered challenging.
Applying deep learning techniques to wireless communica-
tion problems is on the rise, with advancements in channel
estimation, signal detection, and compensation of impairments
making wireless transceiver designs more efficient [15]-[22].
In this paper, we present a Zak-OTFS receiver using a deep
learning framework, where a fully-connected deep neural
network (DNN) is trained for joint I/O relation estimation and
signal detection, considering an exclusive pilot frame. Unlike
conventional methods that handle these tasks separately, our
DNN approach performs these tasks jointly. We focus on
two commonly considered DD pulse shaping filters, namely,
sinc and Gaussian filters, to demonstrate the effectiveness
of the DNN approach. A fully-connected DNN is designed
and trained to jointly learn the DD channel within a spatial
coherence interval and optimize the detection performance.
Our simulation results demonstrate that the proposed DNN ap-
proach outperforms the conventional approach where model-
free I/O relation estimation and MMSE detection are per-
formed separately.

II. ZAK-OTFS SYSTEM MODEL

The basic information carrier in Zak-OTFS is a quasi-
periodic DD domain pulse localized in a fundamental DD
period, defined by a delay period τp and a Doppler period



Fig. 1: Zak-OTFS transceiver signal flow diagram.

νp such that τpνp = 1. The fundamental DD period is defined
as D0 = {(τ, ν) | 0 ≤ τ < τp, 0 ≤ ν < νp}, where τ and
ν represent the delay and Doppler variables, respectively, and
τpνp = 1. A quasi-periodic DD domain pulse, when viewed in
the time domain, is a pulsone which is a time domain pulse
train modulated by a frequency tone. The delay period τp
is divided into M delay bins and the Doppler period νp is
divided into N Doppler bins, and MN information symbols
are multiplexed on MN DD pulses located at these MN DD
bins. M and N are chosen such that MN = BT , where B
and T are the bandwidth of transmission and time duration
of a Zak-OTFS frame. That is, the resolution along the delay
axis is ∆τ = 1

B =
τp

M and the resolution along the Doppler
axis is ∆ν = 1

T =
νp

N . In order to limit the bandwidth and
time duration to B and T , respectively, a DD domain pulse
shaping filter is used at the transmitter. Fig. 1 depicts the block
diagram of the Zak-OTFS transceiver.

The information symbols x[k, l]s, k = 0, · · · ,M −
1, l = 0, · · · , N − 1 are drawn from a mod-
ulation alphabet A. The DD grid on which these
MN information symbols are multiplexed is given by
Λdd

∆
=

{(
k
τp
M , l

νp

N

)
| k = 0, · · ·,M − 1, l = 0, · · ·, N − 1

}
.

The x[k, l]s on Λdd are encoded as quasi-periodic dis-
crete DD information as xdd[k + nM, l + mN ] =
x[k, l]ej2πn

l
N , n,m ∈ Z, which is converted into a con-

tinuous DD signal by mounting on a continuous DD do-
main quasi-periodic impulse train, resulting in xdd(τ, ν) =∑

k,l∈Z xdd[k, l]δ (τ − k∆τ) δ (ν − l∆ν), where δ(·) denotes
Kronecker delta function. Note that xdd(τ, ν) is also quasi-
periodic with period τp and νp along the delay and Doppler
axes, respectively, i.e.,

xdd(τ+nτp, ν+mνp) = ej2πnντp xdd(τ, ν), ∀ n,m ∈ Z, (1)

The signal xdd(τ, ν) is then time and bandwidth limited by
filtering through the Tx DD domain filter wtx(τ, ν), to obtain

xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν), (2)

where ∗σ denotes twisted convolution1. The time domain signal
for transmission is obtained using inverse Zak transform as

1Twisted convolution operation between two DD functions a(τ, ν) and
b(τ, ν) is defined as a(τ, ν) ∗σ b(τ, ν) =

∫∞
−∞

∫∞
−∞a(τ ′, ν′)b(τ −

τ ′, ν − ν′)ej2πν′(τ−τ ′)dτ ′dν′. Twisted convolution operation preserves
quasi-periodicity.

std(t) = Z−1
t (xwtx

dd (τ, ν)) =
√
τp

∫ νp

0

xwtx

dd (t, ν)dν. (3)

The transmitted signal passes through the channel having P
paths whose impulse response in the DD domain is given
by h(τ, ν) =

∑P
i=1 hiδ(τ − τi)δ(ν − νi), where hi, τi, and

νi are the channel gain, delay, and Doppler of the ith path,
respectively. The received time domain signal is given by

rtd(t) =

∫ ∫
h(τ, ν)std(t− τ)ej2πν(t−τ)dτdν + n(t), (4)

where n(t) is the additive white Gaussian noise (AWGN). Zak
transform is used to convert the received time domain signal
to DD domain as ydd(τ, ν) = Zt(rtd(t)), i.e.,

ydd(τ, ν) =
√
τp

∑
k∈Z

rtd(τ + kτp)e
−j2πνkτp + ndd(τ, ν), (5)

where ndd(τ, ν) = Zt(n(t)) is the noise in DD domain.
Next, ydd(τ, ν) is filtered through the Rx DD domain fil-
ter wrx(τ, ν), which is matched to the Tx DD filter, i.e.,
wrx(τ, ν) = w∗

tx(−τ,−ν)ej2πτν . The output of the Rx DD
filter is given by ywrx

dd (τ, ν) = wrx(τ, ν) ∗σ ydd(τ, ν), i.e.,

ywrx

dd (τ, ν) = heff(τ, ν) ∗σ xdd(τ, ν) + nwrx

dd (τ, ν), (6)

where heff(τ, ν) is the effective continuous DD channel (con-
sisting of the cascade of the Tx DD filter, physical DD channel,
and Rx DD filter), given by

heff(τ, ν) = wrx(τ, ν) ∗σ h(τ, ν) ∗σ wtx(τ, ν), (7)

and nwrx

dd (τ, ν) = wrx(τ, ν) ∗σ ndd(τ, ν) is the filtered AWGN
in DD domain. The DD domain signal ywrx

dd (τ, ν) is sampled
on the information lattice, resulting in the discrete quasi-
periodic DD domain received signal ydd[k, l] as

ydd[k, l] = ywrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
, k, l ∈ Z, (8)

which is given by

ydd[k, l] = heff [k, l] ∗σd xdd[k, l] + ndd[k, l], (9)

where the ∗σd in (9) is twisted convolution in discrete DD
domain, i.e.,
heff [k, l] ∗σd xdd[k, l] =

∑
k′,l′∈Z

heff [k − k′, l − l′]xdd[k
′, l′]

ej2π
k′(l−l′)

MN , (10)



where the effective channel filter heff [k, l] and filtered noise
samples ndd[k, l] are given by

heff [k, l] = heff

(
τ =

kτp
M

,ν =
lνp
N

)
, (11)

ndd[k, l] = nwrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
. (12)

Due to the quasi-periodicity in the DD domain, it is sufficient
to consider the received samples ydd[k, l] within D0. We
write the ydd[k, l] samples as a vector and the end-to-end DD
domain I/O relation in matrix-vector form as

y = Heffx+ n, (13)

where x,y,n ∈ CMN×1, such that their (kN+ l+1)th entries
are given by xkN+l+1 = xdd[k, l], ykN+l+1 = ydd[k, l],
nkN+l+1 = ndd[k, l], and Heff ∈ CMN×MN is the effective
channel matrix such that

Heff[k
′N + l′ + 1, kN + l + 1] =

∑
m,n∈Z

heff [k
′ − k − nM,

l′ − l −mN ]ej2πnl/Nej2π
(l′−l−mN)(k+nM)

MN , (14)

where k′, k = 0, . . . ,M − 1, l′, l = 0, . . . , N − 1.

III. PROPOSED DNN RECEIVER ARCHITECTURE

The system model in (13) can be used for the purpose of
I/O relation estimation and signal detection at the receiver.
I/O relation estimation is the task of estimating the effective
channel matrix Heff. Note that the Heff matrix depends on the
delay and Doppler spreads due to the Tx filter, the physical
channel, and the Rx filter. Signal detection is the task of
recovering the information symbols in the x vector, given
the knowledge of the estimated Heff matrix. Conventional
approaches in the Zak-OTFS literature carry out these two
tasks separately. For example, I/O relation estimation using
model-dependent approach or model-free approach and signal
detection using MMSE detection have been considered [7].
In the model-dependent approach of I/O relation estimation,
the parameters of the physical channel h(τ, ν), i.e., {τi, νi,
hi}s, are estimated using a channel estimation scheme and
these estimated parameters are then used to construct the Heff
matrix. That is, use the estimated {τi, νi, hi}s to compute
heff(τ, ν) defined in (7) and sample it to obtain heff[k, l] as
in (11), which when substituted in (14) gives the estimated
I/O relation Ĥeff. On the other hand, model-free approach of
I/O relation estimation does not require explicit estimation of
the physical channel parameters {τi, νi, hi}s. Instead, the I/O
relation can be obtained by sending a pilot symbol in a frame
and directly reading out the corresponding DD domain output
samples in D0 at the receiver [7].

In this paper, instead of carrying out the I/O relation
estimation and signal detection tasks separately, we perform
these two tasks jointly. The approach we adopt for this purpose
is deep learning approach. Specifically, we propose a DNN
architecture in which we train the network using synthetically
generated pairs of pilot and data frames as training data, and
directly minimize the root mean square error (RMSE) between

the actual and estimated data symbols, i.e., RMSE between
actual and estimated data symbols is used as the loss function.
So, the network learns the I/O relation internally and optimizes
the detection performance without an explicit estimation of
the I/O relation. The proposed DNN architecture and training
methodology are described below.

Fig. 2 shows the proposed DNN-based Zak-OTFS receiver
architecture for BPSK modulation. For higher-order modula-
tion, two such DNNs are used (one for real part and another for
imaginary part of the complex symbol). The proposed network
is a fully-connected DNN that carries out joint estimation of
the I/O relation and detection of the transmitted symbols. The
number of input neurons in the DNN is 4MN and the number
of output neurons is MN . For training the DNN, we generate
two consecutive Zak-OTFS frames:

• xP : a pilot frame which contains a pilot symbol.
• xD : a data frame which carries the information symbols.

The DD domain channel is assumed to remain constant over
these frames. The pilot frame consists of a single pilot symbol
placed at the center of the pilot frame, i.e., (kp, lp) =

(
M
2 , N

2

)
,

and zeros at other locations. The data frame consists of
information symbols. From (13), the received signal vector
for the pilot frame is given by

yP = HeffxP + nP, (15)

where yP ∈ CMN×1 and xP is the vectorized representation
of the pilot frame. The (kpN + lp + 1)th entry of xP

corresponds to the pilot location in the DD domain. Similarly,
the received signal vector for the data frame is given by

yD = HeffxD + nD, (16)

where xD is the vectorized representation of the data frame.
The received pilot vector yP and received data vector yD are
stacked to form the composite vector y′ ∈ C2MN×1 as

y′ =

[
yP

yD

]
. (17)

The y′ is converted to a real vector y′′ ∈ R4MN×1 by stacking
the real and imaginary parts as

y′′ =

[
ℜ(y′)
ℑ(y′)

]
=


ℜ(yP)
ℜ(yD)
ℑ(yP)
ℑ(yD)

 , (18)

where ℜ(.) and ℑ(.) denote real and imaginary parts, re-
spectively. The y′′ vector is fed as the input to the DNN,
making the number of input neurons to the DNN as 4MN .
The DNN processes the input vector y′′ and directly outputs
the estimated information symbols in the corresponding data
frame, making the number of output neurons to be MN , i.e.,
one neuron per information symbol in the data frame.

Training of the DNN is carried out using a dataset consisting
of multiple realizations of (y′′,xD) pairs, where y′′ represents
the input data and xD represents the corresponding labels. The



Fig. 2: Proposed DNN-based Zak-OTFS receiver architecture.

network aims to minimize the RMSE loss function L(x̂D,xD)
defined as

L(x̂D,xD) =

√√√√ 1

K

K∑
i=1

(xD,i − x̂D,i)
2, (19)

where K is the total number of training samples, and xD,i and
x̂D,i are the true and predicted values of the ith sample. Op-
timization is performed using the Adam optimizer to enhance
convergence efficiency and stability with a learning rate of
10−3 and follows a piecewise schedule, decreasing by a factor
of 0.8 every 2 epochs2. The training dataset is generated for
different pulse shaping filters. We consider sinc and Gaussian
pulse shaping filters. The sinc filter is given by

wtx(τ, ν) =
√
BT sinc(Bτ) sinc(Tν), (20)

and the Gaussian filter is given by

wtx(τ, ν) =

(
2ατB

2

π

) 1
4

e−ατB
2τ2

(
2ανT

2

π

) 1
4

e−ανT
2ν2

.

(21)
In order to ensure no bandwidth and time expansion beyond
B and T , respectively, ατ = αν = 1.584 is used for Gaussian
filter. The receive filter at the receiver matched to the transmit
filter is given by wrx(τ, ν) = ej2πτν w∗

tx(−τ,−ν).

IV. RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
DNN receiver for Zak-OTFS. A comparison is made between
our proposed DNN approach of joint I/O relation estimation
and signal detection and the conventional approach where
I/O relation estimation and signal detection are performed
separately. For the conventional approach, we consider model-
free I/O relation estimation [7] and MMSE detection. Sim-
ulations are performed for Zak-OTFS with the following
parameters: Doppler period νp = 15 kHz, delay period
τp = 1

νp
= 66.66 µs, M = 12, N = 14, total frame duration

T = Nτp = 0.93 ms, bandwidth B = Mνp = 180 kHz,

2A higher initial learning rate speeds up the training and helps the network
to prevent local minima. Gradually decreasing the learning rate reduces
fluctuations around the optimal solution.

Path index (i) 1 2 3 4 5 6
Delay τi (µs) 0 0.31 0.71 1.09 1.73 2.51

Relative power (dB) 0 -1 -9 -10 -15 -20

TABLE I: Power delay profile of Vehicular-A channel model.

and BPSK. We consider the Vehicular-A channel model [26]
with P = 6 paths, maximum Doppler shift νmax = 815 Hz,
maximum delay spread of τmax = 2.51µs, and power delay
profile given in Table I. The Doppler associated with the ith
path is modeled as νi = νmaxcos(θi) where θis are independent
and uniformly distributed in [0, 2π). A fully-connected DNN
architecture as shown below is used.
Proposed DNN: Input → 5000 → SiLU → LayerNorm →
3000 → SiLU → LayerNorm → 2000 → SiLU → LayerNorm
→ 500 → Sigmoid → Output.
The DNN consists of four hidden layers with 5000, 3000,
2000, and 500 neurons, respectively. The hidden layers use the
sigmoid linear unit [23] (SiLU3) activation function, followed
by Layer Normalization [24]4 in each layer to stabilize training
and improve convergence. The SiLU activation function is
used due to its non-monotonic behavior, which allows it
to retain information from negative input values rather than
discarding them entirely, as in the case of ReLU. This charac-
teristic helps prevent information loss and improves gradient
flow, particularly in deep networks. The output layer uses
the Sigmoid activation function, which constrains the output
within the range [0, 1]. A threshold of 0.5 is used to determine
the transmitted bits. The parameters used in the proposed DNN
are summarized in Table II.

In Fig. 3, the BER performance of the proposed DNN
receiver is compared with the conventional receiver which em-
ploys model-free I/O relation estimation followed by MMSE
detection. The comparison is made for sinc and Gaussian

3The SiLU activation function, also known as the Swish function, is defined
as SiLU(x) = x · 1

1+e−x , where σ(x) = 1
1+e−x is the sigmoid function.

SiLU has been shown to outperform traditional activation functions like
rectified linear unit (ReLU) in certain deep learning models (e.g., [25]). In
our system also, we observed that ReLU did not perform well whereas SiLU
performed quite well. Hence, we chose the SiLU activation function for the
proposed architecture.

4Layer normalization (LayerNorm) normalizes the activations of each layer
independently, which leads to smoother gradients and faster training.



Parameters Prop. DNN (Sinc) Prop. DNN (Gaussian)

No. of input neurons 4MN = 672 4MN = 672
No. of output neurons MN = 168 MN = 168
No. of hidden layers 4 4
Hidden layer activation SiLU SiLU
Output layer activation Sigmoid Sigmoid
No. of training examples 3,500,000 5,000,000
No. of epochs 50 50
Optimization Adam Adam
Loss function RMSE RMSE
Pilot SNR 30 dB 30 dB
Data SNR 21 dB 5 dB, 24 dB
Batch size 2048 2048

TABLE II: Proposed DNN and training parameters for sinc
and Gaussian filters.

filters. Additionally, as a performance benchmark, the per-
formance of MMSE detection with perfect channel state
information (CSI), i.e., perfect knowledge of Heff, is also
shown. The training dataset for the sinc filter is generated
at a pilot SNR of 30 dB and a data SNR of 21 dB. For
the Gaussian filter, the training dataset is generated at a pilot
SNR of 30 dB and data SNR values of 5 dB and 24 dB to
account for variations across different SNR conditions. Sinc
filter is found to perform better than Gaussian filter. This is
because sinc filter has nulls at the information grid sampling
points, whereas, at these sampling points, Gaussian filter has
non-zero values close to the main lobe peak which causes
interference. From Fig. 3, we can see that, as the pilot SNR
increases, the BER performance of both the proposed DNN
approach and the conventional approach improves and moves
close to the perfect CSI performance. However, the proposed
DNN approach achieves significantly better BER performance
compared to that of the conventional approach. For example,
at a pilot SNR of 20 dB, with Gaussian filter, the proposed
DNN approach achieves a BER of 1.4× 10−3 which is quite
close to the perfect CSI BER of 1.2 × 10−3, whereas the
conventional approach achieves a BER of 7×10−3. Likewise,
for sinc filter, the DNN approach BER is 3 × 10−4 and the
conventional approach BER is 1.5× 10−3. This demonstrates
the effectiveness of the proposed DNN approach.

In Fig. 4, we present the BER performance of both sinc
and Gaussian filters as a function of data SNR, while keeping
the pilot SNR fixed at 15 dB. From Fig. 4, it is seen that,
for both the filters, the proposed DNN approach significantly
outperforms the conventional approach. For example, at a
data SNR of 24 dB, the proposed DNN approach achieves
more than an order of better BER performance compared to
the conventional approach, demonstrating the ability of the
proposed DNN to learn the I/O relation and optimize the
detection performance.

In order to demonstrate the effectiveness of the proposed
DNN-based approach for higher-order QAM, we use two
DNNs as shown in Fig. 5. The first DNN is trained using
the dataset (y′′, ℜ(xD)), mapping y′′ to ℜ(xD), while the
second DNN is trained with (y′′, ℑ(xD)), mapping y′′ to
ℑ(xD), where xD denotes the transmitted vector consisting

Fig. 3: BER performance of the proposed DNN receiver for
sinc and Gaussian filters as function of pilot SNR.

Fig. 4: BER performance of the proposed DNN receiver for
sinc and Gaussian filters as function of data SNR.

of QAM symbols. At the receiver, the predicted outputs from
the two DNNs, x̂D1

and x̂D2
, corresponding to the real and

imaginary parts, respectively, are combined to reconstruct
the detected complex symbol vector as x̂D = x̂D1 + jx̂D2 .
which is then appropriately decoded to recover the transmitted
bits. In Fig. 6, we present the BER performance of sinc
and Gaussian filters for 8-QAM for a pilot SNR of 15 dB.
The results indicate that the proposed DNN-based approach
achieves better performance compared to the conventional
approach. We also notice that the sinc filter performs better
than the Gaussian filter in 8-QAM as well.

V. CONCLUSIONS

We proposed a DNN-based solution to the problem of joint
I/O relation estimation and signal detection in Zak-OTFS
receivers. A fully-connected network was proposed for this
purpose, where the network was trained using synthetically
generated pairs of pilot and data frames to directly minimize
the RMSE between the actual and estimated data symbols.
The network was able to learn the I/O relation internally
and optimize the detection performance without explicitly



Fig. 5: Block diagram of the proposed DNN architecture for
QAM-modulated Zak-OTFS signals.

Fig. 6: BER performance of the proposed DNN-based receiver
for 8-QAM as a function of data SNR.

estimating the I/O relation. Our simulation results for sinc
and Gaussian filters using an exclusive pilot frame showed
improved BER performance compared to the conventional
approach where I/O relation estimation and signal detection
are carried out separately. Future work can consider DNN-
based solutions for joint I/O relation estimation and signal
detection with embedded and superimposed pilot frames.
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