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Abstract—Traditionally, orthogonal time frequency space
(OTFS) modulation has been realized using a two-step approach
where the information symbols mounted in the delay-Doppler
(DD) domain are first converted to time-frequency (TF) domain
and then to time domain for transmission. Recently, a low-
complexity approach to OTFS has been proposed using discrete
Zak transform (DZT), wherein information symbols in the DD
domain are directly converted to time domain for transmission.
In this paper, we consider the problem of DD domain chan-
nel estimation for DZT-based OTFS systems in fractional DD
channels. Towards this, we propose a low-complexity iterative
algorithm which carries out estimation of the DD domain channel
parameters on a path-by-path basis. For each path, the algorithm
first obtains an estimate of the integer part of delay and
Doppler, and then estimates the fractional part where, instead
of performing a brute-force search, the algorithm iteratively
increases the DD resolution till a stopping criterion is reached.
Our simulation results show that the proposed algorithm achieves
good normalized mean square error performance and that the
bit error performance achieved using the proposed estimation
algorithm is close to that with perfect channel knowledge.

Index Terms—OTFS modulation, delay-Doppler domain, dis-
crete Zak transform, channel estimation, fractional delay-
Doppler.

I. INTRODUCTION

As we progress from 5G to 6G and beyond, it has become
more necessary than ever to support reliable communication
in channels with high Doppler spreads that manifest due to
high mobility and increased carrier frequency of operation.
It has been shown that orthogonal time frequency space
(OTFS) modulation performs well in high-Doppler channels
[1]-[5]. In OTFS modulation, data symbols are multiplexed in
delay-Doppler (DD) domain instead of conventional frequency
domain or time domain. The DD multiplexed data symbols
are transformed to time domain and transmitted. In most of
the exisiting literature on OTFS, this transformation is carried
out in two steps, namely, DD domain to time frequency
(TF) domain conversion using inverse symplectic finite Fourier
transform (ISSFT) and TF domain to time domain conversion
using Heisenberg transform [1]-[5]. Corresponding inverse
transforms are carried out at the receiver to bring the received
time domain signal to DD domain for detection.

An alternate approach to realize OTFS is through Zak
transform approach which transforms a DD domain signal to
time domain in one step [6],[7]. In the recent works reported
in [8],[9], Zak based OTFS has been shown to achieve better
performance compared to OTFS with two-step transformation
in channels with large Doppler spreads. They also explain why
Zak based OTFS waveform is naturally suited for large doubly-
spread channels and why it achieves better performance com-
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pared to TDM, FDM, and OTFS with two-step transformation.
Inspired by the digital counterpart of OFDM which has been
widely adopted in 4G/5G systems, discrete implementation
of OTFS can be realised using discrete Zak transform (DZT)
[10],[11]. Also, DZT of a sequence can be viewed as discrete
Fourier transform of the sub-sampled sequence [10], and hence
DZT based OTFS implementation is computationally efficient.
The input-output relation for DZT based OTFS (DZT-OTFS)
is derived in [11]. A low-complexity maximal ratio combining
detector for DZT-OTFS is presented in [12]. However, perfect
channel knowledge has been assumed. In the above context,
estimation of the DD domain channel in DZT-OTFS systems
is of interest, and this forms the main focus of this paper.

In this paper, we consider the problem of DD domain
channel estimation for DZT-OTFS systems in fractional DD
channels. Specifically, we propose a low-complexity iterative
algorithm for this purpose. The proposed algorithm carries
out estimation of the DD domain channel parameters on
a path-by-path basis, wherein all the parameters of a path,
namely, channel coefficient, delay, and Doppler, are estimated
before moving to the estimation of the next path. For each
path, the algorithm first obtains an estimate of the integer
part of delay and Doppler, and then estimates the fractional
part. In the fractional estimation part, instead of performing
a brute-force search, the algorithm iteratively increases the
DD resolution till a stopping criterion is reached. This leads
to low complexity of the algorithm without compromising
much on the performance. Our simulation results show that
the proposed algorithm achieves good normalized mean square
error (NMSE) performance and that the bit error rate (BER)
performance achieved using the proposed estimation algorithm
is close to that with perfect channel knowledge.

II. DZT-OTFS SYSTEM MODEL

Let Zx ∈ AM×N be the DD domain frame of information
symbols to be transmitted, where M and N are the number of
delay and Doppler bins, respectively, and A is the modulation
alphabet. The MN symbols are mounted on the DD grid
in locations given by (mT

M , n∆f
N ), m = 0, · · · ,M − 1,

n = 0, · · · , N − 1, where ∆fT = 1, M∆f = B, and B is
the bandwidth available for communication. Zx is converted
to time domain (TD) using inverse DZT before transmission.
The TD signal vector x ∈ CMN×1 is obtained from Zx using
IDZT as x = vec(ZxF

H
N ), where FN is the N -point unitary

DFT matrix. Cyclic prefix (CP) of length LCP is added to x
to obtain the vector s, i.e.,

s[u] =

{
x[(u)MN ], −LCP ≤ u ≤ MN − 1

0, otherwise.



s is converted to a continuous time signal as

s(t) =

MN−1∑
u=−LCP

s[u]g(t− uTs), (1)

where g(t) is the transmit pulse and Ts = 1/B. s(t) is trans-
mitted through a time-varying channel with impulse response
h(τ, ν) =

∑I
i=1 αiδ(τ − τi)δ(ν − νi), where I is the number

of paths, and αi, τi, and νi are the channel coefficient, delay,
and Doppler of the ith path, respectively. The received signal,
r(t), at the receiver is

r(t) =

I∑
i=1

αis(t− τi)e
j2πνit + w(t), (2)

where w(t) is the additive noise. The above signal is passed
through the matched filter, whose output is

y(t) =

∫ ∞

−∞
r(τ)g∗(τ − t)dτ. (3)

Using (1) and (2) in (3), we get

y(t) =

I∑
i=1

αi

MN−1∑
u=−LCP

s[u]∫ ∞

−∞
g(τ − uTs − τi)g

∗(τ − t)ej2πνiτdτ + w̃(t), (4)

where ˜w(t) is the match filtered noise. Assuming that the max-
imum Doppler, max

i
{νi}, is much lesser than the bandwidth

of the pulse, and denoting f(t) =
∫
g(τ)g∗(τ− t)dτ , y(t) can

be approximated as [11]

y(t) ≈
I∑

i=1

αie
j2πτiνi

MN−1∑
u=−LCP

s[u]ej2πνiuTsf(t− uTs − τi). (5)

For the considered g(t), f(t) can be approximately bounded
to finite duration in time [11]. y(t) is sampled at rate 1/Ts to
obtain the discrete signal vector

y[v] =

I∑
i=1

αie
j2πτiνi

MN−1∑
u=−LCP

s[u]ej2πuνiTsfi[v − u], (6)

where fi(u) = f(uTs − τi) and is assumed to have a
finite support satisfying the condition that the range of the
support is much less than MN . Removing the CP, (6) can be
approximated as

y[v] ≈
I∑

i=1

αie
j2π

liki
MN

MN−1∑
u=0

s[u]ej2πu
ki

MN f̃i[v − u], (7)

where f̃i[u] is the periodic version of fi[u] with the period
MN , ki = νiMNTs ∈ R, and li = τi

Ts
∈ R+. (7) can be

simplified as

y =

I∑
i=1

αie
j2π

liki
MN [(x · vi)⊛ f̃i] + w̃, (8)

where vi[u] = ej2πu
ki

MN , x · vi denotes the element wise
product of x and vi, ⊛ is the circular convolution operator,
and w̃ is the additive white Gaussian noise. y is transformed
to DD domain using DZT to obtain Zy as

Zy[m,n] =
1√
N

N−1∑
k=0

y[m+ kM ]e
−j2πnk

N , (9)

where m = 0, · · · ,M − 1 and n = 0, · · · , N − 1. Using the
properties of DZT, (9) can be written as

Zy =

I∑
i=1

αie
j2πτiνiZyi + w, (10)

where

Zyi [m,n] =

M−1∑
l=0

(
N−1∑
k=0

Zx[l, k]Zvi [l, n− k]

)
Zf̃i

[m− l, n],

(11)
and Zvi and Zf̃i

are Zak transforms of vi and f̃i, respectively.

A. Vectorization of input-output relation

Let zy, zyi
, zx denote the vectorized forms of Zy,Zyi

,Zx,
respectively, i.e., (nM + m)th element in the vector is the
[m,n]th entry in the corresponding matrix. The vectorized
form of input-output relation between zyi and zx is derived
as follows.

Let A ∈ CM×N and B ∈ C2M−1×N be two matrices with
entries A[m,n] = Zvi [m,n] and B[m,n] = Zf̃i

[m − (M −
1), n], m = 0, · · · ,M − 1, n = 0, · · · , N − 1. Also, let
RN ∈ CN×N be a reversal matrix and PN be a basic circulant
permutation matrix of size N [13]. Define a matrix H(i)′

q ∈
CM×N as

H(i)′

q [m,n] =

{
A[m,n], if m = [q]M

0, otherwise,
(12)

for q = 0, 1, · · · ,MN − 1. Here [·]M denotes the modulo-M
operation. Let H(i)

1 ∈ CMN×MN be a matrix whose qth row is
filled with vec(H(i)′

q RNP⌊ q
M ⌋+1

N ), where ⌊·⌋ denotes the floor
operator. Define H(i)′′

q ∈ CM×N as

H(i)′′

q [m,n] =

{
B[m+ [q]M , n], if n = ⌊ q

M ⌋
0, otherwise.

(13)

Also, define H(i)
2 ∈ CMN×MN whose qth row is filled with

vec(RMH(i)′′

q ). Finally, (11) and (10) can be vectorized as

zyi = H(i)
2 H(i)

1 zx (14)

and

zy =

I∑
i=1

αie
j2π

liki
MN zyi

, (15)

respectively. Here, the matrix H
(i)
1 effectively carries out

element-wise multiplication with vi and H
(i)
2 carries out the

circular convolution with f̃i in (8).



III. PROPOSED DD CHANNEL ESTIMATION ALGORITHM

To estimate the DD domain channel at the receiver, a known
pilot frame is transmitted. We consider a pilot frame consisting
of a pilot symbol at the center and zeros elsewhere, i.e.,

Zx[m,n] =

{√
MNEp, if m = M

2 , n = N
2

0, otherwise,
(16)

where Ep is the average energy of each bin of the frame.
The received pilot signal vector, zy , is used to estimate the
channel, which is then used for detection of data symbols,
at the receiver. The proposed channel estimation algorithm is
described below. (14) and (15) can be alternatively written as

zy =

I∑
i=1

giαi + w = Gα+ w, (17)

where gi = ej2π
liki
MN H(i)

2 H(i)
1 zx ∈ CMN×1, G =

[g1(l1, k1), g2(l2, k2), · · · , gI(lI , kI)] ∈ CMN×I , and α =
[α1, α2, · · · , αI ]

T ∈ CI×1. The maximum likelihood (ML)
estimate of the tuple (l,k,α) is given by

[̂l, k̂, α̂] = argmin
l,k,α

∥zy − G(l,k)α∥22, (18)

where ∥ ·∥2 denotes 2-norm. For a given l,k, the ML estimate
of α is obtained by

α̃(l,k) =
[
GH(l,k)G(l,k)

]−1

GH(l,k)zy. (19)

Substituting (19) in (18) and simplifying, we obtain(̂
l, k̂
)
= argmax

l,k

[
zHy G(l,k)

(
GH(l,k)G(l,k)

)−1

GH(l,k)zy
]
.

(20)
Using (19) in (20),(̂

l, k̂
)
= argmax

l,k

[
zHy G(l,k)α̃(l,k)

]
. (21)

Based on the estimates obtained in (20), we obtain the estimate
of α as

α̂(̂l, k̂) =
[
GH (̂l, k̂)G(̂l, k̂)

]−1

GH (̂l, k̂)zy. (22)

We note that the product G(l,k)α̃(l,k) in (20) is the re-
constructed signal with possible combinations of l and k in
the search area, and (20) can be viewed as the correlation
of the received signal with the reconstructed signal. To solve
(20), we propose an algorithm which estimates the channel
parameters in a path-by-path fashion, i.e., before estimation of
the parameters of the pth path, the parameters of all the paths
till the pth have been estimated. In other words, the channel
parameters of the first, second, and so on till the (p − 1)th
path have been estimated before the estimation of the pth path
can begin.

Figure 1 shows the flow chart of the proposed algorithm
to estimate the channel parameters. For the pth path, for
estimating the lp and kp of the path, the algorithm first
estimates the integer part of lp and kp, called coarse estimate
(denoted by ∼ over the estimates), and then the fractional

Fig. 1: Flow chart of the proposed algorithm to estimate DD
channel parameters.

part of lp and kp is estimated, called fine estimate (denoted
by ∧ over the estimate). The algorithm begins by initializing
G(l,k) =

[
g1(l1, k1), g2(l2, k2), · · · , gPmax

(lPmax , kPmax)
]
=

0MN×Pmax , where Pmax is the maximum number of paths the
algorithm estimates before termination.
A. Coarse Estimation

For the pth path, the proposed algorithm first estimates the
integer parts of lp and kp as described below. A search area
is defined as J = L⊗K, where L = {0, 1, · · · , ⌈lmax⌉},K =
{−⌈kmax⌉, · · · , 0, · · · , ⌈kmax⌉}, lmax = max

i
{li}, kmax =

max
i

{ki}, and ⊗ denotes the cartesian product. A cost func-
tion, Φp(lp, kp), is maximized over the search area to obtain
the integer estimates, as

(l̃p, k̃p) = argmax
(lp,kp)∈J

Φp(lp, kp), (23)

Φp(lp, kp)= zHy Gp(l,k)(GH
p (l,k)Gp(l,k))−1GH

p (l,k)zy , and
Gp(l,k) = [g1(l̂1, k̂1), · · · ḡp(lp, kp), 0, · · · , 0]. Here, l̂i and k̂i
denote the fine estimate of delay and Doppler, respectively,
for i = 1, 2, · · · , p − 1. ḡp(lp, kp) =

gp(lp,kp)

∥gp(lp,kp)∥ is the
normalization operation for each (lp, kp) ∈ J to aid the
correlation computation (see (20)).
B. Fine Estimation

Once the coarse estimates of the channel parameters for
the pth path have been obtained, the fine estimation of the
channel parameters for this path are carried out as described
below. The fine estimation of the channel parameters involves
estimation of the fractional part of the channel parameters to
the desired resolution. Figure 2 shows the flow chart of the
iterative fine estimation algorithm. The algorithm begins by
initializing n = 1 and l

(0)
p = l̃p and k

(0)
p = k̃p. For the nth

iteration, the search area, I(n), is defined as

I(n) =

{{
l(n−1)
p − 5

10n
, l(n−1)

p − 4

10n
, · · · , l(n−1)

p +
5

10n

}

⊗
{
k(n−1)
p − 5

10n
, k(n−1)

p − 4

10n
, · · · , k(n−1)

p +
5

10n

}}
. (24)

Similar to the coarse estimate, the same cost function is
maximized over I(n), given by

(l̂(n)p , k̂(n)p ) = argmax
(lp,kp)∈I(n)

Φp(lp, kp). (25)



Fig. 2: Flow chart of fine estimation algorithm.

Following this, the value of n is incremented by 1. This
iterative procedure is stopped when a pre-defined value for
n is achieved, i.e., n = nmax (the estimate for delay and
Doppler have been estimated to the nmaxth decimal place).

Stopping Criterion: The algorithm stops once Pmax paths
have been estimated, i.e., p = Pmax, or ∥z(p)c − z(p−1)

c ∥22 < ϵ,
where z(p)c = G(̂l, k̂)α̂(̂l, k̂).

Remark: We note that the value of Pmax determines the
number of paths estimated. If Pmax < I , the number of
estimated paths is less than the number of actual paths.
Therefore, for our simulations, we consider Pmax ≫ I .

IV. RESULTS AND DISCUSSIONS

This section presents the performance of the proposed
channel etimation algorithm. Two DZT-OTFS systems with
(M = N = 16) and (M = 64, N = 32) are considered.
Square-root raised cosine pulse with roll-off factor 0.5 is used
as the transmit pulse. Two parameter sets are considered for
the simulation: For the first set, ∆f = 3.75 kHz, I = 4
with uniform power delay profile (PDP), delays are uniformly
distributed in (0, τmax], τmax = 0.133 ms, and νmax = 937 Hz.
The second set, a more practical scenario, considers Vehicular
A (VehA) PDP [14] with ∆f = 156.25 kHz, and νmax = 1700
Hz. For both the cases, Dopplers are generated using Jakes’
Doppler spectrum, νi = νmaxcos(θi), where θi is uniformly
distributed in (0, 2π], and carrier frequency fc = 4 GHz.

Further, the following algorithm parameters are chosen:
Pmax = 15, nmax = 2, and ϵ = 20σ2, where σ2 is the variance
of noise. Also, in all the BER simulations, the pilot SNR is
same as data SNR.

Brute-force search vs proposed search comparison: Figure
3 shows the NMSE performance comparison between the
proposed low complexity search and the brute-force search in
fine estimation of the delay and Doppler values. DZT-OTFS
with M = N = 16 is considered. A channel with single path
is assumed for this comparison. It is seen that the NMSE of
the proposed low-complexity search matches with that of the
brute force search. However, the brute-force search has a high
complexity as detailed below. For a resolution of 10−nmax , the

Fig. 3: NMSE performance comparison between brute-force
search and proposed low-complexity search in fine estimation.
brute-force search requires 102nmax cost computations while
the proposed low-complexity search requires only nmax10

2

cost computations. For example, for a resolution of 0.01, brute-
force search requires 104 computations, while the proposed
search requires only 200 computations, making the proposed
search computationally efficient.

NMSE and BER performance: Figure 4 shows the NMSE
performance of the proposed algorithm as a function of pilot
SNR for DZT-OTFS systems with M = N = 16 and
M = 64, N = 32. As expected, it is observed that the
NMSE decreases with increase in pilot SNR. For the same
set of parameters, the NMSE performance of the system with
M = 64, N = 32 is observed to be better than that of
the M = N = 16 system. This is because, as the values
of M and N increase, the resolution of DD grid increases,
and hence a better channel estimation accuracy is obtained.
Also, it is observed that the NMSE performance with uniform
PDP performs better than the VehA PDP. Figure 5 shows the
corresponding BER performance of the two systems using
BPSK modulation and minimum mean square error (MMSE)
detection. The BER performance with perfect CSI is also
added for comparison. It is seen that the BER performance
using the proposed channel estimation algorithm is very close
to the corresponding perfect CSI performance, demonstrating
the effectiveness of the proposed estimation algorithm.

NMSE performance with and without an approxima-
tion: Recall from (20) that the cost function is given

by zHy G(l,k)
(

GH(l,k)G(l,k)
)−1

GH(l,k)zy . The product

GH(l,k)G(l,k) can be approximated by a scaled identity
matrix, i.e., GH(l,k)G(l,k) ≈ MNI. This results in further
reduction of the number of operations required to compute the
cost function. However, this comes at the cost of performance.
Figure 6 shows the NMSE performance of the proposed
algorithm with and without the above approximation. Uniform
PDP is considered for the simulation. It is seen that the NMSE
performance with approximation is relatively inferior com-
pared that without approximation, which is expected. However,
the achieved NMSE with approximation is adequately small
so that the BER performance is not compromised much. This
can be observed in Fig. 7 which implies that the approximation



Fig. 4: NMSE performance of the proposed estimation al-
gorithm for DZT-OTFS systems with M = N = 16 and
M = 64, N = 32.

Fig. 5: BER performance achieved using the proposed esti-
mation algorithm for DZT-OTFS systems with M = N = 16
and M = 64, N = 32.

can be used to reduce complexity without compromising much
on performance.

V. CONCLUSIONS

We proposed a low-complexity iterative algorithm that esti-
mates the DD domain channel parameters in DZT based OTFS
systems. The proposed algorithm estimates fractional delays
and Dopplers path-by-path. The fine estimate involved a low-
compelxity search instead of a brute-force search. Numerical
results showed that the proposed algorithm achieves good
NMSE performance and BER performance that is very close
to perfect CSI performance.
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