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Abstract—Orthogonal time frequency space (OTFS) implemen-
tation using discrete Zak transform (DZT) has performance and
complexity advantages in channels with high Doppler spreads.
In this paper, we propose a data-aided approach to channel
estimation in DZT-based OTFS systems with fractional delays
and Dopplers. The proposed method employs an embedded
pilot frame (consisting of pilot and data symbols) for channel
estimation and leverages detected data to enhance channel esti-
mation accuracy. The algorithm adopts a path-by-path approach
where the channel parameters for one path are estimated before
proceeding to the next, without assuming the knowledge of the
number of paths. Considering the embedded nature of the pilot
and data symbols in a frame, the effect of data signal-to-noise
ratio (SNR) on the channel estimation performance and the effect
of pilot SNR on the data detection performance are evaluated,
leading to the data-aided approach to achieve improved per-
formance. Simulation results show that the proposed estimation
algorithm achieves significantly better performance compared to
threshold based estimation algorithm.

Index Terms—OTFS modulation, delay-Doppler domain, dis-
crete Zak transform, fractional delay-Doppler, data-aided chan-
nel estimation.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation has
emerged as a promising modulation scheme that offers good
resilience to high Doppler spreads of the channel [1]-[5]. A key
attribute of OTFS modulation is that it operates by encoding
information symbols in the delay-Doppler (DD) domain before
transforming them into the time domain (TD) for transmission.
In the past, several works have carried out this transformation
using a multicarrier (MC) modulation block preceded by a
two-dimensional precoding operation using inverse simplectic
finite Fourier transform [6]. This scheme is referred to as the
multicarrier OTFS (MC-OTFS) scheme [9],[10]. In the MC-
OTFS scheme, the transmitter first converts the information
symbols from DD domain to time-frequency (TF) domain, and
then converts the TF domain output to time domain (TD) for
transmission. At the receiving end, the received TD signal
undergoes conversion to TF domain before being reverted back
to DD domain for signal detection.

An alternate approach to implement OTFS is through the use
of Zak transform [7]. In this approach, the DD domain symbols
are directly transformed to TD using inverse Zak transform at
the transmitter, and the TD signal is transformed back to DD
domain at the receiver using Zak transform. A comparative
performance analysis between MC-OTFS and Zak-OTFS has
revealed superior performance of Zak-OTFS [9],[10]. Drawing
inspiration from the FFT-based implementation of OFDM, a
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discrete Zak transform (DZT) based implementation emerges
as a method to realize Zak transform based OTFS in the
discrete domain [11],[12]. The DZT of a sequence is analogous
to the discrete Fourier transform of a sub-sampled sequence
[11], and therefore possesses computational efficiency. The
input-output relation governing a DZT-based OTFS system is
derived in [12], and its bit error performance is investigated in
[13]. The bit error performance reported in [13] substantiates
that DZT-OTFS is more robust to large Doppler spreads
than MC-OTFS. A low-complexity maximal ratio combining
detector for DZT-OTFS is proposed in [14]. The above works
on DZT-OTFS have assumed perfect channel knowledge. In
this paper, we focus on DD channel estimation for DZT-OTFS
and its performance.

In the pursuit of DD channel estimation at the OTFS
receiver, diverse methodologies have been introduced in the
literature [5],[16]-[19]. Two key issues of interest in this regard
are: i) placement of pilot symbol(s) in an OTFS frame, and
ii) fractional nature of the delays and Dopplers. A simple
pilot placement strategy is to have an exclusive pilot frame
for channel estimation, which is inefficient due to increased
overhead [15],[16]. Another strategy is to use an embedded
pilot approach where both pilot and data symbols are placed
in a frame with guard symbols in between [17],[18],[19].
An advantage of embedded pilot frames is better spectral
efficiency compared to exclusive pilot frames. However, the
embedded pilot approach has the associated issue of interfer-
ence/leakage between pilot and data symbols in the frame.
In particular, this issue gets exacerbated in the presence of
fractional delays and Dopplers (DDs). This point is illustrated
in Fig. 1, which shows the DD channel response for MC-
OTFS and DZT-OTFS with integer and fractional DDs. The
following two observations in Fig. 1 form the motivation for
the work reported in this paper. First, it can be seen that with
integer DDs, the channel response is well localized for both
MC-OTFS and DZT-OTFS. However, with fractional DDs,
the channel response gets diffused across multiple DD bins
in the frame. This diffusion is severe in the case of MC-
OTFS compared to that in DZT-OTFS. This indicates that
DZT-OTFS is a better waveform than MC-OTFS for frac-
tional DDs (which are more practical). Second, although the
fractional DD induced diffusion is less in DZT-OTFS, it can
still affect channel estimation performance. Simple techniques
(e.g., threshold based channel estimation) may prove to be
inadequate and algorithms that can suppress the fractional DD
induced diffusion effects are needed.

Based on the above, in this paper, we consider the problem
of DD channel estimation for DZT OTFS with embedded pilot
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(a) MC-OTFS, integer DD
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(b) DZT-OTFS, integer DD
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(c) MC-OTFS, fractional DD
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(d) DZT-OTFS, fractional DD

Fig. 1: Channel response for MC-OTFS and DZT-OTFS with
32 delay bins, 16 Doppler bins, and 9 paths.

frames (motivated by better spectral efficiency) in the presence
of fractional DDs (which are more practical). Specifically, we
propose a channel estimation algorithm where the effect of
leakage from data symbols on channel estimation is suppressed
by leveraging the detected data in an iterative manner. The
algorithm adopts a path-by-path approach where the channel
parameters for one path are estimated before proceeding to
the next, without assuming the knowledge of the number of
paths. Simulation results show that the proposed estimation
algorithm achieves significantly better performance compared
to threshold based estimation algorithm.

The rest of the paper is organized as follows. The DZT-
OTFS system model is presented in Sec. II. The proposed
channel estimation algorithm is presented in Sec. III. Sim-
ulation results and discussions are presented in Sec. IV.
Conclusions and future work are presented in Sec. V.

II. DZT-OTFS SYSTEM MODEL

Consider the matrix Zx ∈ AL×K in the DD domain,
containing information symbols to be transmitted. Here, L
represents the number of bins along the delay domain, K
represents the number of bins along the Doppler domain,
and A represents the modulation alphabet. Let W denote the
available communication bandwidth, with W = L∆f , where
∆f is the subcarrier spacing. The total time required for
transmitting the frame is K

∆f . The information symbols are
positioned on the DD grid at coordinates ( l

L∆f ,
k∆f
K ), where

l = 0, · · · , L − 1 and k = 0, · · · ,K − 1. The DD domain
information symbols are transformed into a TD vector, denoted
by x ∈ CLK×1, using inverse discrete Zak transform (IDZT).
The relationship between x and Zx is given by

x = vec(ZxF
H
K), (1)

where FK represents the K-point unitary discrete Fourier
transform (DFT) matrix. To prevent inter-frame interference,
a cyclic prefix (CP) of length TCP is added to x, resulting in
a vector s. This process is defined as follows:

s[c] =

{
x[(c)LK ], −TCP ≤ c ≤ LK − 1

0, otherwise.
(2)

To facilitate signal transmission, the vector s is converted
to a continuous-time signal s(t) using the pulse f(t). The
continuous-time signal is given by

s(t) =

LK−1∑
c=−TCP

s[c]f(t− cTs), (3)

where Ts = 1/W is the basic signaling interval. The signal
s(t), after passing through the time-varying channel with DD
domain impulse response h(τ, ν) =

∑I
i=1 βiδ(τ−τi)δ(ν−νi),

is observed at the receiver, where I is the number of paths,
τi, νi are the fractional delay and Doppler of the ith path, and
βi is the fade coefficient of the ith path. The received signal,
denoted by r(t), at the receiver is given by

r(t) =

I∑
i=1

βis(t− τi)e
j2πνit + w(t), (4)

where w(t) is the additive noise. The received signal r(t) is
then passed through a matched filter, and the output y(t) is
given by

y(t) =

∫ ∞

−∞
r(τ)f∗(τ − t)dτ. (5)

By substituting equations (3) and (4) into equation (5), we
obtain

y(t) =

I∑
i=1

βi

LK−1∑
c=−TCP

s[c]∫ ∞

−∞
f(τ − cTs − τi)f

∗(τ − t)ej2πνiτdτ + w̃(t), (6)

where w̃(t) represents the match-filtered noise. Under the
assumption that the maximum Doppler, max

i
{νi}, is much

smaller than the pulse bandwidth, and denoting g(t) =∫
f(τ)f∗(τ − t)dτ , y(t) can be approximated as

y(t) ≈
I∑

i=1

βie
j2πτiνi

LK−1∑
c=−TCP

s[c]ej2πνiuTsg(t− cTs − τi) + w̃(t).

(7)

The signal y(t) is sampled at rate 1/Ts to obtain the discrete
signal vector y as

y[u] =

I∑
i=1

βie
j2πτiνi

LK−1∑
c=−TCP

s[c]ej2πcνiTsgi[u− c] + w̃[u], (8)

where w̃[u] = w̃(uTs), gi(u) = g(uTs − τi) is assumed to
have finite support such that the range of the support is much



less than LK. Now, by defining g̃i[c] as the periodic version
of gi[c] with the period LK, (8) can be approximated as

y[u] ≈
I∑

i=1

βie
j2π

lτi
kνi

LK

LK−1∑
c=0

s[c]ej2πc
kνi
LK g̃i[u− c] + w̃[u],

(9)
after removing the CP. In the above equation, kνi

= νiLKTs ∈
R, and lτi = τi

Ts
∈ R+, i.e., the delays and Dopplers are

fractional. Equation (9) can be written in a vector form as

y =

I∑
i=1

βie
j2π

lτi
kνi

LK [(x · vi)⊛ g̃i] + w̃, (10)

where vi[u] = ej2πu
kνi
LK , x · vi denotes the element-wise

product of x and vi, ⊛ is the circular convolution operator,
and w̃ is the additive noise vector. The vector y is transformed
back to the DD domain using DZT to obtain Zy as

Zy[l, k] =
1√
K

K−1∑
n=0

y[l + nL]e
−j2πnk

K , (11)

where l = 0, · · · , L − 1 and k = 0, · · · ,K − 1. Using the
properties of DZT, equation (11) can be written as

Zy =

I∑
i=1

βie
j2πτiνiZyi + Zw̃, (12)

where

Zyi
[l, k] =

L−1∑
m=0

(
K−1∑
n=0

Zx[m,n]Zvi [m, k − n]

)
Zg̃i [l−m, k],

(13)
Zx, Zvi , Zg̃i , and Zw̃ are the Zak transforms of x, vi, g̃i, and
w̃, respectively.

A. Vectorization of input-output relation
Let zy, zyi

, zx, and zw̃ represent the vectorized forms of
matrices Zy,Zyi

,Zx, and Zw̃, respectively. In other words, the
(kL+l)th element in the vector corresponds to the [l, k]th entry
in the corresponding matrix, such that Zy[l, k] = zy[kL + l].
The vectorized form of input-output relation between zyi

and
zx is derived as follows.

Let H ∈ CL×K and G ∈ C2L−1×K be two matrices with
entries H[l, k] = Zvi [l, k] and G[l, k] = Zg̃i [l − (L − 1), k],
where l = 0, · · · , L− 1 and k = 0, · · · ,K − 1. Additionally,
let RK ∈ CK×K be a reversal matrix and PK be a basic
circulant permutation matrix of size K [20]. Define a matrix
A

(i)′

q ∈ CL×K as

A(i)′

q [l, k] =

{
H[l, k], if l = [q]L

0, otherwise,
(14)

where [·]L denotes the modulo-K operation and q =

0, · · · , LK − 1. Let A(i)
1 ∈ CLK×LK be a matrix whose qth

row is filled with vec(A(i)′

q RKP
⌊ q
L ⌋+1

K ), where ⌊·⌋ denotes
the floor operator. Define A

(i)′′

q ∈ CL×K as

A(i)′′

q [l, k] =

{
G[l + [q]L, k], if k = ⌊ q

L⌋
0, otherwise.

(15)

Additionally, define A
(i)
2 ∈ CLK×LK whose qth row is filled

with vec(RLA
(i)′′

q ). Finally, (13) and (12) can be vectorized
as

zyi
= A(i)zx (16)

and

zy =

I∑
i=1

βie
j2π

lτi
kνi

LK zyi
+ zw̃, (17)

respectively, where A(i) = A
(i)
2 A

(i)
1 Here, the matrix A

(i)
1

effectively performs element-wise multiplication with vi, and
A

(i)
2 carries out the circular convolution with g̃i in (10).

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

In this section, we first present an algorithm to obtain an
initial estimate of the channel parameters, and then enhance
the estimation accuracy using the knowledge of detected data
in the embedded frame. Consider an embedded frame where
the data, pilot, and guard symbols coexist in the frame [17].
The structure of the embedded frame is expressed as

Zx[l, k] =


xp l = L

2 , k = K
2

0 (l, k) ∈ L⊗K
xlk ∈ A otherwise,

(18)

where xp and xlk denote the pilot and data symbols, respec-
tively, and ⊗ denotes the Cartesian product of two sets. That
is, the transmit vector zx in (16) consists of pilot, guard
(zero), and data symbols as per (18). The sets L = {L

2 −
⌈lτmax

⌉, · · · , L
2 +⌈lτmax

⌉} and K = {K
2 −2⌈kνmax

⌉, · · · , K
2 +

2⌈kνmax
⌉} , where lτmax

= max
i

{lτi} and kνmax
= max

i
{kνi

},
define the guard space which is the region around the pilot
symbol that is filled with zeros to prevent interference between
pilot and data symbols1. This embedded frame is transmitted
through the channel and the received signal zy in (17) is
processed for estimating the channel and detecting the data.

A. Initial channel estimation

The channel parameters that are to be estimated are
(lτ ,kν ,β), where lτ = [lτ1 · · · lτI ]

T , kν = [kν1
· · · kνI

]T

and β = [β1 · · · βI ]
T . In order to obtain an initial es-

timate of the above parameters, we use the cost function
∥zy −B(lτ ,kν)β∥2 and obtain the initial estimate as

[̂lτ , k̂ν , β̂] = argmin
lτ ,kν ,β

∥zy −B(lτ ,kν)β∥2, (19)

where B = [b1(lτ1 , kν1) b2(lτ2 , kν2) · · · bI(lτI , kνI
)] ∈

CLK×I , bi = ej2π
lτi

kνi
LK A(i)z′x ∈ CLK×1, and z′x is obtained

by making xlk = 0 in (18). The above cost function is inspired
by the cost function in [16] used for a pilot-only frame. Here, it
is used as an approximate cost function for obtaining the initial
estimate of the parameters, which are subsequently refined
using the estimated data in the embedded frame.

1It is important to note that, with integer DD, the guard space avoids the
interference between pilot and data symbols. However, with fractional DD,
interference between pilot and data arises due to symbol spreading in the DD
domain.



Fig. 2: Flow chart of the channel estimation algorithm to
estimate (lτ ,kν) in (21).

Equation (19) is an optimization problem in three variables.
To reduce complexity, we initially estimate (lτ ,kν) and then
estimate β, as follows. For a given (lτ ,kν), the β which min-
imizes the cost function in (19) is obtained by differentiating
the cost function with respect to β and equating it to zero,
and is obtained as

β̃(lτ ,kν) =
[
BH(lτ ,kν)B(lτ ,kν)

]−1
BH(lτ ,kν)zy. (20)

Using (20) in (19) and simplifying, an estimate of (lτ ,kν) can
be obtained as(̂
lτ , k̂ν

)
= argmax

lτ ,kν

[
zHy B(lτ ,kν)

(
BH(lτ ,kν)B(lτ ,kν)

)−1

BH(lτ ,kν)zy

]
. (21)

Using the estimates (̂lτ , k̂ν) from (21) in (20), an estimate of
β is obtained as

β̂(̂lτ , k̂ν) =
[
BH (̂lτ , k̂ν)B(̂lτ , k̂ν)

]−1

BH (̂lτ , k̂ν)zy. (22)

We note that (21) represents the correlation of the received
signal with the reconstructed signal at different points in the
search area. Solving (21) using an exhaustive search of the
entire solution space in fine resolution is computationally ex-
pensive. So, we use an algorithm which estimates the channel
parameters in two steps, namely, a coarse resolution search
to obtain the optimal integer estimates of the parameters,
followed by a fine resolution search to obtain the optimal esti-
mates of the fractional parts around the integer estimates. This
reduces complexity. Also, the algorithm estimates the channel
in a path-by-path manner, where the channel parameters of the
pth path are estimated only after all the channel parameters of
paths from 1 to p− 1 are estimated.

Figure 2 shows the flowchart of the estimation algorithm
to solve (21). The algorithm begins by initializing the path
index p = 1 and B = 0LK×Pmax , where Pmax is the
maximum number of paths that the algorithm estimates. After
the initialization, the algorithm starts estimating the parameters
of the channel path-by-path. For each path, this estimation
involves two stages: coarse estimation and fine estimation.
After the fine estimation stage of each path, the algorithm
checks if the stopping criterion is met. If it is not met, p

Fig. 3: Flow chart of fine estimation algorithm.

is incremented by 1, and the algorithm proceeds to estimate
the parameters of the (p + 1)th path. If it is met, then the
algorithm terminates and returns the vectors (̂lτ , k̂ν , β̂). The
stopping criterion and coarse and fine estimation stages used
in estimating the parameters of pth (1 ≤ p ≤ Pmax) path are
described below.

1) Coarse Estimation: In this stage, we estimate the integer
parts of (lτp , kνp

). Towards this, we define a search area, J ,
which is the Cartesian product of two sets L and K, where

L = {0, · · · , ⌈lτmax
⌉}, K = {−⌈kνmax

⌉, · · · , 0, · · · , ⌈kνmax
⌉}.

A cost function, Φp(lτp , kνp), obtained from (21) as

Φp(lτp , kνp
) = zHy Bp(lτ ,kν)(B

H
p (lτ ,kν)Bp(lτ ,kν))

−1

BH
p (lτ ,kν)zy, (23)

where Bp(lτ ,kν) = [b1(l̂τ1 , k̂ν1
) · · · bp(lτp , kνp

) 0 · · · 0],
(l̂τi , k̂νi ) represents the estimates of (lτi , kνi ) for i =
1, 2, · · · , p− 1, is maximized over all (lτp,kνp

) ∈ J , i.e.,

(l̃τp , k̃νp
) = argmax

(lτp ,kνp )∈J
Φp(lτp , kνp

). (24)

2) Fine Estimation: After the coarse estimation stage of the
pth path, the algorithm proceeds to the this stage, where the
fractional parts of the delay and Doppler of the pth path are
estimated. This is done iteratively by increasing the resolution
of the estimation (using a parameter r) in each iteration as
described below.

Figure 3 shows the flow chart for the iterative fine estimation
algorithm. This fine estimation algorithm is initialized by
setting r = 1 and (l̂

(0)
τp , k̂

(0)
νp ) = (l̃τp , k̃νp

), where (l̂
(r)
τp , k̂

(r)
νp )

denotes the fine estimate of (lτp , kνp) in rth iteration. In the
rth iteration, a search area, I(r), is defined as

I(r) =

{{
l(r−1)
τp − 5

10r
, l(r−1)

τp − 4

10r
, · · · , l(r−1)

τp +
5

10r

}

⊗
{
k(r−1)
νp − 5

10r
, k(r−1)

νp − 4

10r
, · · · , k(r−1)

νp +
5

10r

}}
. (25)



The cost function in (23) is maximized over I(r) to obtain
(l̂

(r)
τp , k̂

(r)
νp ) as

(l̂(r)τp , k̂(r)νp
) = argmax

(lτp ,kνp )∈I(r)
Φp(lτp , kνp

). (26)

Following this, the value of r is incremented by 1 and
this algorithm proceeds to the next iteration. This iterative
procedure continues until r = rmax. At this point, the fine
estimation algorithm is terminated with the pth path parameter
estimates as (l̂τp , k̂νp

) = (l̂
(rmax)
τp , k̂

(rmax)
νp ).

3) Stopping Criterion: After the fine estimation stage
of the pth path, the channel estimation algorithm stops if
p = Pmax or ∥z(p)c − z

(p−1)
c ∥2 < ϵ, where z

(p)
c =

Bp(lτ ,kν)(B
H
p (lτ ,kν)Bp(lτ ,kν))

−1BH
p (lτ ,kν)zy and ϵ is a

parameter that determines the number of paths estimated. Once
the stopping criterion is met, β̂ is obtained using (22).

The initial channel estimation algorithm presented above
estimates the channel without considering the effect of data.
However, due to the fractional nature of the channel, the
channel estimation performance is hindered by interference
between pilot and data symbols. It is therefore necessary and
possible to further improve the accuracy of channel estimation
using the aid of detected data. This is referred to as data-aided
channel estimation and is presented below.

B. Data-aided channel estimation

The estimate obtained from the initial channel estimation
is used to construct the estimated channel matrix, Â =∑

i β̂ie
j2π

l̂τi
k̂νi

LK Â(i), where Â(i) is obtained from A(i) by
replacing lτ ,kν with l̂τ , k̂ν . Using Â, data detection is carried
out in the received frame2. We use this detected data to re-
estimate the channel. Towards this, we define ẑx = vec(Ẑx),
where

Ẑx[l, k] =


xp l = L

2 , k = K
2

0 (l, k) ∈ L⊗K
x̂lk ∈ A otherwise,

(27)

and x̂lk denotes the detected data. The re-estimation of the
channel parameters is carried out as shown in Fig. 2 by
replacing z′x by ẑx in the construction of B (see (19)). The
so obtained estimates are referred to as data-aided channel
estimates.

Remark on complexity: Since the channel estimation al-
gorithm doesn’t assume the knowledge of the number of
paths, and the number of estimated paths is not fixed, we
present the worst-case complexity where Pmax number of
paths are estimated. The total number of arithmetic opera-
tions required to evaluate the cost function in (23) is C =
2PmaxLK + 2P 2

maxLK + P 2
max +O(P 3

max)− 1. The number
of times this cost function is computed in coarse and fine
estimation stages is C ′ = (⌈lτmax

⌉ + 1)(2⌈kνmax
⌉ + 1)Pmax

2In this paper, we use linear minimum mean square error (LMMSE)
equalizer for the detection purpose and use the whole received frame for
the detection instead of using data bins alone. This is done so that the effect
of pilot can be nullified by the equalizer without having to cancel the effect
of pilot separately.

and C ′′ = 121rmaxPmax, respectively. Therefore, worst-case
computational complexity is given by 2C(C ′ + C ′′), where
the factor of 2 is to account for initial and data-aided channel
estimations.

Remark on the effect of pilot and data powers on the
performance in an embedded frame: To draw a parallel with
the exclusive pilot frame, we consider a scenario where the
exclusive pilot frame and a data frame (with no pilots and
guard) are transmitted together, under the assumption that
the channel does not change for the two frames duration.
Channel estimates obtained using the exclusive pilot frame
are used to detect the data in the subsequent data frame.
For this exclusive pilot setup, increasing the power of the
pilot frame and the data frame leads to improved NMSE and
better detection, respectively. However, this is not always the
case in an embedded frame, where the performance may not
consistently get better by increasing the power of pilot and
data. This happens because of the interaction (interference)
between the pilot and data in fractional DD. When the data
power is fixed and the pilot power is increased, the normalized
mean square error (NMSE) improves as expected. However,
this need not translate to improved detection performance.
This is because as the pilot power is increased, the spread
of the pilot symbol overpowers the data symbols and this is
not completely handled during detection due to inaccuracies
in channel estimation3. On the other hand, when the pilot
power is fixed and the data power is increased, the channel
estimation NMSE deteriorates due to stronger spread from
data into pilot. However, if the data power is high enough
to handle the deterioration, the NMSE improves with data-aid
which results in good detection performance.

IV. RESULTS AND DISCUSSIONS

In this section, we present the performance results of the
proposed algorithm in the context of embedded pilot frames.
The DZT-OTFS system parameters used for the simulation
are L = 64, K = 32, ∆f = 15 kHz. Square-root raised
cosine pulse is used. The number of paths in the channel is
taken to be 5 with uniform power delay profile. The first
path always has a delay of τ1 = 0, while the subsequent
paths have delays (τi, i = 2, · · · , 5) uniformly distributed in
(2(i−1)−1, 2(i−1)]µs. Furthermore, the maximum Doppler,
νmax is 1700 Hz, and the Doppler values of all the paths are
taken to be νmaxcos(θi), where θi is uniformly distributed
in [0, 2π). Additionally, parameters governing the algorithm
are Pmax = 15, nmax = 2, and ϵ = 20σ2, where σ2 is
the noise variance. Data symbols are taken from a 16-QAM
constellation. LMMSE equalizer is used for data detection.
Pilot SNR (PSNR) is defined as |xp|2

LKσ2 and data SNR (DSNR)
is defined as E|xlk|2

σ2 .

3The LMMSE equalizer for the embedded frame is µx +
RxxAH(ARxxAH + σ2I)−1(zy − Aµx), where µx = z′x and
Rxx denote the mean and co-variance matrix of zx, respectively, A denotes
the channel matrix, and I denotes the identity matrix. Because of the
inaccuracy in estimation of A, the term zy − Aµx does not completely
remove the effect of the pilot signal.



Fig. 4: NMSE performance of the proposed algorithm as a
function of pilot SNR.

Fig. 5: NMSE performance of the proposed algorithm as a
function of data SNR.

Figure 4 shows the performance of the proposed algorithm
in terms of NMSE as a function of the PSNR for DSNRs of
20 dB and 30 dB. The NMSE results for the threshold-based
estimation scheme in [17] are also provided for comparison.
The proposed algorithm shows a linear decrease in NMSE
without data aid as the PSNR increases. This is because
the algorithm estimates the DD in the fractional domain,
as opposed to the integer estimation in the threshold-based
scheme even when the channel DD values are fractional.
Therefore, the NMSE of the threshold-based scheme floors.
With the aid of detected data, the NMSE performance is seen
to improve. In some cases, the performance of the proposed
algorithm with data aid is observed to match the performance
of exclusive pilot. The extent to which this convergence occurs
depends on PSNR and DSNR, which determine the accuracy
of the initial channel estimate, which, in turn, effects the
detected data and the efficacy of data-aided channel estimation.

Figure 5 shows the NMSE performance of the proposed
algorithm as a function of DSNR for PSNRs of 20 dB

Fig. 6: SER performance of the proposed algorithm as a
function of data SNR.

and 30 dB. It is seen that as DSNR increases, the initial
channel estimation NMSE worsens. This is because as the
DSNR increases, the interference from the data to the pilot
increases and thus increases the error in the channel estima-
tion. However, with data-aid, the NMSE performance is seen
to significantly improve. It is also observed that, as PSNR
increases, the NMSE decreases, as expected.

Figure 6 shows the symbol error rate (SER) performance
of the proposed algorithm as a function of the DSNR for
a PSNR of 30 dB. The SER performance of the threshold
based algorithm is also presented. Additionally, the SER per-
formance with perfect channel state information (CSI) is also
added for comparison. It is seen that the SER of the proposed
algorithm decreases with increase in data SNR, whereas the
performance of threshold based estimation floors. Also, it is
observed that the data-aided channel estimation significantly
improves the SER performance compared to that of the initial
channel estimation. This is because of the cancellation of
the data interference to the pilot which leads to improved
channel estimation accuracy. This, in turn, leads to better data
detection performance. Further, the SER performance with
data-aid closely matches with that achieved using perfect CSI,
indicating the effectiveness of the proposed algorithm.

Figure 7 shows the SER performance as a function of PSNR
for DSNRs of 20 dB and 30 dB. It is seen that at low PSNRs
(< 15 dB), performance of the proposed algorithm (initial and
data-aided) with 30 dB DSNR is poorer compared to that with
20 dB DSNR. This is because of the poor channel estimation
accuracy at such low PSNRs, as corroborated in Fig. 4. Also,
in Fig. 4, it is seen that, at high PSNRs (> 25 dB), the NMSE
of data-aided estimation at 30 dB DSNR is similar to that of
20 dB DSNR. While their NMSE performance is similar at
high PSNRs, 30 dB DSNR achieves better SER performance
compared to 20 dB DSNR, which is due to the higher data
power in the case of 30 dB DSNR. Also, it is seen that the
proposed initial channel estimation algorithm floors at PSNR
of 30 dB, while the data-aided estimation floors at 25 dB. This



Fig. 7: SER performance of the proposed algorithm as a
function of pilot SNR.

is because of the increased interference due to stronger pilot
at high PSNRs.

V. CONCLUSIONS

We investigated the problem of fractional DD channel
estimation in DZT based OTFS systems with embedded pilot
frames. Fractional DD was considered because it is more
practical. DZT-OTFS was considered motivated by its better
localization of the channel response in fractional DD compared
to MC-OTFS. Embedded pilot frames were considered owing
to better spectral efficiency. We proposed a channel estimation
algorithm which exploited the detected data in the embedded
frame to achieve improved channel estimation performance.
The proposed algorithm was shown to perform significantly
better compared to the threshold based channel estimation.
Other channel estimation algorithms for the considered system
can be devised and compared as useful future work.
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