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Abstract—Orthogonal time frequency space (OTFS) modula-
tion and index modulation (IM) are promising techniques in
wireless communications. OTFS excels in high mobility scenarios
by using information signaling in the delay-Doppler domain,
while IM offers improved spectral efficiencies and bit error
performance. In this study, we analyze the performance of
OTFS with IM (OTFS-IM) in a decode-and-forward (DaF) relay
communication system. The communication involves two hops
between the transmitter, receiver nodes through a relay node.
We derive a closed-form expression for the end-to-end pairwise
error probability in OTFS-IM with DaF relaying and assess the
achieved asymptotic diversity order. Our simulation results show
that i) the use of indexing improves the performance of OTFS
with DaF relaying ii) the simulated upper bound on the bit error
rate (BER) validates the analytically predicted diversity orders.

Index Terms—OTFS modulation, index modulation, decode
and forward relaying, pairwise error probability, diversity anal-
ysis.

I. INTRODUCTION

As mobile communications demand higher frequencies and
faster speeds, dealing with rapidly changing channels with
strong Doppler effects becomes a challenge. To overcome
this, orthogonal time frequency space (OTFS) modulation has
been proposed in recent literature, which is known for its
ability to provide robust performance in high-Doppler channels
[1]. OTFS modulation uniquely offers information symbol
multiplexing in the delay-Doppler (DD) domain, making it
an appealing solution in this context.

The existing literature on OTFS explores diverse aspects
such as low-complexity signal detection, DD channel estima-
tion, peak-to-average power ratio, pulse shaping, and multiple
access [2]-[5]. Studies have analyzed OTFS performance,
including diversity analysis for uncoded single-input single-
output OTFS [6], achieving full diversity with phase rota-
tion (PR) [6], and investigating diversity orders for multiple-
input multiple-output OTFS (MIMO-OTFS) [6] and space-
time coded OTFS (STC-OTFS) [8]. Additionally, coded OTFS
has been studied, revealing a trade-off between coding gain
and diversity gain [9].

In light of the increasing spectral efficiency demands for
5G and beyond wireless networks, index modulation (IM)
techniques have emerged as a promising solution. IM allows
the transmission of additional information bits through index-
ing of various transmission entities, such as transmit antennas
and time slots. When applied to multicarrier systems like
OTFS, IM has shown improvements in spectral efficiency
and overall performance [10]. Studies have demonstrated that
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OTFS with IM (OTFS-IM) outperforms traditional orthogonal
frequency division multiplexing (OFDM) with indexing [10].
The work in [11] showed that the diversity and peak-to-
average power ratio (PAPR) of OTFS are improved using
indexing. In [12], a dual mode indexing scheme in OTFS
and a minimum Hamming distance based log-likelihood ratio
detector are reported. In [13], an enhanced IM scheme in
OTFS that exploited the in-phase and quadrature dimensions
for improved spectral efficiency is reported.

Cooperative relaying is a widely recognized means to
enhance the range and coverage in wireless communica-
tions [14], [15]. Amplify-and-forward (AaF) and decode-
and-forward (DaF) protocols are widely studied owing to
their simplicity and practicality. Single-relay and multi-relay
schemes without and with relay selection have been inves-
tigated in a variety of system settings [16]-[18]. Previous
studies [17]-[18] have investigated the impact of node mobility
on cooperative communication, highlighting its potential for
performance degradation. However, this issue can be mitigated
by leveraging the inherent robustness of OTFS in cooperative
communications. Consequently, there is a growing interest
in understanding the performance of OTFS in relaying sys-
tems under high-mobility conditions. In the recent literature,
authors have analyzed the performance of OTFS with DaF
relaying in the context of OTFS-based downlink LEO satellite
communication, focusing on outage analysis for the ideal bi-
orthogonal pulse [19]. The incorporation of IM techniques in
cooperative communication systems further enhances energy
efficiency, spectral efficiency, and extends coverage, mak-
ing relay-assisted communication an attractive paradigm to
overcome the limitations of traditional point-to-point OTFS
systems. In this regard we present an analysis of the end-to-
end performance of OTFS-IM in DaF relaying systems. Our
novel contributions in this paper are as follows.

• We derive a closed-form expression for the end-to-end
pairwise error probability (PEP) of OTFS-IM with DaF
relaying, considering rectangular pulses and fractional
DD profiles and characterize the achieved asymptotic
diversity order.

• We also analyze the system when phase rotation (PR) of
OTFS frames is employed to achieve improved diversity
performance.

• Simulation results show that 1) the use of indexing
enhances the performance of OTFS with DaF relaying,
and 2) the simulated upper bound on the BER validates
the analytically derived diversity orders for OTFS-IM
with DaF relaying.
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Fig. 1: Delay-Doppler indexing.

The paper is organized as follows. In Sec. II, we introduce
the OTFS-IM model considered for DaF relaying. Sec. III
presents the performance analysis of this system. The numer-
ical results and discussions are provided in Sec. IV. Finally,
Sec. V provides a summary of our conclusions.

Notations: Matrices are denoted by uppercase boldface
letters, while vectors are represented by lowercase boldface
letters. A diagonal matrix with elements {x1, x2, . . . , xn} is
expressed as diag{x1, x2, . . . , xn}. The Frobenius norm of a
matrix X is indicated as |X|. An N point IDFT matrix is
denoted by FN and identity matrix of size N by IN . Trans-
position, Hermitian, and conjugation operations are denoted
by (·)T , (·)H , and (·)∗, respectively. A complex Gaussian
distribution with mean µ and variance σ2 is represented by
CN (µ, σ2). The expectation operation is denoted by E[·]. The
symbol |.| denotes the absolute value of a number or the
cardinality of a set.

II. SYSTEM MODEL

In this section, we present the OTFS-IM scheme. This
scheme utilizes two elements to carry information. Complex
symbols from a modulation alphabet, which are multiplexed
within the DD grid, and the indexing of DD bins in the grid.
The DD grid, comprising a total of MN DD bins, is of size
M ×N , where M and N represent the number of delay and
Doppler bins, respectively. This grid constitutes one OTFS
frame.

A. DD indexing in OTFS

The DD grid is partitioned into sub-blocks (SBs) to support
indexing. Each SB contains u number of DD bins, with v
number of bins activated and u − v number of DD bins are
left idle. The number of SBs, denoted as C, is determined
by the ratio of the total DD bins (MN ) to the bins per SB
(u), expressed as C = MN

u . Within an SB, a subset of DD
bins, represented by v, carries active complex symbols from
the modulation alphabet A, while the remaining bins remain
idle and are filled with zeros. To encode the index information
for each SB, a certain number of index bits, denoted as b1,
are required, which can be computed as ⌊log2

(
u
v

)
⌋. The total

number of index bits in the entire DD grid is then given by
C⌊log2

(
u
v

)
⌋. Similarly, the number of modulation bits per SB,

denoted as b2, is determined by the number of active DD bins
v and the size of the modulation alphabet |A|, expressed as
b2 = v log2 |A|. Consequently, the total number of modulation
bits in the grid is calculated as Cb2 = Cv log2 |A|. The

overall number of modulation bits in the entire grid is given
by Cb2 = Cv log2 |A|. The total number of bits, both index
and modulation bits, per SB is represented as b = b1 + b2.
Therefore, the total number of bits in the entire DD grid (i.e.,
the total number of bits per OTFS frame) can be expressed as
Cb = C[⌊log2

(
u
v

)
⌋+ v log2 |A|]. The achieved rate of OTFS-

IM scheme, measured in bits per channel use (bpcu), given
as

η =
C

MN

[
⌊log2

(
u

v

)
⌋+ v log2 |A|

]
. (1)

Figure 1 illustrates the DD domain indexing which serves as
input to OTFS modulator.

B. OTFS-IM system

In the OTFS-IM scheme, jth SB is denoted as xj =
[xj,1, xj,2, · · · , xj,u], where xj,i ∈ A ∪ 0, 0 ≤ j ≤ C. These
SBs are combined by the OTFS block creator to form the DD
domain symbol matrix X, which serves as the input to the
OTFS modulator. The OTFS modulation scheme uses a band-
width of M∆f and a frame duration of NT , where ∆f = 1

T is
the subcarrier spacing. The information symbols from the DD
domain undergo the inverse symplectic finite Fourier transform
(ISFFT) operation, followed by the Heisenberg transform with
a transmission pulse (Ptx), resulting in the time domain OTFS
signal denoted as S given by

S = PtxXFH
N , (2)

The received time domain signal denoted as r, we have

r = Hs+ n, (3)

where s ≜ vec(S), H =
∑L

i=1 hiΠ
αi+ai∆βi+bi ∈

CMN×MN , with Π representing the permutation matrix, and
∆ = diag[z0, z1, · · · , zMN−1] where z = e

j2π
MN , L denotes

the number of DD paths, αi, βi are the integers denoting
the delay and Doppler indices of the ith path, respectively,
ai, bi ∈ [−0.5, 0.5] are the corresponding fractional parts and
n ∈ CMN×1 denotes the noise vector.

At the receiver, the received signal r can be transformed
into an M×N matrix R through devectorization. This matrix
R is then subjected to the Wigner transform with a receive
pulse (Prx) and the SFFT. Following the transforms, the
representation of the received signal in the DD domain can
be expressed as

Y = FH
M (FMPrxR)FN = PrxRFN . (4)

By utilizing equations (2) and (3) in equation (4) and vector-
izing the resulting equation, we obtain

y = (FN ⊗Prx)H(FH
N ⊗Ptx)x+ ñ,

= Heffx+ ñ, (5)

where x ≜ vec(X), Heff ∈ CMN×MN represents the effective
channel matrix, ñ ≜ (FN ⊗ IM )n represents the noise vector.

An alternate representation of input-output relation (5): We
can express the input-output relation in (5) in an alternative
form for analysis purposes. When considering rectangular
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Fig. 2: OTFS-IM with decode-and-forward relaying scheme.

pulses, where Ptx and Prx reduce to the identity matrix, the
received signal vector y can be written as

y =

L∑
i=

hi(FN ⊗ IM )Παi+ai∆βi+bi(FH
N ⊗ IM )x+ ñ,

= Ψ(x)h+ ñ, (6)

where Ψ(x) = [Ξ1x|Ξ2x| · · · |ΞLx] ∈ CMN×L is a concate-
nated matrix with Ξi = (FN ⊗IM )Παi+ai∆βi+bi(FH

N ⊗IM )
and h = [h1, · · · , hL] ∈ CL×1 is the channel vector and his
are assumed to be i.i.d and distributed as CN (0, 1/L).

C. Decode-and-forward relaying with OTFS-IM

In this subsection, we introduce the system model for an
OTFS-IM system with DaF relaying. Figure 2 shows the block
diagram of the OTFS-IM system with DaF relaying. Due to
severe signal blockage in outdoor environments, no direct link
exists between the source and destination. The communication
takes place in two hops, the first hop is from the source to the
relay, and the second hop is from the relay to the destination.
The transmission occurs in two phases. In the first phase, the
source node transmits information to the relay. The received
signal at the relay is given by

ysr = Hsrx+ nsr, (7)

where ysr and nsr are the received signal vector and noise
vector at the relay, respectively, Hsr represents the equivalent
channel matrix between the S-to-R link, and x is the transmit
signal vector from the S.

During the second phase, the relay forwards the decoded
information to the destination. The received signal at the
destination, denoted as yrd, can be expressed as

yrd = Hrdx̂+ nrd, (8)

where yrd and nrd are the received signal vector and noise
vector at the destination, respectively, Hrd represents the
equivalent channel matrix between the R-to-D link, and x̂
is the transmit signal vector from the R.

Alternate form for OTFS-IM with DaF: The input-output
relation in (7) and (8) can be written in an alternate way based

on (6). The received signal at the relay in the first phase can
be written as

ysr =

Lsr∑
i=1

hi
sr(FN ⊗ IM )Παi+ai∆βi+bi(FH

N ⊗ IM )x

+ nsr,

= Ψ(x)hsr + nsr, (9)

Likewise, the received signal at the destination in the second
phase can be written as

yrd =

Lrd∑
i=1

hi
rd(FN ⊗ IM )Παi+ai∆βi+bi(FH

N ⊗ IM )x̂

+ nrd,

= Ψ(x̂)hrd + nrd, (10)

where hsr ∈ CLsr×1, hrd ∈ CLrd×1, Ψ(x) ∈ CMN×Lsr ,
Ψ(x̂) ∈ CMN×Lrd , Ξi are defined in (6), Lsr and Lrd are
the number of resolvable DD domain paths between S-to-R
and R-to-D links, respectively.

D. OTFS with phase rotation

Phase rotation (PR) in OTFS is performed by pre-
multiplying the OTFS vector x by a PR matrix Θ, given by
Θ = diag{ej

q
MN }, q = 0, · · · ,MN − 1. Therefore, x′ = Θx

is the phase rotated OTFS transmit vector. In [6], it was
shown that SISO-OTFS with the above PR operation is capable
of achieving full possible diversity in the DD domain when
ej

q
MN , q = 0, 1, · · · ,MN−1 are transcendental numbers and
q

MN are real, distinct, and algebraic.

III. PERFORMANCE ANALYSIS

In this section, we analyze the diversity performance of
OTFS-IM with DaF relaying. Maximum likelihood (ML)
detection is considered at the relay and the destination. The
minimum rank of difference matrices in a given system plays
a key role in determining the diversity performance of the
system. Therefore, we first characterize the minimum rank in
the considered relaying system.

A. Minimum rank on various links with relaying
In the S-to-R link, let Ψ(xi) and Ψ(xj) be two distinct

OTFS-IM symbol matrices without PR defined in (9), and
Ψ(x′

i) and Ψ(x′
i) be two such matrices with PR. As in [6]-[7],

the minimum ranks of (Ψ(xi)−Ψ(xj)) and (Ψ(x′
i)−Ψ(x′

i))
on the S-to-R link for OTFS-IM are ≤ Lsr and Lsr, respec-
tively.

Now, consider the R-to-D link. Note that the detected vector
(x̂) at the relay (error-free or erroneous) belongs to the same
OTFS-IM signal set at the source. In the R-to-D link, let
Ψ(x̂i) and Ψ(x̂j) denote two distinct symbol matrices without
PR and Ψ(x̂′

i) and Ψ(x̂′
j) be two such matrices with PR. We

are interested in the minimum rank of the difference matrix
(Ψ(x̂i) − Ψ(x̂j)), ∀i, j. Since the detected signal vector at
R, belong to the same OTFS signal set that was transmitted
from source, the minimum ranks of (Ψ(x̂i) − Ψ(x̂j)) and
(Ψ(x̂′

i) − Ψ(x̂′
j)) on the R-to-D link for the OTFS-IM are



System parameters No. of pairs of (Ψ(xi)−Ψ(xj)) with rank Minimum rank1 2 3 4

M = 2, N = 2,
L = 2

DD profile-1 α=[0, 1]
β=[0, 0]

w/o PR 32 208 - - 1
with PR 0 240 - - 2

DD profile-2 α=[0, 1]
β=[0, 1]

w/o PR 0 240 - - 2
with PR 0 240 - - 2

M = 4, N = 2,
L = 2

DD profile-3 α=[0, 1]
β=[0, 0]

w/o PR 128 65152 - - 1
with PR 0 65280 - - 2

DD profile-4 α=[0, 1]
β=[0, 1]

w/o PR 0 65280 - - 2
with PR 0 65280 - - 2

M = 4, N = 2,
L = 4

DD profile-5 α=[0,0,1,1]
β=[0,1,0,1]

w/o PR 0 136 2072 63072 2
with PR 0 0 0 65280 4

TABLE I: Rank profile of the difference matrices.

≤ Lrd and Lrd, respectively. Table I shows the rank profiles
for different DD profiles, with and without PR. For example,
DD profile-1 without PR has 32 pairs with rank 1 and 208 pairs
with rank 2, resulting in a minimum rank of 1 (≤ L). With
PR, there are 240 pairs with rank 2, leading to a minimum
rank of 2 (L). The DD profiles in Table I can exist in any
links.
B. Diversity analysis

In this subsection, we examine the diversity performance of
OTFS-IM with DaF relaying. To assess the diversity order, we
establish a bound on the bit error rate using the pairwise error
probability (PEP) expression. The PEP allows us to quantify
the probability of error events on the S-to-R link (U ) and the
R-to-D link (V ), denoted as Pb(S → R) and Pb(R → D),
respectively. In DaF relaying, the error events U and V are
independent. The intersection of these events, denoted as W =
U ∩V , represents the errors occurring simultaneously on both
links, with a probability of Pb(S → R)Pb(R → D). At the
destination, W may not contain any erroneous bits because
errors in the S-to-R link can be corrected if they are also
present in the R-to-D link. Consequently, we express the total
end-to-end error as U + V − (1 + δ)W , where δ (0 ≤ δ ≤ 1)
depends on the modulation scheme employed. In general, the
probabilities Pb(S → R) and Pb(R → D) are typically small.
Hence, the probability of W (Pb(S → R)Pb(R → D)) can be
neglected. Consequently, the bit error probability (Pb) of the
overall system can be approximated as [16]

Pb ≈ Pb(S → R) + Pb(R → D). (11)
Further, Pb(S → R) and Pb(R → D) are upper bounded by
the union bound based on PEP. Assume ML detection and
perfect DD channel state information at R and D. On the
S-to-D link, the probability Pb(S → R) can be bounded as

Pb(S → R) ≤ 1

Cbεx

∑
i

∑
j,j ̸=i

dH(xi,xj)PSR(xi → xj), (12)

where εx is the number of possible signal sets for x,
dH(xi,xj) is the Hamming distance between xi and xj , and
PSR(xi → xj) is the average PEP between the symbol vectors
xi and xj given by

PSR(xi → xj) = Ehsr

Q
√

∥(Ψ(xi)−Ψ(xj))hsr∥2
2N0

 ,

(13)

where the averaging is over the distribution of hsr. We have
normalized the entries of x so that the average energy per
symbol time is one and the signal-to-noise ratio (SNR) is given
by γs = 1/N0. Upper bounding (13) using Chernoff bound,
we get

PSR(xi → xj)≤ Ehsr

{
exp

(
−γs∥(Ψ(xi)−Ψ(xj))hsr∥2

4

)}
,

(14)
Carrying out the averaging, we get [6]

PSR(xi → xj) ≤

 1∏rsr
l=1(1 +

γsλ
lij
sr

4Lsr
)

 , (15)

where rsr and λlij
sr are the rank and eigenvalue of (Ψ(xi) −

Ψ(xj))
H(Ψ(xi) − Ψ(xj)) on the S-to-R link, respectively.

Next, on the R-to-D link, Pb(R → D) is bounded as

Pb(R → D)≤ 1

Cbεx

∑
i

∑
j,j ̸=i

dH(x̂i, x̂j)PRD(x̂i → x̂j), (16)

where PRD(x̂i → x̂j) is the PEP between symbol matrices
x̂i and x̂j . Following similar steps from (13)-(14), we obtain

PRD(x̂i → x̂j) ≤

 1∏rrd
l=1(1 +

γrλ
lij
rd

4Lrd
)

 , (17)

where rrd and λlij
rd are the rank and eigenvalue of (Ψ(xi) −

Ψ(xj))
H(Ψ(xi) −Ψ(xj)) on the R-to-D link, respectively,

γr is the normalized SNR on the R-to-D link. From (11), (15),
(17), we have

Pb ≤ 1

Cbεx

∑
i

∑
j,j ̸=i

dH(xi,xj)

 1∏rsr
l=1(1 +

γsλ
lij
sr

4Lsr
)


+

1

Cbεx

∑
i

∑
j,j ̸=i

dH(x̂i, x̂j)

 1∏rrd
l=1(1 +

γrλ
lij
rd

4Lrd
)

. (18)

At high SNRs, using the approximation (1 + γs

4Lsr
) ≈ ( γs

4Lsr
)

and (1 + γr

4Lrd
) ≈ ( γr

4Lrd
), (18) can be written as

Pb ≤ C̃1γ
−rsr
s + C̃2γ

−rrd
r , (19)

where C̃1 = 1
Cbεx

∑
i

∑
j,j ̸=i dH(xi,xj)

(∏rsr
l=1(

λlij
sr

4Lsr
)
)

and

C̃2 = 1
Cbεx

∑
i

∑
j,j ̸=i dH(x̂i, x̂j)

(∏rrd
l=1(

λlij
rd

4Lrd
)
)

are appro-



priately defined constants. For equal power allocation at S
and R, we have γs = γr = γ. So, (19) becomes

Pb ≤ C̃1γ
−rsr + C̃2γ

−rrd . (20)

For rsr ≫ rrd, at high SNRs, the second term in (20)
dominates. Therefore, (20) can be written as

Pb ≤ C̃2γ
−rrd . (21)

Therefore, the diversity order is rrd. On the other hand, for
rsr ≪ rrd, the first term in (20) dominates and the diversity
order is rsr. Combining these two, the diversity order can be
written as min{rsr, rrd}. The above diversity order can be
generalized for as follows.

• For the system without PR, the achieved diversity order
is min{rsr, rrd}, where rsr ≤ Lsr and rrd ≤ Lrd.

• For the system with PR, the achieved diversity order is
min{Lsr, Lrd}, since rsr = Lsr and rrd = Lrd.

IV. RESULTS AND DISCUSSIONS

In this section, we present simulation results to validate the
diversity analysis previously discussed. We evaluate the bit
error rate (BER) performance of the OTFS-IM system with
DaF relaying with and without PR. The simulations use a
carrier frequency of 4 GHz and a subcarrier spacing of 3.75
kHz. In all the simulations we consider L = 2, 4 and various
DD profiles (αi, βi) used given in Table I.

OTFS-IM with DaF (without PR): Figure 3 shows the
simulated BER of OTFS-IM DaF without PR for a frame size
of M = N = 2, Lsr = 2, and Lrd = 2. The information
symbols are taken from the BPSK constellation with u = 4
bins per SB, and v = 2 active bins are considered. In the
S-to-R link, DD profile-2 is considered for the simulations,
while for the R-to-D link, both DD profiles 1 and 2 are
considered. The simulation results show a diversity slope of
one for the system that uses DD profile-1 in the R-to-D link,
where the achieved diversity is the minimum rank of the two
links, which is one in this case. On the other hand, the system
that employs DD profile-2 in both links exhibits a diversity
slope of two, since the minimum rank is two in this case.
Further, the theoretical upper bounds gradually approach the
simulation results, validating the analysis.

OTFS-IM with DaF (without and with PR): Figure 4 shows
the simulated BER of OTFS-IM with DaF, with and without
PR, for M = 4, N = 2, Lsr = 2, 4, Lrd = 2, 4, u = 8, v = 3,
BPSK modulation, and ML detection. The simulation uses DD
profiles 3, 4, and 5, as given in Table I. For the system with
Lsr = Lrd = 2, DD profile-3 is used in the S-to-D link, and
DD profile-4 is used in the R-to-D link. From the simulation,
the observed diversity is 1 without PR and 2 with PR. This
aligns with the analysis, where the diversity without PR is
min{rsr, rrd} = 1, since rsr = 2 and rrd = 1, and with PR
it is min{Lsr, Lrd} = 2, validating the analysis.

For the system with Lsr = Lrd = 4, DD profile-5 is used
in both the links, and the observed diversity without PR is 2,
aligning with the minimum rank of 2 obtained from Table I,
thus validating the analysis. However, when subjected to PR,

Fig. 3: Bit error rate performance of OTFS-IM with DaF
without PR for M = N = 2, Lsr = 2, Lrd = 2.

Fig. 4: Bit error rate performance of OTFS-IM with DaF
without and with PR for M = 4, N = 2, Lsr = 2, 4,
Lrd = 2, 4.

the observed diversity order is 4. This also aligns with the
analysis, which indicated a diversity order of min{rsr, rrd} =
4, since rsr = rrd = 4.

Performance for large (M,N) values: In Fig. 5, we
demonstrate the BER performance of OTFS DaF with and
without indexing, utilizing system parameters according to
the IEEE 802.11p standard [20]. The system operates at a
carrier frequency of 5.9 GHz with a subcarrier spacing of
0.156 MHz. A frame size of M = 64 and N = 12 is
employed for the simulations, along with Lsr = Lrd = 8
DD paths. Fractional DDs are used with a maximum speed of
220 km/h, corresponding to a maximum Doppler of 1.2 kHz.
The system uses 4-QAM modulation with u = 4, v = 1 and
MMSE detection. With the above parameters, the achieved rate
with indexing is 1 bpcu. We compare the performance of this
system with a system without indexing with BPSK whose rate
is 1 bpcu. From the simulation results, it is evident that OTFS
DaF with IM outperforms OTFS DaF without IM. At a BER
of 10−4, OTFS-IM with DaF shows an approximate gain of
2.2 dB over OTFS DaF without IM.

Performance comparison between OTFS-IM DaF and



Fig. 5: BER performance of OTFS DaF without and with
indexing for M = 64, N = 12, and Lsr = Lrd = 8.

Fig. 6: BER performance of OTFS-IM DaF and OFDM-IM
DaF for M = 64, N = 12, and Lsr = Lrd = 8.

OFDM-IM DaF: In Fig. 6, a performance comparison is
presented between OTFS-IM and OFDM-IM with DaF. Both
systems are evaluated based on the IEEE 802.11p standard
[20] and utilize fractional DDs with a maximum speed of 220
km/h (corresponding to a maximum Doppler of 1.2 kHz). The
simulation includes Lsr = Lrd = 8 DD paths, u = 4 and
v = 2, and employs BPSK modulation with MMSE detection.
The results demonstrate the superior performance of OTFS-IM
with DaF compared to OFDM-IM with DaF. Specifically, at
a BER of 10−3, OTFS-IM with DaF exhibits an approximate
gain of 12 dB over OFDM-IM with DaF.

V. CONCLUSIONS

We examined the performance of the OTFS-IM system with
decode and forward relaying. We considered a single relay to
aid the communication between the transmitter and receiver.
We derived a closed-form expression for the end-to-end PEP
in this system and assessed the achieved asymptotic diversity
order with and without PR. Our simulation results showed
that the use of indexing improves the performance of OTFS
with decode and forward relaying, validating the analytically
derived diversity orders. Future works can include the diversity

analysis of OTFS-IM with DaF relaying for multiple antennas
at the transmitter and receiver, investigating optimal power
allocation schemes for the source and relay nodes, exploring
the impact of multiple relay nodes with relay selection, and
analyzing the effect of inter-node distances on the achieved
diversity performance.
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