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Abstract—In this paper, we analyze the performance of
multiple-input multiple-output orthogonal time frequency space
(MIMO-OTFS) modulation with decode and forward (DaF)
relaying. Communication between the transmitter and receiver
nodes happens through a relay node in two hops. All the
nodes are provided with multiple transmit and multiple receive
antennas. We derive a closed-form expression for the end-to-end
pairwise error probability in MIMO-OTFS with DaF relaying
and characterize the achieved asymptotic diversity order. We
also investigate the considered system when phase rotation of
OTFS frames is performed to improve the diversity performance.
Simulation results are shown to validate the analytically predicted
diversity performance.

Index Terms—OTFS modulation, MIMO-OTFS, decode and
forward relaying, pairwise error probability, diversity analysis.

I. INTRODUCTION

As carrier frequencies increase and high-speed use cases
emerge in next generation mobile communications, modu-
lation waveforms have to deal with high-Doppler channels
which are rapidly time-varying. Orthogonal time frequency
space (OTFS) modulation has been shown to offer robust
performance in high-Doppler channels [1]. OTFS modulation
multiplexes information symbols in the delay-Doppler (DD)
domain. Several papers in the literature have examined various
aspects in OTFS, such as low-complexity signal detection,
DD channel estimation, peak-to-average power ratio, pulse
shaping, and multiple access [2]-[5]. In terms of performance
analysis of OTFS, the work reported in [6] analyzed the
diversity performance of OTFS in a point-to-point setting.
This study showed that the asymptotic diversity order achieved
by uncoded single-input single-output OTFS is one. Also, it
demonstrated that full diversity in the DD domain is achieved
when phase rotation is applied to the OTFS signal vector
before transmission. The diversity performance of OTFS when
rectangular waveforms are used has been analyzed in [7]. Re-
sults on the achievable diversity orders in both spatial and DD
domains have been reported for multiple-input multiple-output
OTFS (MIMO-OTFS) and space-time coded OTFS (STC-
OTFS) in [6] and [8], respectively. In [8], the performance
of different multi-antenna OTFS systems with receive antenna
selection are analyzed and the achievable diversity orders are
derived. The error performance of coded OTFS is analyzed in
[9], which shows a trade-off between the coding gain and the
diversity gain in OTFS systems.
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Cooperative relaying is a widely recognized means to en-
hance the range and coverage in wireless communications
[10], [11]. Amplify-and-forward and decode-and-forward pro-
tocols are widely studied owing to their simplicity and practi-
cality. Single-relay and multi-relay schemes without and with
relay selection have been investigated in a variety of system
settings [12]-[14]. The performance of cooperative communi-
cation in the presence of node mobility has been studied in
[13], [14], where it has been shown that node mobility causes
performance degradation. The inherent robustness of OTFS
can alleviate this issue in cooperative communications with
node mobility. Therefore, understanding the performance of
OTFS in relaying systems in high-mobility environments is
of interest. In this paper, we present an analysis of the end-
to-end performance of MIMO-OTFS in decode-and-forward
(DaF) relaying systems. Our contributions in this paper are as
follows.

• We derive a closed-form expression for the end-to-end
pairwise error probability (PEP) for MIMO-OTFS with
DaF relaying, and characterize the achieved asymptotic
diversity order.

• We also analyze the system when phase rotation (PR) of
OTFS frames is employed to achieve improved diversity
performance.

• Simulation results are shown to corroborate the analyti-
cally derived diversity orders for MIMO-OTFS with DaF
relaying.

The remainder of the paper is organized as follows. The
considered OTFS system model DaF relaying is presented in
Sec. II. The performance analysis of this system is presented
in Sec. III. Numerical results and discussions are presented in
Sec. IV. A summary of conclusions is given in Sec. V.

Notations: A matrix is denoted by uppercase boldface letter,
a vector by lowercase boldface letter, a diagonal matrix with
entries {x1, · · · , xn} by diag{x1, · · · , xn}, and Frobenius
norm of matrix X by ∥X∥. (·)T , (·)H , (·)∗ denote transpo-
sition, Hermitian, and conjugation operators, respectively. A
complex Gaussian distribution with mean a and variance b
is denoted by CN (a, b). Expectation operation is denoted by
E[·]. |.| denotes absolute value of a number or cardinality of
a set.

II. SYSTEM MODEL

The OTFS modulation and demodulation consist of 2D
transforms at the transmitter and the receiver. MN information



symbols, y[k, l], k = 0, · · · , N−1, l = 0, · · · ,M−1, are mul-
tiplexed over a N ×M DD grid, given by {( k

NT ,
l

M∆f ), k =
0, · · · , N − 1, l = 0, · · · ,M − 1}, where M and N are the
number of delay and Doppler bins, respectively, and 1

M∆f and
1

NT are the delay and Doppler bin sizes, respectively. The
information symbols in the DD domain are mapped to the
TF domain using inverse symplectic finite Fourier transform
(ISFFT) and windowing. The TF symbols are converted to
time domain using Heisenberg transform for transmission over
the channel. The transmit time domain signal y(t) is given by

y(t) =

N−1∑
n=0

M−1∑
m=0

Y [n,m]gtx(t− nT )ej2πm∆f(t−nT ), (1)

where Y [n,m] is the TF domain signal at the output of ISFFT,
given by

Y [n,m] =
1√
MN

N−1∑
k=0

M−1∑
l=0

y[k, l]ej2π(
nk
N −ml

M ), (2)

and gtx(t) is the transmit pulse. The transmitted signal passes
through a channel whose response in the DD domain is given
by

g(τ, ν) =

P∑
i=1

giδ(τ − τi)δ(ν − νi), (3)

where gi, τi, and νi, respectively, denote the channel gain,
delay, and Doppler associated with the ith path. The received
time-domain signal z(t) is given by

z(t) =

∫
ν

∫
τ

g(τ, ν)y(t− τ)ej2πν(t−τ)dτdν + v(t), (4)

where v(t) is the additive white Gaussian noise. At the
receiver, matched filtering on the received time-domain signal
is performed using Wigner transform to get TF domain sym-
bols. Finally, with windowing and symplectic finite Fourier
transform (SFFT), DD symbols are obtained from the TF
symbols for demodulation. The DD domain signal at the
output of the SFFT can be written as [4]

z[k, l] =

P∑
i=1

g′iy[(k − βi)N , (l − αi)M ] + v[k, l], (5)

where g′i = gie
−j2πνiτi , gis are i.i.d and are distributed

as CN (0, 1/P ) with uniform scattering profile, αi and βi

are integers corresponding to indices of delay and Doppler,
respectively, for the ith path, i.e., τi ≜ αi

M∆f and νi ≜
βi

NT ,
and v[k, l] is the additive white Gaussian noise. By vectorizing
the input-output relation in (5), we can write [4]

z = Gy + v, (6)
where y, z,v ∈ CMN×1, the (k+Nl)th entry of y, yk+Nl =
y[k, l], k = 0, · · · , N − 1, l = 0, · · · ,M − 1 and y[k, l] ∈ A,
where A is the modulation alphabet

(
e.g., phase shift keying

(PSK) or quadrature amplitude modulation (QAM)
)
, Similarly,

zk+Nl = z[k, l] and vk+Nl = v[k, l], k = 0, · · · , N − 1, l =
0, · · · ,M − 1, and G ∈ CMN×MN is the effective channel
matrix, whose jth row (j = k + Nl), denoted by G[j], is

Fractional delay-Dopplers are considered in the analysis in Appendix A.

given by G[j] = [ĝ((k − 0)N , (l − 0)M ) ĝ((k − 1)N , (l −
0)M ) · · · ĝ((k − N − 1)N , (l − M − 1)M )], where ĝ(k, l)
denotes the (k, l)th element of the N×M DD channel matrix,
given by

ĝ(k, l) =

{
g′i if k = βi, l = αi, i ∈ {1, 2, · · · , P}
0 otherwise.

(7)

It can be seen from the above that the effective channel matrix
G has only P non-zero entries in each row and column, i.e.,
there are only MNP non-zero elements in G.

An alternate representation of input-output relation (6): In
order to enable the diversity analysis, the input-output relation
in (6) is written in an alternate form. Observing that the
effective channel matrix G contains only P non-zero entries
in each row and column, the vectorized input-output relation
in (6) can be written in the following alternate form:

zT = g′Y + vT , (8)
where g′ ∈ C1×P is the channel vector with ith entry given by
g′i = gie

−j2πνiτi , zT , vT ∈ C1×MN , are the received signal
vector and noise vector, respectively, and Y ∈ CP×MN is
the signal matrix with ith column Y[i], i = k + Nl, k =
0, · · · , N − 1, l = 0, · · · ,M − 1, given by

Y[i] =


y(k−β1)N+N(l−α1)M

y(k−β2)N+N(l−α2)M
...

y(k−βP )N+N(l−αP )M

 . (9)

The alternate representation in (8) is used to write the system
model for MIMO-OTFS system in the following subsection.

A. MIMO-OTFS

The input-output relation in a MIMO-OTFS system with nr

receive antennas and nt transmit antennas can be written as

z̄ = Ḡȳ + v̄, (10)
which is written by concatenating nr received signal vec-
tors of the form (6) from nr receive antennas, where z̄ =
[zT1 zT2 · · · zTnr

]T ∈ CnrMN×1, zi being the received signal
vector of the ith receive antenna, ȳ = [yT

1 , yT
2 · · · yT

nt
]T ∈

CntMN×1, yj being the transmit signal vector from the jth
transmit antenna, v̄ = [vT

1 , vT
2 · · · vT

nr
]T ∈ CnrMN×1, vi

being the noise vector of the ith receive antenna, and the
overall MIMO-OTFS channel matrix Ḡ ∈ CnrMN×ntMN is
given by

Ḡ =

G11 · · · G1nt

...
. . .

...
Gnr1 · · · Gnrnt

 , (11)

where Gij denotes the MN×MN equivalent channel matrix
between the ith receive antenna and jth transmit antenna.

An alternate input-output relation for MIMO-OTFS: We
observe that in the overall equivalent MIMO-OTFS channel
matrix Ḡ, each row contains only ntP unique non-zero
elements and each column contains nrP unique non-zero
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Fig. 1: MIMO-OTFS with decode-and-forward relaying
scheme.

elements. Therefore, (10) can be written in the following
alternate form:z1

T

...
znr

T


︸ ︷︷ ︸

≜ Z̃

=

 g′
11 · · · g′

1nt

...
. . .

...
g′
nr1 · · · g′

nrnt


︸ ︷︷ ︸

≜ G̃

Y1

...
Ynt


︸ ︷︷ ︸

≜ Ỹ

+

v1
T

...
vnr

T


︸ ︷︷ ︸
≜ Ṽ

, (12)

which can be written in a compact form as
Z̃ = G̃Ỹ + Ṽ, (13)

where Z̃ ∈ Cnr×MN is the received signal matrix with zTi
as the row corresponding to the ith receive antenna, G̃ ∈
Cnr×ntP is the channel matrix with g′

ij ∈ C1×P being the row
containing the unique non-zero entries of the channel matrix
Gij , Ỹ ∈ CntP×MN is the transmit symbol matrix with Yj ∈
CP×MN being the transmit signal matrix from the jth transmit
antenna, and Ṽ ∈ Cnr×MN is the noise matrix.

B. Decode-and-forward relaying

In this subsection, we present the MIMO-OTFS system
model with DaF relaying. The block diagram of MIMO-OTFS
systen with DaF relaying is shown in Fig. 1. There is no direct
link between source and destination, signifying a scenario
where direct path between source and destination is blocked.
Communication happens in two hops−source to relay in first
hop and relay to destination in second hop. Let ns and nr

denote the number of transmit antennas at the source (S) and
relay (R), respectively, and nd denote the number of receive
antennas at the destination (D). Here, ns and nr are kept
same to ensure same transmit signal dimensions at S and
R. The number of receive antennas at R is considered to be
the same as nr so that the same antennas can be used for
both reception and transmission at R. Also, nd is taken to be
greater than or equal to nr so that the system is not under-
determined. Transmission occurs in two phases. In the first
phase, the source node transmits information to the relay. The
received signal at the relay is given by

z̄sr = Ḡsrȳ + v̄sr, (14)
where z̄sr, v̄sr ∈ CnrMN×1 are the received signal vector and
noise vector at the relay, Ḡsr ∈ CnrMN×nsMN is the equiva-
lent channel matrix between source and relay, ȳ ∈ CnsMN×1

is the transmit signal vector from the source. During the
second phase, the relay forwards the decoded information to
the destination. The received signal at the destination is given
by

z̄rd = Ḡrd
¯̂y + v̄rd, (15)

where z̄rd, v̄rd ∈ CndMN×1 are the received signal vector and
noise vector at the destination, Ḡrd ∈ CndMN×nrMN is the
equivalent channel matrix between relay and destination, and
¯̂y ∈ CnrMN×1 is the transmit signal vector from relay.

Alternate form for MIMO-OTFS with DaF: The input-output
relation in (14) and (15) can be written in an alternate form
based on (12). The received signal at the relay in the first
phase can be written as

Z̃sr = G̃srỸ + Ṽsr, (16)

where Z̃sr, Ṽsr ∈ Cnr×MN , G̃sr ∈ Cnr×nsPsr , and Ỹ ∈
CnsPsr×MN . Likewise, the received signal at the destination
in the second phase can be written as

Z̃rd = G̃rd
˜̂Y + Ṽrd, (17)

where Z̃rd, Ṽrd ∈ Cnd×MN , G̃rd ∈ Cnd×nrPrd , ˜̂Y ∈
CnrPrd×MN , Psr and Prd are the number of resolvable DD
domain paths between S-to-R and R-to-D links, respectively.

C. OTFS with phase rotation

Phase rotation (PR) in OTFS is performed by pre-
multiplying the OTFS vector y by a PR matrix Θ, given by
Θ = diag{ej

q
MN }, q = 0, · · · ,MN − 1. Therefore, y′ = Θy

is the phase rotated OTFS transmit vector. In [6], it was
shown that SISO-OTFS with the above PR operation is capable
of achieving full possible diversity in the DD domain when
ej

q
MN , q = 0, 1, · · · ,MN−1 are transcendental numbers and
q

MN are real, distinct, and algebraic. We will analyze MIMO-
OTFS without and with PR in the considered relaying scheme.

III. PERFORMANCE ANALYSIS

In this section, we analyze the diversity performance of
MIMO-OTFS with DaF relaying. Maximum likelihood (ML)
detection is considered at the relay and the destination. The
minimum rank of difference matrices in a given system plays
a key role in determining the diversity performance of the
system. Therefore, we first characterize the minimum rank in
the considered relaying system.

A. Minimum rank on various links with relaying
In the S-to-R link, let Ỹi and Ỹj be two distinct MIMO-

OTFS symbol matrices without PR defined in (16), and Ỹ′
i and

Ỹ′
j be two such matrices with PR. As in [6], the minimum

ranks of (Ỹi − Ỹj) and (Ỹ′
i − Ỹ′

j) on the S-to-R link for
MIMO-OTFS are 1 and Psr, respectively. Now, consider the
R-to-D link. Note that the detected vector at the relay (error-
free or erroneous) belongs to the same OTFS signal set at
the source. In the R-to-D link, let ˜̂Yi and ˜̂Yj denote two

distinct symbol matrices without PR and ˜̂Y
′
i,

˜̂Y
′
j be two such

matrices with PR. We are interested in the minimum rank



of the difference matrix ( ˜̂Yi − ˜̂Yj), ∀i, j. To find that, we
note that the elements of the symbol matrices ˜̂Yi and ˜̂Yj are
symbols from the modulation alphabet A. Without PR, the
set of all the possible symbol matrices will include the matrix
a1nrPrd×MN , where a ∈ A. Now, considering the two distinct
matrices to be ˜̂Yi = a1nrPrd×MN and ˜̂Yj = a′1nrPrd×MN ,
a ̸= a′, the difference matrix is given by (a− a′)1nrPrd×MN

whose all elements will be the same. Therefore, its rank is one
which is the minimum rank.

Next, with PR, letting ∆̃′
ij = ( ˜̂Y

′
i −

˜̂Y
′
j), we have

∆̃′
ij =

∆′
1,ij
...

∆′
nr,ij

 , (18)

where ∆′
m,ij = Ŷ′

m,i − Ŷ′
m,j and Ŷ′

m,i and Ŷ′
m,j are

the transmitted symbol matrices from the mth antenna. The
minimum rank of ∆′

m,ij is Prd for all m = 1, · · · , nr.

Therefore, the minimum rank of ( ˜̂Y
′
i −

˜̂Y
′
j) is Prd.

B. Diversity analysis

In this subsection, we analyze the diversity performance of
MIMO-OTFS with DaF relaying. We bound the bit error rate
using pairwise error probability (PEP) expression to quantify
the diversity order. Let U denote the error event on the S-to-R
link with probability Pb(S → R), and V denote the error event
on the R-to-D link with probability Pb(R → D). With DaF
relaying, U and V constitute independent events. Additionally,
their intersection W = U∩V represents the errors in both links
with probability Pb(S → R)Pb(R → D). At the destination,
W may not contain any erroneous bits because some erroneous
bits found in S-to-R links may be corrected if they appear in
R-to-D links as well. Therefore, the total end-to-end error
can be expressed as U + V − (1 + δ)W , where δ (0 ≤ δ ≤
1) is determined by the modulation scheme used. In general,
however, both Pb(S → R) and Pb(R → D) are quite small,
so the probability of W = Pb(S → R)Pb(R → D) can be
neglected. As a result, the bit error probability of the end-to-
end system can be approximated by [12]

Pb ≈ Pb(S → R) + Pb(R → D). (19)

Further, Pb(S → R) and Pb(R → D) are upper bounded by
the union bound based on PEP. Assume ML detection and
perfect DD channel state information at R and D. On the
S-to-D link, the probability Pb(S → R) can be bounded as

Pb(S → R) ≤ C1

∑
i

∑
j,j ̸=i

dH(ȳi, ȳj)PS→R(Ỹi → Ỹj), (20)

where C1 = 1
LnsMN log2 |A| , L = |AnsMN |, dH(ȳi, ȳj) is

number of bits in ȳi which differ from those in ȳj , and

PS→R(Ỹi → Ỹj) is the average PEP between the symbol
matrices Ỹi and Ỹj given by

PS→R(Ỹi → Ỹj) = EG̃sr

Q
√∥G̃sr(Ỹi − Ỹj)∥2

2N0

 ,

(21)
where the averaging is over the distribution of G̃sr. We have
normalized the entries of Ỹ so that the average energy per
symbol time is one and the signal-to-noise ratio (SNR) is given
by γs = 1/N0. Upper bounding (21) using Chernoff bound,
we get

PS→R(Ỹi → Ỹj)≤ EG̃sr

{
exp

(
−γs∥G̃sr(Ỹi − Ỹj)∥2

4

)}
,

(22)
Carrying out the averaging, we get [6]

PS→R(Ỹi → Ỹj) ≤

 1∏rsr
l=1(1 +

γsλ
lij
sr

4Psr
)

nr

, (23)

where rsr and λlij
sr are the rank and eigenvalue of (Ỹi −

Ỹj)(Ỹi − Ỹj)
H in the S-to-R link, respectively. Next, on

the R-to-D link, Pb(R → D) is bounded as

Pb(R → D)≤C2

∑
i

∑
j,j ̸=i

dH(¯̂yi, ¯̂yj)PR→D( ˜̂Yi → ˜̂Yj), (24)

where C2 = 1
LnrMN log2 |A| and PR→D( ˜̂Yi → ˜̂Yj) is the PEP

between symbol matrices ˜̂Yi and ˜̂Yj . Following similar steps
from (21)-(23), we obtain

PR→D( ˜̂Yi → ˜̂Yj) ≤

 1∏rrd
l=1(1 +

γrλ
lij
rd

4Prd
)

nd

, (25)

where γr is the normalized SNR on the R-to-D link. From
(19), (23), (25), we have

Pb ≤ C1

∑
i

∑
j,j ̸=i

dH(ȳi, ȳj)

 1∏rsr
l=1(1 +

γsλ
lij
sr

4Psr
)

nr

+C2

∑
i

∑
j,j ̸=i

dH(¯̂yi, ¯̂yj)

 1∏rrd
l=1(1 +

γrλ
lij
rd

4Prd
)

nd

. (26)

At high SNRs, using the approximation (1 + γs

4Psr
) ≈ ( γs

4Psr
)

and (1 + γr

4Prd
) ≈ ( γr

4Prd
), (26) can be written as

Pb ≤ C̃1γ
−nrrsr
s + C̃2γ

−ndrrd
r , (27)

where C̃1 = C1

∑
i

∑
j,j ̸=i dH(ȳi, ȳj)

(∏rsr
l=1(

λlij
sr

4Psr
)
)−nr

and

C̃2 = C2

∑
i

∑
j,j ̸=i dH(¯̂yi, ¯̂yj)

(∏rrd
l=1(

λlij
rd

4Prd
)
)−nd

are appro-
priately defined constants. For equal power allocation at S and
R, we have γs = γr = γ. So, (27) becomes

Pb ≤ C̃1γ
−nrrsr + C̃2γ

−ndrrd . (28)

For nrrsr > ndrrd, at high SNRs, the second term in (28)
dominates. Therefore, (28) can be written as



Parameter Value
Carrier frequency, fc 4 GHz
Subcarrier spacing, ∆f 3.75 kHz
DD profile (τi, νi) for 1 DD path ( 1

M∆f
, 1

NT
)

DD profile (τi, νi) for 2 DD paths, (0, 0), ( 1
M∆f

, 1
NT

)

for M = 2, 4, N = 2

DD profile (τi, νi) for 4 DD paths, (0, 0), (0, 1
NT

),
for M = 2, 4, N = 2 ( 1

M∆f
, 0), ( 1

M∆f
, 1
NT

)

Maximum speed 506.2 kmph
Modulation BPSK, QPSK

TABLE I: Simulation parameters.

Pb ≤ C̃2γ
−ndrrd . (29)

Therefore, the diversity order is ndrrd. On the other hand,
for nrrsr < ndrrd, the first term in (28) dominates and the
diversity order is nrrsr. Combining these two, the diversity
order can be written as min{nrrsr, ndrrd}. This leads to the
following diversity orders.

• The achieved diversity order in MIMO-OTFS system wtih
DaF relaying without PR is min{nr, nd} = nr, since the
minimum ranks are rsr = 1, rrd = 1.

• The achieved diversity order in MIMO-OTFS system with
DaF relaying with PR is min{nrPsr, ndPrd}, since the
minimum ranks are rsr = Psr, rrd = Prd.

IV. RESULTS AND DISCUSSIONS

In this section, we present simulation results on the bit error
performance which validate the diversity analysis presented in
the previous section. The bit error rate (BER) performance of
the considered MIMO-OTFS system with DaF relaying are
evaluated with and without PR. The number of DD paths
considered on the various links are 1, 2, and 4. Table I shows
the system parameters used in the simulations.

SISO-OTFS with DaF (without PR): Figure 2 shows the
simulated BER of SISO-OTFS (ns = nr = nd = 1) with
DaF and without PR for M = N = 2, Psr = 2, 4, and
Prd = 2. Table I provides the DD channel profile considered
for the considered frame size and number of DD paths. The
DD channel model is given in (3). Additional simulation
parameters are presented in Table I. From Fig. 2, it is observed
that the diversity order without PR is one, i.e., there is one
order of improvement in BER for every 10 dB increase in
SNR in the high-SNR regime. This observed diversity of one
is in conformance with the analysis in Sec. III-B, where the
diversity order without PR is predicted to be nr, which in this
case is 1. Also, the BER upper bounds plotted in the same
figure are very close to the simulated BERs, validating the
analysis.

SISO-OTFS with DaF (with PR): Figure 3 shows the simu-
lated BER of SISO-OTFS with DaF and with PR for M = 4,
N = 2, Psr = 1, 2, 4, and Prd = 1, 2. It is observed that the
system with Psr = 1 and Prd = 2 achieves a diversity slope
of one. This is in agreement with the analytically predicted
diversity, which is min{nrPsr, ndPrd} = min{1, 2} = 1. It is
also seen that the system with Psr = 2 and Prd = 2 achieves

Fig. 2: Bit error rate performance of SISO-OTFS with DaF
without PR for M = N = 2, Psr = 2, 4, Prd = 2.

Fig. 3: Bit error rate performance of SISO-OTFS with DaF
with PR for M = 4, N = 2, Psr = 1, 2, 4, Prd = 2.

a diversity slope of two, which is also in agreement with
the analytically obtained diversity of min{nrPsr, ndPrd} =
min{2, 2} = 2. Likewise, the system with Psr = 4 and Prd =
2 also achieves a diversity slope of two, conforming to the
analytical diversity of min{nrPsr, ndPrd} = min{4, 2} = 2.

MIMO-OTFS with DaF (with and without PR): Figure 4
shows the simulated BER of MIMO-OTFS with DaF for ns =
nr = 2, nd = 2, 3, M = N = 2, Psr = 1, 2, and Prd = 1, 2.
For the system without PR, for ns = nr = nd = 2, Psr =
1, and Prd = 2, the observed diversity slope is two, which
is the same as the analytical diversity of nr(= 2). For the
same system with PR, the observed diversity slope is also
two. This is because the analysis predicts the diversity to be
min{nrPsr, ndPrd} = min{2, 4} = 2. That is, the link with
the lower minimum rank dominates the overall diversity slope.
In this case, the minimum ranks of S-to-R and R-to-D links
are Psr(= 1) and Prd(= 2), respectively. Similarly, the system
with ns = nr = 2, nd = 3, Psr = 2, Prd = 1 and without
PR shows a diversity slope of two

(
analytical diversity is also

nr(= 2)
)
. For the same system with PR, the observed diversity

slope is three, as per min{nrPsr, ndPrd} = min{4, 3} = 3.



Fig. 4: Bit error rate performance of MIMO-OTFS with DaF
and with and without PR for M = N = 2, Psr = 1, 2, Prd =
1, 2.

A. Analysis and results for fractional delay-Dopplers

The results presented above are for integer delays and
Dopplers. The diversity analysis for fractional DDs is pre-
sented in Appendix A. In this subsection, we present the sim-
ulated BER performance with fractional delays and Dopplers.
First, we validate the analytical diversity results for small
frame sizes and ML detection, and present simulated BER
results for large frame sizes with minimum mean square
error (MMSE) detection. A performance comparison between
MIMO-OTFS and MIMO-OFDM is also presented.

Results for small values of M and N : Figure 5 shows the
simulated bit error performance of MIMO-OTFS with DaF
relaying without PR for ns = nr = nd = 2, M = N = 2,
Psr = 2, and Prd = 2, 4. The Doppler corresponding to the
ith channel tap is generated using νi = νmax cos(θi), where
νmax is the maximum Doppler, and θi is uniformly distributed
over [−π, π]. The delay corresponding to ith channel tap
is generated as uniformly distributed over [0, (M − 1)Ts],
where Ts = 1/(M∆f) and ∆f is the subcarrier spacing.
Exponential power delay profile and Jakes Doppler spectrum
are considered. ML detection is used. The diversity order for
MIMO-OTFS with DaF from the analysis is nr = 2 and the
observed diversity order from simulation is also 2 validating
the analysis.

Results for large values of M and N : Figure 6 shows a
performance comparison between MIMO-OTFS and MIMO-
OFDM with DaF for large values of M and N and rectangular
pulse, considering system parameters according to the IEEE
802.11p standard [15]. The carrier frequency and subcarrier
spacing are 5.9 GHz and 0.156 MHz, respectively. A frame
size of M = 64, N = 12, number of paths Psr = Prd = 8,
fractional DDs with a maximum speed of 220 km/h (corre-
sponding maximum Doppler of 1.2 kHz), and BPSK mod-
ulation are considered. Since ML detection is prohibitively
complex for large values for M and N , MMSE detection is
used. From Fig. 6, we observe that the performance of MIMO-
OTFS is significantly better than the MIMO-OFDM system.

Fig. 5: Bit error rate performance of MIMO-OTFS without PR
for M = N = 2, Psr = 2, Prd = 2, 4 and fractional DDs.

Fig. 6: BER performance comparison between MIMO-OTFS
and MIMO-OFDM with relaying for M = 64, N = 12, Psr =
Prd = 8, ns = nr = nd = 2.

For example, at a BER of 10−3, MIMO-OTFS with DaF has
a gain of about 10 dB compared to MIMO-OFDM with DaF.

V. CONCLUSIONS

In this work, we investigated the performance of MIMO-
OTFS systems with decode and forward relaying. We consid-
ered MIMO-OTFS with a single relay to aid communication
between the transmitter and receiver. We derived a closed-
form expression for the end-to-end PEP in this system and
quantified the achieved asymptotic diversity order with and
without PR. Simulation results were shown to validate the an-
alytically derived diversity orders. Future work may consider
diversity analysis of MIMO-OTFS with DaF relaying using
practical pulse shapes. Optimal power allocation schemes for
the source and relay nodes can also be explored. Multiple
relay nodes with relay selection and the effect of inter-node
distances on the achieved diversity performance can also be
analyzed as future work.

APPENDIX A
ANALYSIS FOR FRACTIONAL DELAYS AND DOPPLERS



Y[i] =



∑M−1
q=0

∑N−1
q′=0

(
ej2π(−q−a1)−1

Mej
2π
M

(−q−a1)−M

) (
e−j2π(−q′−b1)−1

Ne−j 2π
N

(−q′−b1)−N

)
y[(k − β1 + q′)N , (l − α1 + q)M ]∑M−1

q=0

∑N−1
q′=0

(
ej2π(−q−a2)−1

Mej
2π
M

(−q−a2)−M

) (
e−j2π(−q′−b2)−1

Ne−j 2π
N

(−q′−b2)−N

)
y[(k − β2 + q′)N , (l − α2 + q)M ]

...∑M−1
q=0

∑N−1
q′=0

(
ej2π(−q−aP )−1

Mej
2π
M

(−q−aP )−M

) (
e−j2π(−q′−bP )−1

Ne−j 2π
N

(−q′−bP )−N

)
y[(k − βP + q′)N , (l − αP + q)M ]


. (30)

In this appendix, we present the analysis for the case of
fractional delays and Dopplers.

Input-output relation with fractional delays and Dopplers:
Consider the delays and Dopplers in the DD channel model
defined in (3) to be fractional, where

τi =
αi + ai
M∆f

, νi =
βi + bi
NT

, (31)

αi = [τiM∆f ]⊙, βi = [νiNT ]⊙, [.]⊙ denotes the rounding
operator (nearest integer), and ai, bi are fractional delays and
Dopplers satisfying − 1

2 < ai, bi ≤ 1
2 . With fractional DDs

and rectangular window functions, the DD channel can be
expressed as [6]

g(τ, ν) =

P∑
i=1

gie
−j2πτiνiG(ν, νi)F(τ, τi), (32)

where G(ν, νi) ≜
∑N−1

n′=0 e
−j2π(ν−νi)n

′T , and F(τ, τi) ≜∑M−1
m′=0 e

j2π(τ−τi)m
′∆f . The input-output relation with frac-

tional DD can be written as [6]

z[k, l] =

P∑
i=1

M−1∑
q=0

N−1∑
q′=0

(
ej2π(−q−ai) − 1

Mej
2π
M (−q−ai) −M

)

·

(
e−j2π(−q′−bi) − 1

Ne−j 2π
N (−q′−bi) −N

)
gie

−j2πτiνi

· y[(k − βi + q′)N , (l − αi + q)M ].

(33)

The input-output relation (33) can be written in a vectorized
form as

z = Gy + v, (34)

where z ∈ CMN×1 is the received signal vector, y ∈ CMN×1

is the transmit signal vector, G ∈ CMN×MN is the equivalent
channel matrix, and v ∈ CMN×1 is the noise vector. The
vectorized input-output relation in (34) can be written in
alternate form as

zT = g′Y + vT , (35)

where zT is 1 × MN received vector, g′ ∈ C1×P is vector
having its ith entry as gie

−j2πτiνi , Y ∈ CP×MN is symbol
matrix with its ith column (i = k+Nl, i = 0, 1, · · · ,MN−1),
and Y[i] is given by in (30) at the top of the page. The input-
output relation given in (34), (35) can be extended to MIMO-
OTFS with DaF defined in Sec. II-B.

Diversity of MIMO-OTFS DaF: Using the alternate form
defined in (16) and (17), and following the steps from (19)-
(27), BER upper bound is given by

Pb ≤ C̃1γ
−nrrsr + C̃2γ

−ndrrd , (36)

where C̃1 and C̃2 are appropriately defined constants. Using
similar arguments made in Sec. III-B, the diversity order is
obtained as min{nrrsr, ndrrd}. For MIMO-OTFS without PR,
the achieved diversity order is min{nr, nd} = nr, since the
minimum ranks are rsr = 1 and rrd = 1.
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