
1

Deep Channel Prediction: A DNN Framework for
Receiver Design in Time-Varying Fading Channels

Sandesh Rao Mattu, Lakshmi Narasimhan T, and A. Chockalingam

Abstract—In time-varying fading channels, channel coefficients
are estimated using pilot symbols that are transmitted every
coherence interval. For channels with high Doppler spread, the
rapid channel variations over time will require considerable
bandwidth for pilot transmission, leading to poor throughput.
In this paper, we propose a novel receiver architecture using
deep recurrent neural networks (RNNs) that learns the channel
variations and thereby reduces the number of pilot symbols
required for channel estimation. Specifically, we design and train
an RNN to learn the correlation in the time-varying channel and
predict the channel coefficients into the future with good accuracy
over a wide range of Dopplers and signal-to-noise ratios (SNR).
The proposed training methodology enables accurate channel
prediction through the use of techniques such as teacher-force
training, early-stop, and reduction of learning rate on plateau.
Also, the robustness of prediction for different Dopplers and
SNRs is achieved by adapting the number of predictions into the
future based on the Doppler and SNR. Numerical results show
that good bit error performance is achieved by the proposed
receiver in time-varying fading channels. We also propose a data
decision driven receiver architecture using RNNs that further
reduces the pilot overhead while maintaining good bit error
performance.

Index Terms—Time-varying fading channels, Doppler spread,
receiver design, recurrent neural networks, deep channel predic-
tion, pilot overhead.

I. INTRODUCTION

NEURAL networks have found applications in a wide
range of fields. They are being increasingly used for

inference tasks like regression and classification. With the
advent of libraries available for training, it has become easier
than ever to train and deploy application specific neural
networks. This is aided by the availability of hardware tailor
made for training neural networks. The time required to train
neural networks, even complex ones having large number of
parameters, has reduced drastically. The networks also have
the advantage that once trained, they are computationally effi-
cient when compared to the conventional optimal algorithms.
In the field of communications, neural networks have been
employed in a wide range of problems in the physical layer
design [1],[2],[3]. Some of them include design of codes using
neural networks [7], decoding algorithms via deep learning
[4],[5], signal detection [7]-[11], channel estimation [12]-[14],
beamforming and precoding [15],[16], and autoencoder based
transceiver designs for fading channels [17]. In addition to
classification and regression problems, neural networks have
been used in prediction tasks like clinical prediction [18] and
caption prediction for images [19].

A key problem in wireless communications is channel
estimation. Specifically, the receiver needs an estimate of the

channel fade coefficient in a given coherence interval of the
channel for reliable decoding of data symbols in that coherence
interval. Towards this, known symbols called pilots are sent
over the channel to the receiver. The receiver estimates the
channel coefficient from the received pilots and uses it for
decoding the data symbols. The transmitter sends periodic pilot
symbols for channel estimation in every coherence interval.
The pilot symbols take up considerable portion of the available
bandwidth if the coherence time of the channel is small.

In this paper, we consider a scenario where there is mobility
at the receiver and/or at the transmitter. The relative motion
between the transmitter and receiver introduces Doppler spread
in the channel and this leads to the channel fade coefficients
being time correlated. We aim to use neural networks to take
advantage of this correlation among the fade coefficients to
reduce the pilot resources for communication. We achieve
this by training neural networks that can learn the temporal
dependency in the fading process and use this knowledge to
predict future values of the fade coefficients. This prediction
of future fade coefficients allows pilot symbols to be sent
less often, leading to increased data throughput. Our new
contribution in this paper is that we propose a novel receiver
architecture that uses recurrent neural networks (RNN) that
perform deep channel prediction and signal detection in time-
varying fading channels. To our knowledge, an RNN-based
channel prediction approach for the design of robust receivers
in time-varying fading channels has not been reported. The
new contributions in this paper can be summarized as follows.

• First, we design and train an RNN to learn the correlation
in the time-varying fading channel and predict the channel
coefficients into the future with good accuracy over a
wide range of Dopplers and signal-to-noise ratios (SNR).
The proposed training methodology enables accurate
channel prediction through the use of techniques such
as teacher-forced training, early-stop, and reduction of
learning rate on plateau. The robustness of prediction
for different Dopplers and SNRs is achieved by adapting
the number of predictions into the future based on the
Doppler and SNR. Our numerical results show that good
bit error rate (BER) performance is achieved by the
proposed receiver in time-varying fading channels.

• Next, we propose a data decision driven receiver architec-
ture using RNNs that further reduces the pilot overhead
while maintaining good bit error performance.

The achieved robustness in the receiver performance over a
range of Doppler and SNR conditions illustrates that the pro-
posed RNN-based channel prediction approach is a promising

2

approach for receiver design in time-varying fading channels.
The rest of the paper is organized as follows. In Sec. II, we

present the considered system model and a brief background
on deep neural network architectures used in this paper. In
Sec. III, we present the proposed deep channel predictor,
its architecture, training methodology, and performance. The
proposed adaptive channel prediction scheme and its perfor-
mance are also presented in this section. In Sec. IV, we
present the proposed data decision driven architecture and its
performance. Conclusions are presented in Sec. V.

II. SYSTEM MODEL

Consider a point-to-point wireless communication system
with a single antenna transmitter and receiver. The channel
between the transmitter and receiver is a time-varying fading
channel. The information symbols are chosen from an M -ary
constellation. Let x(t) be the transmit signal at the tth time
instant. The channel fade coefficient at the tth time instant is
denoted by h(t). Let y(t) be the received signal at the receiver
and n(t) be the additive noise. Now, y(t) can be written as

y(t) = h(t)x(t) + n(t). (1)

The channel fade coefficients are statistically modelled by a
circularly symmetric complex Gaussian random variable with
mean 0 and variance 1, i.e., h ∼ CN (0, 1). The additive white
Gaussian noise (AWGN), n(t), is modelled as n ∼ CN (0, σ2),
where σ2 is the variance of the noise.

We consider a mobile communication scenario where there
is relative motion between the transmitter and receiver. This in-
troduces Doppler spread in the channel due to time selectivity
and the channel fades h(t) become temporally correlated. The
correlation in h(t) depends on several factors such as scatterers
in the propagation environment, relative velocity between the
transmitter and receiver, etc. The power spectral density (PSD)
of h(t) is non-zero in the interval [−fmax

D , fmax
D], where fmax

D

is the maximum Doppler frequency given by [20],[21]

fmax
D =

fcv

c
. (2)

In (2), v is the maximum relative velocity between the
transmitter and the receiver, fc is the carrier frequency and
c is the speed of light. Therefore, the Doppler spread of
the channel is given by 2fmax

D . For a low Doppler spread,
the channel changes slowly over time, while a high value
of Doppler spread indicates that the channel varies rapidly
with time. The coherence time (Tc) of the channel is inversely
proportional to the Doppler spread, Tc ∝ 1/fmax

D . In order to
detect the transmitted signal x(t) from y(t), the value of h(t)
has to be estimated at the receiver. In each transmission block
spanning one coherence time, the channel gain is estimated
and employed for detection of the data signal transmitted in
that coherence block.

Typical wireless communication systems transmit one or
more pilot symbols in each coherence block to estimate
the channel coefficients. Let Tp and Td be the duration of
pilot transmission and data transmission, respectively, in a
coherence block, i.e., Tc = Tp + Td. Let p(t) be the pilot

signal transmitted at the tth time instant. The signal received
during the pilot transmission phase can be written as

yp(t) = h(t)p(t) + n(t). (3)

The linear minimum mean square error (LMMSE) estimate
of the channel coefficient that achieves the Cramer-Rao lower
bound is given by [22],[23]

ĥ(t) =
yp(t)|p(t)|2

p(t) (|p(t)|2 + σ2)
. (4)

The transmission of pilots reduces the spectral efficiency
and throughput of the communication system. That is, Tp

Tc

fraction of the channel-uses do not carry data. The efficiency
of channel usage is defined as

η = 1− Tp
Tc
. (5)

For a fixed number of pilots per coherence block, as the
coherence time decreases, η also decreases. High mobility
wireless communication channels may require large amount
of bandwidth to be used for pilot transmission, which, in turn,
adversely reduces the achievable data rate and system capacity.

Since the time-varying channel coefficients are temporally
correlated, the number of pilots transmitted to estimate the
channel coefficients can be reduced by learning this correlation
model and using the learnt model in channel estimation. As
the correlation model could be different for different channel
geometries, a statistical solution to this problem may not be
robust. Therefore, we propose to employ a deep learning
based solution to learn the channel correlation model and
predict the channel coefficients into the future to reduce the
pilot transmissions. Towards this, we employ recurrent neural
networks (RNN) and fully connected neural networks (FCNN)
to construct the proposed deep channel predictor and the
receiver. Consequently, in the following subsection, we present
a brief background on deep neural networks, focusing on
FCNNs and RNNs.

A. Deep neural networks

The deep neural network architectures that we employ are
FCNNs and RNNs.

1) Fully connected neural networks: A deep FCNN con-
sists of multiple layers of neurons. Every neuron in a layer is
connected to all neurons in the adjacent layers, thus forming
a fully connected network. The architecture of a deep FCNN
is illustrated in Fig. 1. Deep FCNNs have been known to be
suitable for learning or approximating any linear/non-linear
function for tasks such as detection or estimation [24]. For
data that is temporally correlated, RNNs are known to provide
better learning performance than FCNN [25].

2) Recurrent neural networks: A deep RNN can be con-
structed by the repetition of a one or more blocks over time,
where a single block consists of multiple trainable parameters.
That is, the output of a single block is fed back recursively,
thus enabling the network to have memory and learn temporal
correlation in the input data. This is referred to as ‘time
unfolding’ of the network. The architecture of a deep RNN
is illustrated in Fig. 2.

3

Fig. 1: Architecture of a fully connected neural network.

b b b

Ii

Si

Oi

unfold

I1

S1

O1

I2

S2

O2

In

Sn

On

Fig. 2: Architecture of a recurrent neural network.

In Fig. 2, the left portion shows the recurring unit of the
RNN and the right portion illustrates the unfolding over time.
The input and output of the RNN at the ith time instant are
represented by Ii’s and Oi’s, respectively. Si’s are referred
to as hidden states of the RNN. There are three trainable
weight matrices and two trainable biases in such an RNN.
A weight matrix WSI is employed in the link between Ii and
Si. Similarly, weight matrices WOS and WSS are employed
in the links between Si and Oi, and between Si and Si−1,
respectively. The biases bS and bO are added when computing
Si and Oi, respectively. The matrices and biases are the same
across all unfolding, i.e., the entries of the matrices and biases
are not a function of the time.

There are several implementations of RNN. In this paper, we
make use of an implementation known as the long short-term
memory (LSTM) [26]. The block diagram of the recurrent
unit of the LSTM architecture of RNN is shown in Fig. 3.
This architecture consists of three gates. These gates learn
the temporal information that are relevant and pass it to the
next iteration. In each gate, a sigmoid function is applied that
restricts the output to values between 0 and 1. The output
of the activation are then multiplied to decide which part of
the information is relevant. During training, the weights are
updated such that the relevant information gets a larger weight
which yields a value close to 1 after the sigmoid function. In
Fig. 3, the variable ci, called the cell state, is made available to
all unfolded blocks. The variable Si refers to the hidden state
of the cell and Ii is the input to the cell. In our setup, the input
Ii corresponds to either the channel estimates from (4) or the
fed back prediction values (see Fig. 4). The ci’s and Si’s are

×

×

+

×

sigmoid tanh concatenation

cici−1

Si−1 Si

Ii Input gate
Forget gate Output gate

Fig. 3: Recurrent unit of the LSTM architecture.

b b b bc1 cnc2 LSTM FCNN Array

Fig. 4: Block diagram of the channel predictor neural network.

updated at each stage i using Ii’s. However, the information
that is passed on to the next iteration depends on the gate
values. We use LSTM implementation of the RNN because,
as opposed to the basic RNN implementation, LSTMs are able
to learn correlation model in long time varying sequences [26].

We use PyTorch machine learning library for the implemen-
tation, training, and testing of all the neural networks proposed
in this paper [27]. We use the Nvidia Titan RTX GPU platform
to carry out all the simulations.

III. PROPOSED DEEP CHANNEL PREDICTOR

In this section, we present the proposed RNN based deep
channel predictor, its architecture, training methodology, and
performance. The channel predictor uses the received pilot
symbols to learn the channel variation model and predict the
future channel coefficients.

A. Architecture

The proposed deep channel predictor consists of two predic-
tion networks, one each for predicting the real and imaginary
parts of the channel coefficients. The architecture for these
networks are the same and they are trained separately. The
deep channel predictor network consists of an LSTM network
and an FCNN. The block diagram of the proposed deep
channel predictor is shown in Fig. 4.

The purpose of using LSTM is two fold. First, the LSTM is
capable of identifying temporal correlations in the inputs and
learning a correlation model. Second, the LSTM can leverage
the learnt correlation model to make predictions that obey the
model. Also, we choose a single layer LSTM architecture for
the predictor network based on the following performance
evaluation. Figure 5 plots the mean square error (MSE)
performance of the trained predictor network as a function of
SNR, for different number of layers in the LSTM architecture.
It is seen that the MSE of the predictions improves in the low

4

Fig. 5: Mean square error of predictions made by predictor
network for different number of layers in the LSTM network.

(a) 1-layer (b) 5-layers

Fig. 6: Training and validation loss trajectory for 1-layer and
5-layers LSTM architectures.

to mid SNR regime when the number of layers is increased
from 1 to 3. However, with further increase in the number
of layers, the MSE performance of the network degrades,
which can be attributed to the phenomenon of over-fitting,
wherein a network learns to perform well only on the data
set used in training [28]. This is illustrated in Figs. 6a and
6b which show the training/validation loss performance for 1-
layer LSTM and 5-layer LSTM, respectively. It is seen that
both 1-layer and 5-layer LSTMs show convergence to small
training loss values (indicating successful training). However,
in the validation phase (where data not in the training data
set is used for validation) the validation loss in 5-layer LSTM
does not show convergence to small values (indicating over-
fitting), while 1-layer LSTM achieves convergence to small
loss values in validation phase as well. Although LSTM
architecture with 3-layers has the best MSE performance,
the improvement it offers over 1-layer LSTM architecture is
not significant compared to the complexity it introduces. For
example, the number of parameters in the predictor network
with 1-layer, 2-layer, and 3-layer LSTMs are 41301, 122101,
and 202901, respectively. The five-fold increase in the number
of parameters when compared to the 1-layer LSTM makes the
3-layer architecture to be slower and harder to train than the 1-

Parameter Value
Number of layers 1
Input dimension 1
Hidden units 100
Output dimension (l) 100
Direction Uni-directional

TABLE I: Parameters of LSTM layer of channel predictor.

Parameter Value
Input dimension (l) 100
output dimension (m) 1
Activation function Linear
Number of layers 1

TABLE II: Parameters of FCNN layer of channel predictor.

layer counterpart. Further, above 25 dB, the MSE performance
of the predictor network with 1-layer, 2-layers, and 3-layers
LSTM architectures are almost similar. Therefore, we choose
1-layer LSTM architecture with the parameters listed in Table
I for the predictor network throughout this paper for its
simplicity and reasonably good MSE performance.

The FCNN layer is employed to reduce the output of
the LSTM layer to the required dimension. In our setup,
the data from the output of the LSTM has a dimension of
100, which is to be reduced to a dimension 1 indicating a
single channel prediction. However, picking one dimension
arbitrarily may not yield the best solution. The FCNN takes
the 100-dimensional data as input, and during training assigns
large weights to those outputs which have a potentially higher
bearing on the prediction value as compared to the rest. This
can improve the performance of the predictions made by the
setup. The FCNN layer parameters are listed in Table II.

Figure 4 shows the block diagram that depicts the working
of the channel predictor. The predictor network expects an n-
length sequence of channel coefficients as input. The working
of the network is divided into two phases, namely, the initial
estimation phase and the subsequent prediction phase. In the
estimation phase, n pilots are transmitted in n coherence in-
tervals. The LMMSE channel estimates from these transmitted
pilots are obtained using (4). These estimates are used to
initialize the entries of the input vector c = [c1 c2 · · · cn]
with entries arranged chronologically, c1 being the least recent
estimate and cn being the most recent. This initialized vector
is provided as the input to the LSTM network. The entries of c
reflect the correlation among the channel coefficients, and are
used by the LSTM network to predict the channel coefficients
in the subsequent coherence intervals. The output of the LSTM
network is fed to the FCNN layer.

The FCNN layer produces one channel prediction at its
output. This output is the prediction for one-step into the
future, i.e., this output is the predicted coefficient for the
coherence interval next to the coherence interval for which
the most recent estimate cn was obtained. This concludes the
initial estimation phase. Subsequently, in the prediction phase,
the input vector c is left shifted so that c1 is flushed out and
the previously obtained prediction value is used to fill the
vacant cn space after the left shift operation. The input of
the LSTM is thus updated with the most recent prediction. A

5

Channel
predictor

From
channel

Channel
estimates

Decoded
symbols

ML/NN
Decoder

Fig. 7: Block diagram of the channel predictor aided receiver.

procedure similar to that in the estimation phase is followed
again to obtain the channel prediction corresponding to the
next coherence interval. This process is repeated for as many
times as the number of predictions required. The predictions
thus made by the network are stored in an array. At the end of
required number of predictions, the array is used to decode the
transmitted symbols. The architecture is therefore flexible in
the sense that it allows for dynamic adjustment of the number
of channel predictions.

The block diagram of the overall channel predictor aided
receiver is shown in Fig. 7. The channel predictor block is
followed by a data decoder. The data decoder can be maximum
likelihood (ML) decoder or a neural network (NN) based
decoder. We will use ML decoding for transmission schemes
that decode symbol by symbol, due to low ML decoding
complexity in such cases. For block transmission schemes
which require joint decoding of symbols (e.g., cyclic prefix
single carrier (CPSC) scheme in Sec. III-G), we will use NN-
based decoder approach.

Further, the channel predictor and the NN decoder can be
trained together as a single network, as it would alleviate the
need for a separate decoder. However, we keep the training
for the predictor and the decoder separate with the intention
of having a universal predictor network. That is, once trained,
the predictor network can be used in conjunction with any
decoder. On the other hand, if training is done for the predictor
and decoder together, there is a need to train and store multiple
models, each corresponding to a different decoder.

B. Training methodology

In this subsection, we describe the training of the channel
predictor network. To train the channel predictor network,
correlated channel coefficients that mimic a channel with time
selectivity are used. This data is generated using the Clarke
and Gan’s model [20]. For a time-selective channel, the auto-
correlation function of the fading process h(t) is given by

ψ(∆t) = J0(2πf
max
D ∆t), (6)

where J0(.) is the modified Bessel function of the first kind
and zeroth order. The PSD of h(t), which is also referred to
as the Jakes’ spectrum, is given by

SH(f) =
rect

(
f

2fmax
D

)
πfmax

D

√
1−

(
f

fmax
D

)2
, (7)

where rect(·) is the rectangular function defined as

rect(x) =

{
1, x ∈ [− 1

2 ,
1
2]

0, otherwise.
(8)

Specifically, we use the implementation of Clarke and Gan’s
model given by Smith in [21] to generate the required data.
In our simulations, a coherence block consists of 42 symbols
for fD = 50 Hz and 11 symbols for fD = 100 Hz.

To begin the training, the LSTM and FCNN networks
in Fig. 4 are initialized with random or untrained weights.
A large number of correlated channel coefficient samples
are generated using the implementation mentioned above,
so that the network is able to generalize well. The channel
coefficients are separated into real and imaginary parts. The
real (imaginary) part is used as training data for the predictor
network which is set to predict real (imaginary) part of the
channel coefficients. While training, the number of predictions
made by the network is fixed at 100. The network is trained
with 10-length sequence of input data and 100-length sequence
of ground truth predictions or expected predictions. Both are
obtained from the correlated channel coefficients obtained
through Smith’s method. Therefore, we sample blocks of
length 110 from the generated samples of correlated channel
coefficients. The sampled sequence is structured such that the
first entry in the sequence is the least recent and the last entry
is the most recent. The first 10 entries (from the least recent
end) of the sequence are provided as input to the predictor
network. The network produces 100-length predictions. These
predictions are compared with the last 100 entries of the 110-
length sequence by computing a mean square error (MSE) loss
function, given by

L(x, x̂,Θ) = E[x− x̂(Θ)]2. (9)

In the above equation, E[·] is the expectation operator, x is
the 100-length expected output, and x̂(Θ) is the 100-length
output of the neural network, which is a function of the
network parameters Θ. At each training iteration, the value
of (9) is computed and the weights are updated so as to
minimize the loss function through back propagation. This
procedure is repeated for real and imaginary predictions in
each iteration. The values of the hyper parameters used for
training the channel predictor are given in Table III.

Remark 1: Note that the predictor network is trained at a
Doppler frequency of 10 Hz (see Table III). The predictor
trained at 10 Hz Doppler is able to predict well over a range of
Doppler values (as will be shown in Figs. 9 and 12 later). This
is because the training teaches the LSTM network essentially
to observe the underlying correlation model in the input data
and leverage the observed model to predict future coefficients.
In the 10 Hz case, the network trained at 10 Hz observes that
the channel coefficients have strong correlation and it outputs
predictions that obey the underlying slow variation model. In
the 100 Hz case, the input changes are more abrupt and the
same trained network is able to adapt to this underlying fast
variation model as well and produce predictions that obey the
faster trend.

1) Training enhancement features: The training method
outlined above, by itself, either leads to a large number of
iterations before converging (where the loss function assumes
a small enough value) or to a condition where the network
does not converge at all (where the loss function did not
monotonically decrease). This is because in each iteration

6

(a) Training loss (b) Validation loss

Fig. 8: Comparison of training and validation loss trajectories as a function of epochs with and without the training enhancement
features.

Hyper parameter Value
Starting learning rate 0.01
Minimum learning rate 10−8

Epochs Min. 200, Max. 1000
Optimizer Adam
Loss function MSE
Batch per epoch 4500
Training Doppler frequency 10 Hz (see Remark 1)

TABLE III: Hyper parameters used for training channel pre-
dictor.

during the initial part of the training, the prediction made is
inaccurate due to untrained weights and the erroneous value is
fed back to the input to make another prediction. It is only at
the end of 100 predictions that the loss function is evaluated
and the back propagation to update weights is performed. Due
to the error accumulating at the input, the output might become
garbled leading to poor weight updates, resulting in slow
convergence or divergence. Therefore, we employ additional
techniques while training as enumerated below.

• Teacher force training: This technique is employed to al-
leviate the problem mentioned above. Teacher force train-
ing involves supplementing the training with the ground
truth data. During training, data is fed back from the
output of the predictor network to the input. With teacher
force training, with small probability, p, the ground truth
data corresponding to that time instant is supplied from
the 100-length expected output. This prevents the input
from accumulating error due to inaccurate predictions. In
our training setup, we found that a probability of p = 0.2
works well for quick convergence of the network. This
implies that with 1 − p = 0.8 probability the prediction
made by the network itself is fed back to its input to
make further predictions. Since the input is not allowed to
deviate uncontrollably from the actual values, this helps
the network converge faster.

• Reduce learning rate on plateau: Learning rate is a hyper
parameter that needs to be set while training. The value
of the learning rate decides how fast or slow a network
learns, by pacing the weight updates. A large learning
rate (of the order of ∼ 0.01) is desirable at the initial
stages of training. However, when the loss function hits
a plateau a large learning rate may not help the loss
function to reduce further. This is because the large value
of the learning rate forces large weight updates and may
result in unsettling the network from the state it is in. A
small learning rate would ensure that the weight updates
are small and the would help the network to find the
minimum within the plateau. If this does not happen
and the loss function continues to maintain the value at
plateau, the technique calls for increasing the learning
rate back to its original value. In our training setup, we
implemented this by reducing learning rate by a factor of
10 every time the loss function value did not reduce for
10 consecutive training iterations. To prevent the learning
rate from becoming minuscule, we set the minimum value
to be 10−8. In the process of decreasing the learning
rate, if at any stage the value of loss function is found
to increase, the learning rate value is reset to its original
value.

• Early stop: Yet another problem that is associated with
training neural networks is that of over-fitting. Over-
fitting is said to occur when the network is allowed to
learn for a long time on the available data. This results
in a trained model that is tailor made for the training
data, but fails to generalize to data beyond those seen
while training. That is, the model performs poorly on any
data that is not present in the training data. To prevent
this from happening we employ a technique called early
stop. The early stop technique dictates that the training be
stopped when the network is not able to learn any further.
This happens when the loss function does not reduce

7

SNR = 13 dB

SNR = 23 dB

SNR = 43 dB

Fig. 9: Mean square error of predictions as a function of
number of predictions for different SNR and fD values.

across iterations. We implement this after a minimum of
200 epochs of training. Following this, if the learning rate
has already dropped to 10−8 from the second technique
and the loss function does not reduce significantly in the
next 50 iterations, we stop training the network. If such
a scenario never occurs during training, the training is
stopped after 1000 epochs.

C. Performance results

In this subsection, we present simulation results on the
training performance, prediction error performance, and BER
performance associated with the proposed channel predictor
aided receiver developed in the previous subsections. In all the
simulations, a fixed 4-QAM symbol is used as a pilot symbol,
and the pilot symbol power and the data symbol power are
kept the same. In practice, the pilot power is typically kept at
the same or a higher level compared to the power in the data
symbols.

1) Training performance: Figure 8 shows the training tra-
jectory in terms of training loss and validation loss at each
epoch comparing training performed with and without the
above mentioned enhancement features. In Figs. 8a and 8b,
the plotted line shows the mean of the training loss and
validation loss, respectively, while the shaded area around
the line is indicative of the variance observed in the losses
across training runs. The training loss (MSE loss between
the predicted coefficients and the actual coefficients evaluated
during training) in the presence of the enhancement features
shows convergence at about 50 epochs for the training loss
trajectory and about 100 epochs for the validation loss tra-
jectory, after which the loss remains almost constant. This
quick convergence is attributed to teacher force training and
subsequent consistency in the loss function value is due to
the reduced learning rate. Further, as the variance in the
validation loss (MSE loss evaluated on data not present in
training data) decreases to small values around 200 epochs,
the training is stopped and the network parameters are frozen
in accordance with the early stop training feature. In contrast,

without the enhancement features, the training loss does not
seem to converge as it assumes a high value throughout. A
similar trend is observed in the validation loss trajectory as
well. Without the enhancement features, the network shows
large variations in the validation loss and training loss even
at 200 epochs, which leads to slow convergence. Figure 8,
therefore, demonstrates the effectiveness of the enhancement
features in attaining faster convergence.

2) Prediction error performance: Figure 9 shows the MSE
performance of predictions as a function of number of future
predictions made by the channel predictor. The plots are
obtained for fD = 10, 50, and 100 Hz. The following obser-
vations can be made from Fig. 9. First, the MSE performance
is found to improve with increasing SNR, which is expected.
Next, for a given SNR and fD, increasing the number of future
predictions increases the MSE. As the number of predictions is
increased at a given SNR and fD, more errors are accumulated
which explains the observed trend. Therefore, choosing the
right number of future predictions becomes crucial to ensure
robustness across different values of Dopplers and SNRs. For
a given SNR and number of predictions, the MSE curves for
different fD values are close.

3) BER performance: In Figs. 10a and 10b, we demonstrate
the BER performance achieved by the proposed channel
prediction aided receiver with ML decoder for 4-QAM and
16-QAM, respectively. Performance with perfect channel state
information (CSI) is also plotted for comparison. We consider
two scenarios to demonstrate the effect of number of future
predictions on the BER performance. The first is a greedy
scenario (with respect to bandwidth efficiency), where we set
the number of predictions to be fixed at 100 across different
Eb/N0 and fD values. This corresponds to a bandwidth
efficiency of 90.9%. The second is a conservative scenario
(with respect to MSE of predictions), where the number of
predictions is fixed at 10 instead of 100, corresponding to a
bandwidth efficiency of 50%. The following observations can
be made. First, it can be seen that in the conservative scenario
with 10 predictions, the achieved BER performance is very
close to the ideal performance with perfect CSI for both 4-
QAM and 16-QAM with fD = 50, 100 Hz. Second, although
the greedy scenario achieves good bandwidth efficiency, the
BER performance takes a hit. The performance gap between
the greedy and the conservative scenarios is more for the
channel with a higher Doppler. While the performance hit
in the greedy scenario is not very significant in the 4-QAM
case, it is quite severe in the case of 16-QAM (see BER
plots in Fig. 10b for 100 predictions). This constrains the
number of predictions to be conservatively fixed at 10 in
order to achieve good BER performance, which leads to poor
bandwidth efficiency. Motivated by this need and opportunity
for improvement, in the following subsection (Sec. III-D),
we propose an adaptive scheme that allows the receiver to
dynamically adjust the number of future predictions employed
in the prediction algorithm in accordance with the operating
SNR and Doppler.

8

(a) 4-QAM (b) 16-QAM

Fig. 10: BER Performance of the proposed channel predictor aided receiver with ML decoder for fixed number of predictions
(N=100, η = 90.9% and N=10, η = 50%) at fD = 50, 100 Hz for 4-QAM and 16-QAM.

D. Adaptive channel prediction

In the previous subsection, the number of future predictions
employed in the prediction algorithm is fixed. Here, we
propose to adapt the number of predictions in accordance
with the operating SNR and Doppler with a motivation to
improve bandwidth efficiency and performance. The idea is
to create and use a lookup table consisting of the achieved
MSE between the channel predictions and the actual channel
coefficients for different number of future predictions, SNRs,
and Dopplers. The desired target MSE for a given operating
SNR is set to be the MSE between the LMMSE channel
estimate in (4) and the actual channel coefficients. For a
given operating SNR, Doppler, and target MSE, the number of
future predictions to be employed in the predictor algorithm
is obtained from the lookup table. This makes the prediction
algorithm to adaptively employ different number of future
predictions for different operating conditions.

In Fig. 11, we show the 3D plots of the entries of the
lookup table (i.e., achieved MSE values) for different values
of number of predictions (N = 5 to 100) and Doppler (D = 5
to 100 Hz) at SNRs of 10 dB and 20 dB. It can be seen that
for a fixed N , the achieved MSE decreases with decreasing D.
Likewise, for a fixed D, the MSE decreases with decreasing
N . It can also be observed that, for all N and D values, the
achieved MSE values at 20 dB SNR are less than those at
10 dB SNR. The contour lines plotted in the N -D plane at
the bottom are for the surface corresponding to 20 dB SNR.
A given contour line shows all the (N,D) values for which
the achieved MSE is the same. For example, the outermost
contour with (100, 5) and (5, 100) as the end points has an
MSE of 0.002. In this contour, as D decreases from 100 Hz
to 5 Hz, N increases from 5 to 100. Further, the innermost
contour is a point at (N,D) = (100, 100) that has an MSE
value of 0.012.

In Fig. 12, we show the 2D plots of the MSE performance
of the predictions as a function of channel correlation (Doppler

Fig. 11: Achieved MSE performance of predictions as a
function of number of future predictions and Doppler for a
given SNR of 10 dB and 20 dB.

spread) for N = 20, 50, and 100 predictions, at a fixed SNR of
10 dB. It is seen that for all values of the Doppler spread, the
MSE values are least when the number of predictions is 20 and
the highest when the number of predictions is 100. Further, the
MSE values across different Doppler spreads are close when
N = 100, while they are even closer when N = 50, 20. For
instance, at 100 Hz Doppler the maximum increase in MSE
compared to 10 Hz Doppler is only about 0.011 for the case
of 100 predictions, while this number drops to 0.0045 for the
case of 20 predictions. This demonstrates that the network
trained at 10 Hz is able to generalize and perform quite well
across the considered Doppler range (up to 100 Hz).

The prediction algorithm chooses the number of predictions
(for a given operating SNR, target MSE for that SNR, and
Doppler) corresponding to an achieved MSE in the lookup
table that is less than the target MSE. Figure 13 shows

9

Fig. 12: MSE performance of predictions as a function of fD
for a given SNR of 10 dB.

the number of predictions chosen by the algorithm from the
lookup table for different SNRs in the range -5 dB to 40 dB
and fD values in the range 10 Hz to 100 Hz. Here, the target
MSE at an SNR is obtained by evaluating the MSE of LMMSE
estimates obtained by pilot transmissions at that SNR. It can be
seen that, for a given fD, the number of predictions chosen
by the algorithm shows a bell-shaped behavior as the SNR
is increased. For example, at very low SNRs, the algorithm
chooses very few number of predictions to meet the target
MSE. This is because the correlation in the input to the channel
predictor is perturbed significantly by the additive noise having
a high variance. This leads to a high MSE of predictions,
forcing the algorithm to choose a correspondingly small value
for the number of predictions. As the SNR increases, the
number of predictions chosen by the algorithm increases.
This is because the fluctuations in the correlation in the
input decreases with increasing SNR (i.e., decreasing noise
variance). As the SNR increases further beyond a certain value,
although the disturbance to the correlation reduces further, the
algorithm chooses smaller and smaller number of predictions,
which can be explained as follows. First, the target MSE
(obtained from (4)) decreases with increasing SNR. Second,
the achieved MSE for a fixed number of predictions, i.e.,
the prediction error does not decrease as fast as the target
MSE with SNR. The combined effect of these two makes the
algorithm to choose reduced number of predictions at high
SNR.

In Figs. 14a and 14b, we demonstrate the BER perfor-
mance achieved by the proposed adaptive channel predictor
aided receiver with ML decoder for 4-QAM and 16-QAM,
respectively. The performance at fD = 50 Hz and 100 Hz are
shown. The performance with perfect CSI is also shown. It
can be seen that, with the proposed adaptation of the number
of predictions, the receiver is able to achieve a performance
that is very close to the ideal performance with perfect CSI for
both 50 Hz and 100 Hz Doppler, while also being bandwidth
efficient. For example, in Fig. 10b, for fD = 100 Hz, the
greedy scenario fixes the number of predictions to be 100

Fig. 13: Number of future predictions chosen by the prediction
algorithm as a function of SNR for different values of fD.

for all values of Eb/N0, which causes the BER to floor at
3 × 10−2. The adaptive scheme, on the other hand, chooses
the number of predictions to be 100 until an Eb/N0 value
of 7 dB, after which it reduces the number of predictions
towards 5 at 40 dB Eb/N0, leading to better performance (no
flooring is seen). Likewise, in Fig. 10a, for fD = 50 Hz, the
conservative scenario fixes the number of predictions to be 10
throughout the Eb/N0 range. Although the performance for
fD = 50 Hz in Figs. 10a and Fig. 14a are almost same, the
bandwidth efficiency in Fig. 10a is only 50%, as there are
10 predictions made for 10 pilots transmitted. On the other
hand, in Fig.14a, the adaptive scheme chooses the number of
predictions to be greater than 10 until the Eb/N0 value of 20
dB. For example, at 20 dB, the number of predictions chosen
is 15 which translates to a bandwidth efficiency of 60%, and
at 6 dB, the number of predictions is 100, which achieves a
bandwidth efficiency of 90.9%.

Next, we consider a non-neural network based benchmark-
ing scheme to compare the performance of the proposed
adaptive scheme. The benchmarking scheme employs LMMSE
channel estimation and linear interpolation (LI) along with
ML decoding. For fair comparison, the bandwidth efficiency
is kept same in both the proposed as well as the benchmarking
schemes. We achieve this as follows. In both the schemes,
transmission is made in frames consisting of pilot symbols
and data symbols. The number of pilot symbols (np) and data
symbols (nd) in each frame are taken to be np = 10 and
nd = Nc, where Nc is the number of predictions chosen by
the predictor algorithm. In the proposed scheme, np = 10 pilot
symbols followed by nd = Nc data symbols are transmitted
in a frame. In the benchmarking scheme, one pilot symbol
is sent followed by nd

np
(= Nc

10) data symbols and this pilot-
data symbol sequence is repeated till the end of the frame.
LMMSE channel estimation is performed during the pilot
symbols and linear interpolation is performed to obtain the
channel estimates for the duration between two pilot symbols.

Figure 15 shows a BER performance comparison between
the proposed adaptive scheme with ML decoder and the

10

(a) 4-QAM (b) 16-QAM

Fig. 14: BER performance of the proposed adaptive channel predictor aided receiver with ML decoder at fD = 50, 100 Hz
for 4-QAM and 16-QAM.

Fig. 15: BER performance comparison between the proposed
adaptive scheme with ML decoder and the benchmarking
scheme with LMMSE channel estimation and linear interpo-
lation.

benchmarking scheme for 16-QAM at fD = 50 Hz and 100
Hz. It is seen that the proposed scheme performs significantly
better than the benchmarking scheme in the low-to-moderate
range of Eb/N0 values (0 to 20 dB). This is because of poor
interpolation accuracy in the benchmarking scheme in this
Eb/N0 range, which can be explained as follows. The Nc

values chosen in the 0 to 20 dB range are large compared to
the number of pilot symbols np (e.g., Nc is 60 at Eb/N0 = 10
dB for fD = 50 Hz and np is 10). A large value of Nc

np

means the pilots in a frame are spaced far apart leading to
less accurate interpolation. In the higher range of Eb/N0

values, the Nc

np
ratio becomes small due to smaller values

of Nc, leading to closer spacing of pilots and hence better
interpolation accuracy. This makes the benchmarking scheme
perform close to the performance of the proposed scheme in
the high Eb/N0 range.

Fig. 16: BER performance comparison between the proposed
channel predictor aided receiver and the linear prediction aided
receiver, both with ML decoder.

E. Comparison with linear prediction scheme

In this subsection, we compare the performance of the
proposed channel predictor aided receiver with that of a
receiver with channel predictor replaced by a linear prediction
algorithm. A time-varying channel with fD = 50 Hz is consid-
ered. The linear prediction algorithm models the time-varying
channel coefficients as an auto-regressive (AR) process of
order 2, i.e., for any time t,

h(t) = ρ1h(t− 1) + ρ2h(t− 2), (10)

where ρ1 and ρ2 are the parameters of the AR(2) process that
need to be estimated. The values of ρ1 and ρ2 are computed
as follows. 10 pilot symbols followed by Nc 4-QAM data
symbols (corresponding to η = Nc

10+Nc
) are transmitted, where

Nc (the number of predictions) is chosen in accordance with

11

Model Tap delays (ns) PDP (in dB)
EPA 0, 30, 70, 90, 110, 190, 410 0, -1, -2, -3, -8, -17.2, -20.8
EVA 0, 30, 150, 310, 370, 710,

1090, 1730, 2510
0, -1.5, -1.4, -3.6, -0.6, -9.1,
-7, -12, -16.9

ETU 0, 50, 120, 200, 230, 500,
1600, 2300, 5000

-1, -1, -1, 0, 0, 0, -3, -5, -7

TABLE IV: Tap profile of the 3GPP channel models.

(a) SNR (b) η

Fig. 17: MSE performance of the proposed channel predictor
network under various 3GPP channel models in [32],[33] as a
function of SNR and η.

the adaptive prediction algorithm in Sec. III-D. 10 LMMSE
channel estimates at t = 0, 1, · · · , 9 are obtained using the
received pilot symbols. A set of 8 equations corresponding
to time t = 2, 3, · · · , 9 is obtained from (10) using the
LMMSE estimates. The Yule-Walker (YW) estimation tech-
nique [29],[30] is employed on these equations to determine
the values of ρ1 and ρ2. To obtain Nc channel predictions for
t > 9, (10) is recursively used with the estimated ρ1 and ρ2
values.

Figure 16 shows the BER performance comparison between
the proposed channel predictor aided receiver and linear pre-
diction aided receiver, both with ML decoder. At low SNRs,
the LMMSE estimates are noisy and the values of ρ1 and
ρ2 obtained through YW estimation theory are inaccurate.
This leads to poor quality of predictions and poor BER
performance. As SNR increases, the performance of linear
prediction algorithm aided receiver improves owing to better
ρ1 and ρ2 estimates and reduced Nc. However, it is observed
that the performance of the proposed channel predictor aided
receiver is better than the linear predictor counterpart (e.g.,
at 10−4 BER, the proposed predictor aided receiver has an
advantage of about 2.5 dB compared to the linear prediction
receiver).

F. Performance in 3GPP channel models

In this subsection, we present the MSE performance of the
proposed channel predictor network under different multipath
channel propagation models defined by 3GPP [32],[33]. We
consider extended pedestrian A (EPA) model, extended ve-
hicular A (EVA) model, and extended typical urban (ETU)
model under slow (fD = 5 Hz) and fast (fD = 70 Hz)
mobility conditions. The tap delays and power delay profiles

of these models are given in Table IV. We use fD = 5 Hz
for EPA model, fD = 5, 70 Hz for EVA model, and fD = 70
Hz for ETU model. The MSE performance in a multipath
propagation model with L taps is obtained as follows. For
estimating the channel across multiple taps, np pilot sequences
are transmitted. Each pilot sequence consists of a pilot symbol
along with L − 1 preceding and succeeding zeroes, making
the length of each pilot sequence to be 2L − 1. np LMMSE
channel estimates corresponding to each tap are obtained from
the received pilot sequences. Nc number of deep channel
predictions are made on each tap and the MSE of the predicted
coefficients are calculated with respect to the actual channel
coefficients.

Training of the predictor network is carried out using chan-
nel coefficients obtained from the synthetic dataset obtained
for a single-tap channel (i.e., the network is not trained with
the dataset from the actual 3GPP models). However, the
trained network could work well for all the actual 3GPP
models which have multiple taps and non-uniform power-delay
profiles as shown in Table IV. This can be seen in Fig. 17a
which shows the obtained MSE values as a function of SNR
with np = 10 and Nc is chosen according to algorithm in Sec.
III-D. It is seen that the MSE values for all the considered
3GPP models decrease with SNR, closely following the MSE
of the LMMSE estimates in the low and mid SNR regimes.
For EVA with fD = 70 Hz and ETU, there is a small
deviation observed in MSE in the high SNR regime due to high
Doppler spread. Figure 17b shows the MSE performance of
the channel predictor as a function of the bandwidth efficiency
η for the 3GPP models. It is seen that the MSE is below
10−2 for η ≤ 0.8, showing that the predictions are reasonably
accurate even when operating at a bandwidth efficiency of
80%. On the other hand, the MSE achieved by the linear
prediction scheme in Sec. III-E is found to be much higher. So,
although the predictor network is trained on a synthetic dataset,
the network could learn to observe the correlation in the
channel coefficients at its input and use the learnt correlation
to make further predictions, even in settings or environment
not seen while training. This demonstrates the generalization
capabilities and robustness of the proposed channel predictor.

G. Block transmission in doubly-selective fading channel

In this subsection, we consider block transmission and
detection in doubly-selective fading channels and evaluate
the performance of the proposed deep channel predictor. We
consider a cyclic prefix single carrier (CPSC) system, where
the channel is taken to be both frequency and time selective.
Each CPSC frame consists of np pilot sequences (see Sec.
III-F) followed by Nc = N − np(2L − 1) data symbols,
where N is the CPSC frame length, and L is the number of
channel taps. Deep channel prediction is done on each tap and
the predicted coefficients are given, along with the received
data symbols, as input to the detector. We demonstrate the
advantage of using NN-based detection in such channels by
comparing the performance of a) maximum-likelihood (ML)
detection using Viterbi algorithm and b) NN-based detection.
In the ML detection using Viterbi algorithm, the channel

12

Fig. 18: BER performance of the proposed predictor network
in a CPSC system with NN-based ViterbiNet detector.

coefficients predicted by the deep channel predictor are used
to evaluate the likelihood costs. For NN-based detection, we
use ViterbiNet [31], which uses learning based computation of
likelihoods in the Viterbi algorithm. We train the ViterbiNet
detector using the fade coefficients predicted by the deep
channel predictor.

Figure 18 shows the BER performance of the considered
CPSC system with N = 128, L = 2, 4-QAM, and fD = 50
Hz. The performance of ML Viterbi detector and NN-based
ViterbiNet detector are shown. Performance with channel pre-
diction for np = 2, 4 per CPSC frame are shown. Performance
plots with perfect CSI are also shown for comparison. The fol-
lowing observations can be made from Fig. 18. The ViterbiNet
detector trained using perfect CSI achieves almost the same
performance as the ML Viterbi detector performance with
perfect CSI. The performance of both the detectors degrade
when predicted channel coefficients are used. The performance
degradation in ML Viterbi detector is significantly higher
than that in ViterbiNet detector. For example, the ML Viterbi
detector performance floors at a BER of about 10−2 for np = 2
at 25 dB SNR, whereas the ViterbiNet detector achieves a
significantly better BER of about 10−4 for the same SNR.
Also, for np = 4, the ViterbiNet detector performs close
to that with perfect CSI (within about 2.5 dB gap at 10−5

BER), whereas ML Viterbi detector starts flooring at 10−4

BER itself. This is in corroboration with the results reported in
[31], where it is shown that, in the presence of imperfect chan-
nel state information (CSI), the performance of conventional
Viterbi algorithm degrades significantly whereas the NN-based
ViterbiNet detection achieves significantly better performance.
The better performance of the combination of the proposed
deep channel prediction and NN-based ViterbiNet detection
therefore demonstrates the benefit of learning approach in
communication receivers.

IV. DATA DRIVEN CHANNEL PREDICTION

In this section, we present the proposed data decision
driven channel prediction architecture and its performance.

The motivation for the data decision driven approach is as
follows. We note that the maximum bandwidth efficiency
obtained in the adaptive prediction scheme proposed in the
previous section is 90.9%, which is obtained when the number
of predictions Nc = 100 and number of pilots np = 10.
In the high SNR region, however, the algorithm reduces Nc

to 5, where it attains a bandwidth efficiency of only 33%.
We aim to improve this low bandwidth efficiency by using
a data decision driven prediction architecture proposed in the
following subsection.

A. Architecture

In the proposed data driven prediction approach, we adopt
a 1:k transmission scheme in which 1 pilot block (consisting
of np pilot symbols) is sent every k data blocks (each data
block consisting of Nc data symbols) as shown in Fig. 20. The
shaded block in Fig. 20 represents a pilot block which is used
to obtain LMMSE estimates of the channel. The predictions
obtained using these estimates are used to decode Nc data
symbols transmitted in the subsequent striped data block. In
the case of k = 1 (i.e., 1:1 scheme), one pilot block and
one data block are sent in an alternating fashion, leading to a
bandwidth efficiency of Nc

np+Nc
. The 1:1 scheme is a purely

pilot driven prediction scheme and there is no data driven
prediction. On the other hand, for k > 1, there is data decision
driven prediction (described in the next paragraph) and the
bandwidth efficiency improves to kNc

np+kNc
.

The block diagram of the proposed data decision driven
prediction architecture is shown in Fig. 19. The channel
predictor and ML decoder blocks are the same as in Fig. 7.
The predictions from the channel predictor are fed to the ML
decoder, which uses the predictions to decode data symbols
received through the channel. The LMMSE estimator block
receives these decoded symbols from the ML decoder along
with the symbols received through the channel. Here, the
decoded symbols from the ML decoder are treated as pilots
and the signal received from the channel as the faded version
of these pilots, and an LMMSE estimate of the fade coeffi-
cients are obtained from this decoded data. These LMMSE
channel estimates act as a refined version of the predictions
made by the channel predictor network. The refined channel
estimates are used to once again decode the data symbols
using a second ML decoder. If the decoded symbols from
the second ML decoder match the decoded symbols from the
first ML decoder, then the refined channel estimates are fed
back to the input of the channel predictor to enable further
predictions. If they do not match, then the current decoded
symbols are fed back to the LMMSE estimator (as pilots)
as before, and another set of refined channel estimates are
obtained. This process of data decoding and channel estimate
refinement are iteratively repeated until the decoded outputs
from two consecutive iterations match. When this happens,
the LMMSE channel estimates in the subsequent iterations do
not change, as the decoded symbols being fed back as pilots
to the LMMSE estimator do not change. This is set as the
convergence criterion in the receiver. If the criterion is not met
for a certain number of iterations (e.g., 200 iterations), then

13

Channel
Predictor

LMMSE
Estimator

From
Channel

Channel
Estimates ML

Decoder

Repeat till convergence

After convergence

ML
Decoder

Fig. 19: Block diagram of the proposed data driven channel prediction scheme.

1 : 1 scheme
b b b

1 : k scheme

p1 p2 pnpb b b

d1 d2 dNc
b b b

k-times
Pilot symbols

Data symbols

Fig. 20: Arrangement of pilot and data symbols in data driven
channel prediction.

the last obtained LMMSE estimates are used as the feedback
to the input to make further predictions. If there is an error in
decoding a symbol and the corresponding LMMSE estimate
is fed back to the channel predictor input, then the further
predictions obtained may have a large MSE and this may result
in more subsequent errors. The value of k is chosen such that
this error propagation is minimized.

B. Performance results

In Fig. 21a, we present the MSE performance of the
predictions made by the data driven channel prediction scheme
at fD = 50, 100 Hz for 16-QAM. The values of k considered
are k = 1, 5, 10. It is seen that at low SNR values, the 1:1
scheme has a lower MSE than the 1:k schemes, k = 5, 10. This
is because there is no data driven prediction in the 1:1 scheme
and hence there is no error propagation due to decoding errors.
On the other hand, in the 1:k scheme (k = 5, 10), the MSE
of the predictions degrades due to error propagation caused
by decoding errors at these low SNR values. As the SNR
increases, the MSE of the 1:k schemes decreases (due to
fewer decoding errors) and the gap from the MSE of 1:1
scheme reduces. In the high SNR regime, the 1:1 and 1:k
schemes achieve similar MSE performance, again due to fewer
decoding errors in the 1:k schemes.

Figure 21b shows the achieved BER performance with ML
decoder corresponding to the MSE performance presented in
Fig. 21a. We observe that both the 1:5 and 1:10 schemes
perform close to the 1:1 scheme. We also see that the BER
performance of 1:5 scheme is closer to that of the 1:1 scheme
than the 1:10 scheme for both fD values, which is justified
owing to larger number of pilots in the 1:5 scheme. We further

Scheme np k Nc

10:40 10 5 8
50:200 50 5 40
100:400 100 5 80
150:600 150 10 60

TABLE V: Values of np, k, and Nc used for comparison with
NN-based prediction scheme in [34].

note that the main advantage of the data driven prediction
scheme is its bandwidth efficiency due to the reduced number
of pilots used in the scheme. For example, for the 1:10 scheme,
when the maximum value of Nc = 100 is chosen by the
adaptive algorithm, the total number of symbols decoded per
estimation phase (consisting of 10 pilot transmissions) is 103

(i.e., 10 prediction phases with 100 symbols per prediction
phase) and the bandwidth efficiency achieved is 1000

1010 = 99%.
Likewise, for Nc = 5, the bandwidth efficiency achieved is
50
60 = 83.3%. Similarly, for the 1:5 scheme, the maximum and
minimum achieved bandwidth efficiencies are 98% and 71.4%,
respectively. Recall that, in the previous scheme without data
driven prediction (i.e., 1:1 scheme), the bandwidth efficiencies
achieved for Nc = 100 and 5 are 90.9% and 33%, respectively.
In conclusion, we find that the system is able to utilize the
channel very efficiently by maximizing the number of data
symbol transmission phases per pilot symbol transmission
phase, and this is achieved at the cost of a small loss in BER
performance.

C. Comparison with NN-based prediction scheme in [34]

In this subsection, we compare the performance of the
proposed data driven channel prediction scheme with an
LSTM based channel prediction scheme reported in [34] both
with ML decoder. 16-QAM modulation and fD = 153 Hz
are considered. We fix the ratio of number of pilot symbols
(np) to the number of data symbols (also the number of
predictions, kNc (see Sec. IV-A)), while varying np and
kNc. The (np:kNc) values considered are (10:40), (50:200),
(100:400), and (150:600). Table V shows the values chosen
for np, k, and Nc in each case. Figure 22 shows the BER
comparison between the two schemes. As expected, the perfor-
mance of (10:40) scheme is better than the (150:600) scheme
in both the cases due to smaller number of predictions per
pilot block. It is further observed that the proposed scheme
achieves significantly better BER performance compared to the
scheme in [34]. This performance advantage in the proposed

14

(a) MSE (b) BER

Fig. 21: MSE and BER performance of 1:k data decision driven channel prediction scheme with ML decoder at fD = 50, 100
Hz for 16-QAM.

Fig. 22: BER performance comparison between the proposed
scheme and the NN-based prediction scheme in [34], both with
ML decoder.

scheme is attributed to the data driven feature and the training
enhancement features incorporated in the proposed scheme.

V. CONCLUSION

We proposed a neural network based framework for the
design of robust receivers in time-varying fading channels
with temporal correlation in the fading process. Central to
the proposed framework is the deep channel predictor which
uses an RNN that learns the underlying correlation model in
the fading process and makes predictions of the channel fade
coefficients into the future thereby reducing pilot resources.
An FCNN based data symbol decoder aided by the RNN
based channel predictor constituted the receiver architecture.
The basic version of the channel predictor kept the num-
ber of future predictions fixed regardless of the operating
SNR and Doppler. An augmented adaptive channel prediction
architecture which chose the number of future predictions

in accordance with the operating SNR and Doppler further
improved the bandwidth efficiency and performance. A data
decision driven prediction architecture with decision feedback
provided a balance between pilot resources and performance.
The achieved robustness in the receiver performance over a
range of Doppler and SNR conditions demonstrates that the
proposed deep channel prediction approach is a promising
approach for receiver design in time-varying fading channels.
Finally, we note that the deep channel prediction considered in
this paper is in the time-domain. Accordingly, we presented the
performance of the proposed predictor in CPSC systems which
are essentially time-domain systems. Learning architectures
for channel prediction in frequency-domain systems such as
OFDM systems can be devised likewise. We suggest this as a
topic for future research. Deriving theoretical guarantees for
the performance of deep neural networks based approaches is
known to be often intractable and difficult. This could be an
important focus area for future research.

REFERENCES

[1] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cognitive Commun. and Netw., vol. 3, pp.
563-575, Dec. 2017.

[2] S. Dorner, S. Cammerer, J. Hoydis, and S. T. Brink, “Deep learning based
communication over the air,” IEEE J. Sel. Topics in Signal Process., vol.
12, no. 1, pp. 132-143, Feb. 2018.

[3] H. Ye, L. Liang, G. Ye Li, and B-H. Juang, “Deep learning-based end-to-
end wireless communication systems with conditional GANs as unknown
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133-3143,
May 2021.

[4] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“LEARN codes: inventing low-latency codes via recurrent neural net-
works,” in Proc. IEEE ICC’2019, Jul. 2019.

[5] H. Kim, Y. Jiang, R. Rana, S. Kannan, and P. Viswanath, “Communication
algorithms via deep learning,” in Proc. ICLR’2018, Apr.-May 2018, pp.
1-17.

[6] A. S. Hadi, “Linear block code decoder using neural network,” in Proc.
IEEE Intl. Jt. Conf. on Neural Netw., Jun. 2008, pp. 1111-1114.

[7] N. Farsad and A. Goldsmith, “Neural network detection of data sequences
in communication systems,” IEEE Trans. Signal Process., vol. 66, no. 21,
pp. 5663-5678, Sep. 2018.

15

[8] T. V. Luong, Y. Ko, N. A. Vien, D. H. N. Nguyen, and M. Matthaiou,
“Deep learning-based detector for OFDM-IM,” IEEE Wireless Commun.
Lett., vol. 8, no. 4, pp. 1159-1162, Aug. 2019.

[9] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, “Adaptive neural
signal detection for massive MIMO,” IEEE Trans. Wireless Commun.,
vol. 19, no. 8, pp. 5635-5648, Aug. 2020.

[10] B. Shamasundar and A. Chockalingam, “A DNN architecture for the
detection of generalized spatial modulation signals,” IEEE Commun. Lett.,
vol. 24, no. 12, pp. 2770-2774, Dec. 2020.

[11] K. Pratik, B. D. Rao, and M. Welling, “RE-MIMO: recurrent and
permutation equivariant neural MIMO detection,“ IEEE Trans. Signal
Proc., vol 69, pp. 459-473, 2021.

[12] H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114-117, Feb. 2018.

[13] X. Ma and Z. Gao, “Data-driven deep learning to design pilot and
channel estimator for massive MIMO,” IEEE Trans. Veh. Tech., vol. 69,
no. 5, pp. 5677-5682, May 2020.

[14] Q. Hu, F. Gao, H. Zhang, S. Jin, and G. Y. Li, “Deep learning for
channel estimation: interpretation, performance, and comparison,” IEEE
Trans. Wireless Commun., vol. 20, no. 4, pp. 2398-2412, Apr. 2021.

[15] W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu, “A
deep learning framework for optimization of MISO downlink beamform-
ing,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1866-1880, Mar. 2020.

[16] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation
and hybrid precoding using deep learning for millimeter wave massive
MIMO,” IEEE Trans. Commun., vol. 65, no. 8, pp. 2838-2849, May 2020.

[17] S. R Mattu, T. L. Narasimhan, and A. Chockalingam, “Autoencoder
based robust transceivers for fading channels using deep neural networks,”
in Proc. IEEE VTC’2020-Spring, May 2020, pp. 1-5.

[18] H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, and M.
Ghassemi, “Clinical intervention prediction and understanding with deep
neural networks,” in Proc. Machine Learning for Healthcare Conf.,
PMLR, 2017, pp. 322-337.

[19] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” available online:
arXiv:1506.03099v3 [cs.LG] 23 Sep 2015.

[20] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell
System Tech. Jl., vol. 47, no. 6, pp. 957-1000, Jul.-Aug. 1968.

[21] J. I. Smith, “A computer generated multipath fading simulation for
mobile radio,” IEEE Trans. Veh. Tech., vol. 24, no. 3, pp. 39-40, Aug.
1975.

[22] H. L. Van Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory, John Wiley & Sons, 2004.

[23] D. Tse and P. Viswanath, Fundamentals of Wireless Communications,
Cambridge Univ. Press, 2005.

[24] M. I. Jordan and T. M. Mitchell, “Machine learning: trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

[25] J. L Elman, “Finding structure in time,” Cognitive Science, vol. 14, no.
2, pp. 179-211, Mar. 1990.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[27] A. Paszke et al., “Pytorch: an imperative style, high-performance deep
learning library,” NeurIPS’2019, pp. 1-12, Dec. 2019.

[28] S. Lawrence and C. L. Giles, “Overfitting and neural networks: conjugate
gradient and backpropagation,” in Proc. of the IEEE-INNS-ENNS Intl.
Joint Conf. on Neural Networks, pp.114-119, Jul. 2000.

[29] G. U. Yule, “On a method of investigating periodicities disturbed series,
with special reference to Wolfer’s sunspot numbers,” Phil. Trans. of the
Royal Soc. of London, Cont. Papers of a Math. or Phy. Char., pp.267-298,
Jan. 1927.

[30] G. T. Walker, “On periodicity in series of related terms,” in Proc. of the
Royal Soc. of London, Cont. Papers of a Math. and Phy. Char., pp.518-
532, Jun. 1931.

[31] N. Shlezinger, N. Farsad, Y. C. Eldar and A. J. Goldsmith, “ViterbiNet:
A deep learning based Viterbi algorithm for symbol detection,” IEEE
Trans. Wireless Commun., vol. 19, no. 5, pp. 3319-3331, May 2020.

[32] 3GPP TS 36.104 V16.6.0 (2020-07). “Evolved Universal Terrestrial
Radio Access (E-UTRA); Base Station (BS) Radio Transmission and
Reception”, 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network.

[33] 3GPP TS 36.101 V16.7.0 (2020-12). “Evolved Universal Terrestrial
Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and
Reception,” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network.

[34] D. Madhubabu and A. Thakre, “Long-short term memory based channel
prediction for SISO system,” in Proc. IEEE Intl. Conf. on Commun. and
Elec. Sys. (ICCES), pp. 1-5, Jul. 2019.

