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Abstract—In this paper, we design transceivers for fading
channels using autoencoders and deep neural networks (DNN).
Specifically, we consider the problem of finding (n, k) block
codes such that the codewords are maximally separated in terms
of their Hamming distance using autoencoders. We design an
encoder and robust decoder for these block codes using DNNs.
Towards this, we propose a novel training methodology for the
DNN that attempts to maximize the minimum Hamming distance
between codewords. We propose a loss function for this train-
ing which has stable weight updates during back propagation
compared to other loss functions reported in the literature. The
block codes learned using the proposed methodology are found to
achieve the maximal Hamming distance separation that is known
in theory. We also propose two different receiver architectures
based on fully connected deep neural network (FCDNN) and bi-
directional recurrent neural network (BRNN) that are suited for
complex fading channels. The proposed DNN based receiver is
shown to achieve significantly better error performance when
compared to their classical counterparts in the presence of
channel model mismatches. In the presence of model mismatches
such as imperfect channel knowledge and noise correlation, the
proposed DNN based transceiver is shown to offer increased
reliability and robustness than the conventional transceiver.

Keywords – Deep neural networks, linear block codes, autoen-
coder, correlated noise, Gaussian noise, fading, transceiver.

I. INTRODUCTION
Recently, deep neural networks (DNN) have shown promis-

ing performance in inference tasks in several fields [1]. A DNN
needs to be trained before it can be employed for inference
tasks. A trained DNN requires relatively less computational
complexity for performing the inference tasks compared to
conventional optimal statistical inference methods. DNNs have
been used to build efficient wireless communication systems
[2]. With the advent of sophisticated software tools and
optimized hardware for machine learning, the computational
complexity of machine learning algorithms have become prac-
tical. Current generation mobile phones and computational
devices are built with fast general purpose neural networks in
the hardware, which can be configured to perform signal pro-
cessing tasks for communication in real-time. In this context,
we study the design of a transmitter and receiver using DNN
whose performance is robust to channel model mismatches.
Two primary model mismatches that often occur in practice are
imperfect channel state information (CSI) and colored noise.
In the design of the transceiver, we focus on improving the
reliability of the system under practical conditions. To this
end, we use DNNs to design: (i) block codes over binary field
for forward error correction (FEC), and (ii) receivers that are
robust to imperfect CSI and noise correlation.

The metric used in the literature to quantify the performance
of block codes is the Hamming distance separation between
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the codewords [3]. For given dimensions, the block codes
which maximize the Hamming distance separation between
their codewords achieve the best performance. The minimum
distance decoder (MDD) [3] based on the Euclidean distance is
the conventionally used decoder for block codes. It can also be
shown that MDD is the optimal maximum likelihood receiver
when the noise in the communication channel is additive white
Gaussian noise (AWGN). A disadvantage of MDD is that its
computational complexity is exponential in the dimension of
the input message.

In the literature, neural networks have been employed to
build decoders for block codes [4]. In [2], [5], autoencoders
were employed to design FEC codes and corresponding en-
coders and decoders. The design of machine learning based
transceivers for AWGN channels was studied in [2]. The use
of convolutional neural networks (CNN) and recurrent neural
networks (RNN) for digital demodulation was studied in [6].
Demodulation of signals through a fading channel using neural
networks was reported in [7], [8]. Further, the design of con-
stellations for communication in AWGN channels using DNNs
was studied in [2], [9]. Deep learning based demodulation for
MIMO fading channels has been reported in [10]. However,
to the best of our knowledge, the design of robust transceivers
with block codes using DNNs for fading channels has not been
reported in the literature so far. Our new contributions in this
paper can be summarized as follows.

• We propose an autoencoder based DNN to design block
codes, encoder, and decoder.

• We propose a novel training methodology for the DNN
to obtain block codes with maximal Hamming distance
separation that meets the theoretical upper bound. We
propose a loss function for this training.

• We propose two receiver architectures based on fully con-
nected deep neural network (FCDNN) and bi-directional
recurrent neural network (BRNN) for fading channels.

• Finally, we show that the proposed DNN based
transceiver is robust and it outperforms the conventional
transceiver in the presence of channel model mismatches.

II. PROBLEM FORMULATION

Consider a point-to-point wireless communication system
with a single-antenna transmitter and receiver. At the trans-
mitter, the input message m of k bits is encoded using a block
code to a codeword c of length n bits (n > k). The encoded bits
are modulated using a constellation A (e.g., QAM, PSK) to
obtain the transmit signal x. The symbols in x are transmitted
serially over the wireless channel. Let h be the fading channel
gain of the wireless channel. The received signal is given by
y = hx n, where n is the noise vector and h is assumed to
be constant over the transmission period of a codeword.



Conventionally, the noise is modeled as independent and
identically distributed zero mean complex Gaussian random
variable with some variance denoted by σ2. However, in
practice, the noise in devices can become colored or correlated
[11]. In [12], the authors show that the auto-correlation of such
colored noise, referred to as flicker noise, is given by

Rnn(t, τ) =


A

(1−t/To)
1
α

cos cτ

(1−t/To)
1
α

if t ∈ (0,To) &
τ ∈ (−To,To)

0 elsewhere
, (1)

where To is the period of observation, c is the lowest fluctu-
ation frequency, α and A are positive constants that depend
on the hardware device characteristics. For practical values of
these parameters, it can be seen that the correlation of noise
samples over the period of a codeword remains almost constant
[12]. Thus, the covariance matrix of the correlated noise n can
be given by (1−ρ)I ρ1, where ρ is the correlation coefficient
computed from (1), I is an identity matrix and 1 is a matrix
of all ones. For ρ = 0, we get the case of the i.i.d. AWGN.

We assume a quasi-static flat fading channel. The fade co-
efficients h are modeled to be a complex circularly symmetric
normal random variable CN(0, 1) . To recover x from y, the
conventional receiver computes

h∗y
|h|2
= x

h∗n
|h|2
, (2)

where h∗ is the complex conjugate of h. The receiver employs
MDD to obtain the transmitted message from (2). Hence, the
knowledge of channel gain (CSI) is required for decoding at
the receiver. However, in practice, perfect CSI may not be
available. The channel gains are estimated before the decoding
operation using pilot information. The error in CSI can be
modeled using the distribution of the noise at the receiver.

In a practical receiver, the conventional assumption of
AWGN and perfect CSI may not be true. Such assumptions
can adversely affect the system performance. Therefore, in
this paper, we design block codes, encoders, and decoders
such that they are robust to the channel model mismatches
described above. In the following, we present the proposed
autoencoders based solution to this problem using DNNs.

III. PROPOSED DNN ARCHITECTURE AND
TRAINING METHODOLOGY

In this section, we present a technique to design block codes
using autoencoders that achieve near-optimal performance. We
also present a DNN based robust receiver for fading channels.

A. Code design using autoencoders

Here, we design a binary code such that each k bit long
message is mapped on to an n bit long codeword. The
Hamming distance between two codewords ci and cj is

dH (ci, cj ) =
��{k : ci,k , cj,k }

��, (3)

where | · | denotes cardinality, and ci,k and cj,k are the kth
elements in codewords ci , cj , respectively. The minimum
Hamming distance of a code C is computed as

dmin(C) = min
ci,c j ∈C
ci,c j

dH (ci, cj ) . (4)

The number of errors that can be corrected by a code is given
by t = ⌊ dmin−1

2 ⌋. Hence, it is desirable to maximize dmin(C)
to improve the performance of the code. We shall employ
autoencoders to design block codes with maximum dmin.

Autoencoders consist of two neural networks connected
back to back, and they are traditionally used to obtain lower
dimensional representation of the input data. In traditional
autoencoders, the first neural network represents or encodes
the input data into a lower dimensional output and the second
neural network decodes this compressed data to recover the
original data [13]. In the proposed setup, the first neural
network encodes or represents the input signal with a high
dimensional output, subsequently channel distortions are in-
troduced, and the second neural network maps this high
dimensional signal after channel distortions to the input signal
space. The input of the autoencoder is the k length message.
The output of the autoencoder are 2k length one-hot vectors
[14] corresponding to the input vectors. The encoder and
decoder networks are a sequence of fully connected layers.

The autoencoder is trained in the following manner. The 2k
possible messages are input to the encoder neural network in
a random order. The encoder neural network layers are built
with the tanh activation function (c.f. (5)). The output from the
encoder neural network is passed through the wireless channel.
The output of the wireless channel is fed to the decoder neural
network. We use the softmax activation function (σ̄(z)i , where
i = 1, . . . , n) at the final layer of the decoder network. The
activation functions are

tanh(x) = exp(x) − exp(−x)
exp(x) exp(−x) ; σ̄(z)i =

exp(zi)∑n
j=1 exp(zj )

, z ∈ Rn . (5)

This training is performed for several instances of CN(0, 1)
r.v. (fading case), and training is carried out with decreas-
ing values of signal-to-noise ratio (SNR). The n-length bit
sequence corresponding to the output 2k one-hot vectors are
the learned codewords.

We propose to train the autoencoder by optimizing its
weights in two stages. In order to maximize the Hamming dis-
tance separation of the codewords, the first stage optimization
for the autoencoder is performed only for updating the weights
of the encoder network. We use the following loss function for
the first stage optimization: Le(θe) , −λ ∗ dmin(θe) , where
θe are the weights of the encoder neural network and λ is
the regularization parameter. The negative sign in the loss
function ensures that the minimization of this loss leads to the
maximization of dmin. The second stage optimization updates
the weights of both the encoder and decoder networks using
the binary cross entropy as the loss function. The binary cross
entropy loss function is given by H(p, q,Θ) = −Ep [ log q(Θ)] ,
where p is the expected probability mass function (PMF), q
is the output PMF , and Θ is the weight matrix. Although the
second stage optimization updates the weights at the encoder
that are obtained from the first stage, the gradients computed
in the second stage are dependent on the output of the first
stage which ensures maximal codeword separation.

In the first stage, conventional method of computing dmin
through pairwise combinations results in loops and stability
issues in the back propagation algorithm used to optimize



the weights of the neural network. We propose the following
efficient and stable method to compute the dmin.

Let C be the matrix whose columns are the codewords.
Using the squared pairwise Euclidean distance between the
codewords, we define a distance matrix D. The (i, j)th element
of D is defined as

D(i, j) = (ci − cj )(ci − cj )T = cicTi − 2cicTj cj cTj , (6)

where ci is a row vector and the ith codeword. Let L be a
matrix whose (i, j)th element is the squared norm of the ith
codeword. Now, (6) can be simplified to get D = L− 2CCT

LT . Since the diagonal entries in the matrix D correspond to
i = j, diagonal elements are zero. The dmin is proportional to
the minimum off-diagonal element of D. The dmin is computed
through computation of this matrix. This formulation also
ensures that the computations are differentiable either through
direct gradients or pseudo-gradients.

Note that though the distance properties of the code were
used in the loss function in [5], it was employed for training
the entire network including both the encoder and decoder.
However, in our proposed setup, the loss function Le(θe) is
employed to train only the encoder. Further, the minimum
distance of only a subset of the codewords is computed in
[5]. Whereas, we compute the pairwise distances between all
codewords. This helps us to design block codes with better
Hamming distance properties than the method in [5].

Figure 1 illustrates the neural network described above. In
Fig. 1, mis are the input message bits, cis form the output
codeword, c′is are output of the channel, and m̂i s are the
decoded one-hot vectors.
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DecoderChannelFig. 1: Schematic diagram of the autoencoder.

B. Design of robust receivers for fading channels

Traditional neural networks operate on data from the real
field. However, in our case, we need to design neural network
architectures for complex fading channels. For this purpose,
we propose the following two architectures.

1) Fully connected deep neural networks based receiver:
In this architecture, we employ FCDNN with a pre-processing
layer that performs the operation in (2) on the received
data with the knowledge of CSI. The real and imaginary
components of the pre-processed data are stacked together and
fed as input to the network. The output of the decoder network
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Fig. 2: Block diagram of the FCDNN decoder.

is a one-hot vector. This network is trained by minimizing the
binary cross-entropy loss for different realizations of the flat-
fading complex channel at decreasing SNRs. A block diagram
of this FCDNN model is shown in Fig. 2, where c′ denotes the
symbols received from the channel and h denotes the complex
channel gains. The advantage of the model is its simplicity and
low complexity. However, due to pre-processing, the neural
network may not learn the correlation that could be present
between the received data and CSI. We propose a bidirectional
recurrent neural network (BRNN) architecture to alleviate this
disadvantage.

2) Bidirectional recurrent neural networks based receiver:
The recurrent neural network (RNN) [15] is a class of neural
networks which has a temporal growth in one dimension.
These neural networks unfold in time to capture any time-
dependent patterns. The principle of BRNN is to split the
neurons of a conventional RNN into two directions, one for
forward direction and another for backward direction. Input
to the BRNN decoder is the output from the channel. The
input to the BRNN is a multi-dimensional array. The real and
imaginary components of the received signal are stacked along
with the real and imaginary components of the channel gains
in the input multi-dimensional array in different dimension.
The output of the BRNN decoder is a one hot vector. The
BRNN is trained by minimizing the binary cross-entropy loss
for different realizations of the flat-fading complex channel
at decreasing SNRs. When perfect CSI is available at the
receiver, the exact channel gains are fed as input to the BRNN.
However, in practical scenarios, only an estimated CSI would
be available at the receiver, which is fed as the input to
the BRNN. Therefore, in the training process, the BRNN is
trained using both perfect and imperfect CSI data to build a
robust receiver. The advantage of BRNN over FCDNN is the
reduced computational complexity due to the absence of pre-
processing. Further, any time correlation in the channel can
learned by the BRNN, thereby, providing robust performance.

The performance of the proposed autoencoder based
FCDNN and BRNN transceivers in AWGN and fading chan-
nels are presented in the next section.

IV. RESULTS AND DISCUSSIONS

In this section, we present the block error rate (BLER)
performance of the proposed DNN based receivers. The BLER
at the receiver is defined as the ratio of the number of FEC
blocks in error to the total number of FEC blocks transmitted.
We show the performance of the block codes designed by the
proposed DNN using autoencoders for different block sizes.
The configuration of the DNN used to build the encoders for
different code sizes (n, k) is listed in Table I. The activation
function used at all the layers of the encoder is tanh. The



configurations of the FCDNN and BRNN decoders are listed
in Tables II and III, respectively. The final layer of the decoder
neural network produces the one-hot vectors (of size 2k ) using
the softmax activation function as described in Sec. III-A.
The rest of the layers in the decoder use the tanh activation
function. These neural networks are trained as described in
Sec. III with batches of size 2k for an (n, k) code. The encoder
produces an n-length codeword for each k-length input. These
codewords are passed through the channel and its output with
additive noise is given to decoder for decoding into one-
hot vectors. This training is performed for different channel
realizations and SNR values.

A. Performance of the proposed receiver in AWGN channel
The performance of the block codes designed by the pro-

posed DNN architecture is shown in Fig. 3. We compare the
performance of the block codes learned by the proposed DNN
with that of the optimal block codes for a given block size from
[3]. It can be see that the codes learned by the proposed DNN
perform almost as good as the theoretical optimum block codes
with MDD in the AWGN channel. From Table IV, we can also
see that the proposed loss function based training achieves the
best dmin value for the codes learned by the neural network.

TABLE I: Architecture of the encoder neural networks
Code
size
(n, k)

No. of
layers

Input dimension of
each layer

Output dimension
of each layer

(7,4) 3 4, 32, 16 32, 16, 7
(15,11) 4 11, 90, 45, 30 90, 45, 30, 15
(21,11) 5 11, 300, 200, 100,

50
300, 200, 100, 50,

21

TABLE II: Architecture of the FCDNN based decoder
Code
size
(n, k)

No. of
layers

Input dimension of
each layer

Output dimension
of each layer

(7,4) 2 7, 16 16, 16
(15,11) 2 15, 2048 2048, 2048
(21,11) 2 21, 2048 2048, 2048

TABLE III: Architecture of BRNN based decoder
Hidden units 100
Time steps 7

Output dimension 2k

TABLE IV: Distance properties of the learned codes
Code size
(n, k)

Theoretical
maximum dmin

dmin achieved by
the learned code

(7,4) 3 3
(15,11) 3 3
(21,11) 6 6

Robustness: To analyze the robustness of the proposed
transceiver to mismatches in channel model, we evaluate their
BLER performance in the presence of correlated noise. The
neural networks are trained with correlated noise at different
SNRs and correlation coefficients. We compare the perfor-
mance of the proposed autoencoder based transceiver with
that of the conventional transceiver with MDD at different
levels of model mismatches, i.e., for different values of the
noise correlation coefficient ρ. Figures 4a and 4b show that
the performance of the proposed autoencoder based transceiver
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Fig. 3: BLER performance comparison between the proposed
autoencoder (AE) based block codes with FCDNN and optimal
block codes with MDD in AWGN channel, and h = 1.

is superior than that of the conventional transceivers at cor-
relation coefficients of 0.3 and 0.5, and different block sizes.
For example, at an SNR of 4 dB, block size of (21, 11), the
neural network based receiver achieves a BLER of about 10−3

when the correlation coefficient is 0.3 while the conventional
receiver achieves only a BLER of about 0.03. Interestingly, the
BLER of the neural network based receiver decreases with the
increase in the noise correlation, while that of the conventional
receiver increases with the noise correlation. Note that the
neural network based receiver performs the decoding without
any knowledge of the noise correlation. Thus, it can be seen
that the proposed autoencoder based transceivers using DNN
are quite robust to model mismatches such as noise correlation.
B. Performance of the proposed receiver in fading channel

In Fig. 5, we compare the performance of the proposed
FCDNN and BRNN based transceivers with that of the con-
ventional transceiver with the pre-processing in (2) and MDD
for two block codes in Rayleigh fading channel with perfect
CSI. It can be seen that both the FCDNN and BRNN based
receivers perform similarly. At low SNRs, the FCDNN based
receiver and the conventional receiver have similar perfor-
mance. At high SNRs, the conventional receiver performs
slightly better than the neural network based receivers.

Robustness: To analyze the robustness of the proposed re-
ceivers to model mismatches, we evaluate their BLER perfor-
mance in the presence of imperfect CSI and correlated noise.
The model mismatch due to imperfect CSI is measured by the
mean square error (MSE) in the estimate of the channel gain.
In Fig. 6, we observe that the performance of the proposed
DNN based receivers is superior than that of the conventional
receiver for different levels of model mismatches (i.e., MSE of
channel estimate and noise correlation coefficient) and a block
size of (7,4). Further, at high SNRs, the BRNN based receiver
achieves better BLER than the rest of the receivers. As before,
the receivers are unaware of the mismatches in the channel
model. Thus, we see that the neural network based receivers
provide better reliability than the conventional receivers and
are robust to practical model mismatches.

V. CONCLUSIONS

Conventional transceivers for AWGN and fading channel
provide optimal performance when the channel models are
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Fig. 4: BLER performance comparison between the proposed autoencoder (AE) based receiver with that of the conventional receiver for
different block sizes, noise correlation levels, and h = 1.
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perfect. A perturbation or mismatch in the channel model can
lead to degradation in performance. In this work, we proposed
an autoencoder based transceiver using DNN that are robust
to channel model mismatches. We designed a loss function for
the DNN which enables it to learn block codes with optimal
distance properties to encode the input data. We proposed
two receiver architectures based on FCDNN and BRNN for

complex fading channels. We showed that the performance of
the proposed DNN based transceivers is superior to that of
the conventional receiver in the presence of practical channel
mismatches such as imperfect CSI and noise correlation. Thus,
we demonstrated that the proposed DNN based transceivers
can be quite robust, and provide high reliability and immunity
to channel mismatches in practical scenarios compared to
conventional transceivers.
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