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Abstract—Lattice reduction (LR) aided detection algorithms are
known to achieve the same diversity order as that of maximum-
likelihood (ML) detection at low complexity. However, they
suffer SNR loss compared to ML performance. The SNR loss is
mainly due to imperfect orthogonalization and imperfect nearest
neighbor quantization. In this paper, we propose an improved
LR-aided (ILR) detection algorithm, where we specifically
target to reduce the effects of both imperfect orthogonalization
and imperfect nearest neighbor quantization. The proposed ILR
detection algorithm is shown to achieve near-ML performance
in large-MIMO systems and outperform other LR-aided de-
tection algorithms in the literature. Specifically, the SNR loss
incurred by the proposed ILR algorithm compared to ML
performance is just 0.1 dB for 4-QAM and < 0.5 dB for 16-
QAM in 16 × 16 V-BLAST MIMO system. This performance
is superior compared to those of other LR-aided detection
algorithms, whose SNR losses are in the 2 dB to 9 dB range.

Keywords – Lattice reduction, Seysen’s algorithm, near-optimal detection,

large-MIMO systems.

I. INTRODUCTION

The capacity of multiple-input multiple-output (MIMO) wire-

less channels in rich scattering environments is known to

increase linearly with the minimum of the number of transmit

and receive antennas [1]. Multiple antennas at both the

transmitter and the receiver can be exploited to achieve high

spectral efficiency and/or diversity resulting in better error

performance. Large-MIMO systems with tens to hundreds

of antennas are getting increased research attention [2],

[3]. Practical implementation of large-MIMO systems is

challenging due to the exponential complexity of optimum

MIMO signal detection. Sphere decoder is a well known

maximum-likelihood (ML) detector. Its average case com-

plexity increases exponentially with the size of the system,

and hence becomes computationally infeasible for number of

real dimensions more than 32 [5]. This motivates the need

for alternate low complexity detection algorithms for large-

MIMO systems with tens to hundreds of antennas.

Several low complexity algorithms based on local search

[2], mixed Gibbs sampling [4], and message passing have

been proposed in literature for large-MIMO detection. Lattice

reduction (LR) aided detection is a promising approach [6],

[7], [8], which needs investigation in the context of large-

MIMO systems. LR-aided algorithms are a set of algorithms

which take the closest lattice point search approach to the

MIMO detection problem. This approach considers a lattice

whose basis vectors are given by the columns of the MIMO

channel matrix. For a given lattice, lattice reduction aims

to find a set of small, nearly orthogonal vectors which

forms the basis of the given lattice. Various algorithms such

as Lagrange reduction algorithm, Gauss reduction, Hermite

reduction algorithm, Korkine-Zolotareff reduction algorithm,

and Minkowski reduction algorithm serve this purpose [6].

A major work in this regard came up in 1982, when A. K.

Lenstra, H. W. Lenstra, and L. Lovász introduced a reduction

algorithm known as LLL algorithm [9]. A few years later

M. Seysen proposed another algorithm to find the reduced

basis of a lattice and its dual simultaneously [10]. Recently,

another LR algorithm known as D-ELR-SLB algorithm has

been proposed in [11].

In [12], it has been proved that for a channel matrix with

bounded condition number, the zero-forcing (ZF) detector

achieves the same diversity order as that of the maximum-

likelihood (ML) detector. Lattice reduction transforms the

channel matrix into another matrix with near-orthogonal

columns, and hence with a better condition number. Thus,

linear detectors yield improved performance when operated

in the transformed domain. Performance of the LR-aided

ZF (LR-ZF) and LR-aided MMSE (LR-MMSE) detectors

have been studied in [13]. In [13], it is shown that linear

detectors using Seysen’s reduction algorithm perform better

than using LLL reduction algorithm, and is computationally

less complex. LR-MMSE detector performs better than LR-

ZF detector, but its performance is poorer compared to

ML performance. In [14], an algorithm referred to as LR-

AUG-ZF algorithm (‘AUG’ stands for ‘augmented’) was

proposed to exploit the advantages of both lattice reduction

and MMSE. Another improved LR decoder (referred to as

‘LRdecimp’) reported in [15] gives almost ML performance

in small dimensional systems but suffers significant SNR loss

compared to ML performance in large dimension systems.

The main reasons behind the SNR loss in LR-aided detectors

compared to ML performance are imperfect orthogonaliza-

tion and imperfect nearest neighbor quantization. In this pa-

per, we propose an algorithm that addresses these issues. The

proposed algorithm, which we refer to as improved LR-aided

(ILR) algorithm, breaks the problem into smaller problems

based on a reliability criteria. Solution of the smaller problem

along with reliable solution gives an intermediate solution

vector. This part of the algorithm targets to reduce the effect

of imperfect orthogonalization. Further, a set of lattice points

which are neighbors of the intermediate solution vector in the

transformed domain is found. The best solution among the

found neighbors based on the ML criterion is selected. This

reduces the effect of imperfect quantization. We use Seysen’s

algorithm and D-ELR-SLB algorithm for lattice reduction.

Simulation results show that the proposed ILR algorithm

performs better than other LR-aided detection algorithms.

Notations: Bold lowercase and uppercase letters denote col-

umn vectors and matrices, respectively. rj denotes the jth

coordinate of a vector r. ri,j denotes the entry in ith row

and jth column of a matrix R. In denotes the n×n identity
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matrix. |A| and Ac denote the cardinality and complement

of set A, respectively. Q(.) denotes the nearest neighbor

quantization operation. ℜ(.) and ℑ(.) denote the real and

complex parts of a complex argument, respectively. (.)T

denotes the transpose operation.

II. SYSTEM MODEL

Consider a V-BLAST MIMO system with nt transmit an-

tennas and nr receive antennas. The MIMO channel matrix

is denoted by Hc, whose (i, j)th entry hci,j
denotes the

complex channel gain between jth transmit antenna and

ith receive antenna. hci,j
,∀i = 1, · · · , nr, j = 1, · · · , nt

are circularly symmetric complex Gaussian distributed with

mean zero and unit variance. Each transmit antenna transmits

a complex symbol from a square constellation set A + jA,

where A is a subset of Z (set of integers). For example, for

16-QAM constellation set, A = {−3,−1, 1, 3}. The received

signal vector at the receiver is given by

yc = Hcxc + nc, (1)

where yc is the received vector of size nr × 1, xc is

the transmitted vector of size nt × 1, nc is the complex

additive white Gaussian noise vector of size nr × 1, and

nc ∼ CN (0, σ2Inr
). The average signal-to-noise ratio in

dB is defined as 10 log10
ntEs

σ2 , where Es is the average

signal energy. The complex-valued system model in (1) can

be converted into a real-valued system model

y = Hx + n, (2)

by the following transformations:

H =

[
ℜ(Hc) −ℑ(Hc)
ℑ(Hc) ℜ(Hc)

]
, y =

[
ℜ(yc)
ℑ(yc)

]
,

x =

[
ℜ(xc)
ℑ(xc)

]
, n =

[
ℜ(nc)
ℑ(nc)

]
. (3)

Under the assumption that the channel matrix is known at

the receiver, and that all the transmitted vectors are equally

likely, the ML decision rule can be expressed as

xML = argmin
x∈A2nt

‖y − Hx‖2. (4)

Brute force evaluation of the problem in (4) involves the

computation of ML cost, i.e., ‖y − Hx‖2, for all |A|2nt

possible transmit vectors, which is computationally infeasible

for large |A| and nt. Hence, our interest is in low-complexity

algorithms that can achieve close to ML performance in large

dimensions.

III. LR-AIDED DETECTORS

In this section, we present a brief summary of existing LR-

aided detectors. Let us define lattice S as

S , {x : xi ∈ A, 1 ≤ i ≤ 2nt}, (5)

and

V , {v : v = Hx, xi ∈ A, 1 ≤ i ≤ 2nt}. (6)

Note that S denotes the transmit lattice and V is the lattice

containing received points without noise. Reducing the chan-

nel matrix H using any LR algorithm, we get H̃ = HT,

where T is a unimodular matrix. Thus, the system model

equation (2) changes to

y = H̃z + n, (7)

where z = T−1x. The detected solution vectors obtained

using LR-ZF and LR-MMSE detectors, denoted by x̂LR-ZF

and x̂LR-MMSE are computed as follows:

x̂LR-ZF = Q
(
TQ

(
[H̃T H̃]−1H̃T y

))

x̂LR-MMSE = Q
(
TQ

(
[H̃T H̃ +

σ√
ntEs

TT T]−1H̃T y

))
.

In [14], the authors have proposed an enhanced LR-aided

linear detector by rewriting the system model equation as

follows:[
y

02nt

]
=

[
H

σ√
ntEs

I2nt

]
x +

[
n

− σ√
ntEs

I2nt
x

]
. (8)

Performing ZF on (8) is equivalent to performing MMSE on

(2). Let us define yaug =

[
y

02nt

]
and Haug =

[
H

σ√
ntEs

I2nt

]
.

Lattice reduction of matrix Haug gives us H̃aug = HaugTaug,

where Taug is a unimodular matrix. LR-aided ZF on aug-

mented system (LR-AUG-ZF) detector performs LR-ZF on

(8) to obtain x̂LR-AUG-ZF as

x̂LR-AUG-ZF = Q(TaugQ((H̃T
augH̃aug)

−1H̃T
augyaug)).

Though the LR-AUG-ZF detector in [14] improved the

BER performance beyond the performance of LR-ZF and

LR-MMSE detectors, it still performs significantly poorer

compared to the ML detector.

In [15], another LR-aided detector known as ‘LRdecimp’

is proposed. In the LRdecimp algorithm, xi is assumed to

be known as Aj and its effect is removed from the system

equation. LR-ZF or LR-MMSE or LR-AUG-ZF detection is

performed on this altered system model to obtain a candidate

solution. This operation is repeated for 1 ≤ i ≤ 2nt,

and 1 ≤ j ≤ |A|, and the best among the candidate

vectors is declared as the final solution. LRdecimp algorithm

achieves very close to ML performance in small number

of antennas, but its performance degrades with increasing

system dimension.

The main reasons behind the poor performance in LR-aided

detectors compared to ML performance are imperfect orthog-

onalization and imperfect nearest neighbor quantization. The

reduced lattice is not perfectly orthogonal, and hence linear

detectors perform sub-optimally. The SNR loss compared

to the optimal performance increases with the number of

dimensions. Also, the different coordinates of the coefficient

vector in the transformed domain are not independent. This

information is completely ignored during quantization, caus-

ing information loss which results in detecting a vector in

the transformed domain z such that z 6= Tx for any x ∈ S.

In the following section, we propose an improved LR-aided

(ILR) detection algorithm which tries to alleviate both the

above mentioned problems faced in LR-aided detection.
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IV. PROPOSED IMPROVED LR-AIDED (ILR) DETECTION

In this section, we propose an improved LR-aided (ILR)

detection algorithm which mitigates the effects of both

imperfect orthogonalization and imperfect quantization. It

can be observed that, if we perform lattice reduction on a

subspace of a given space, the obtained basis vectors are more

orthogonal than the basis vectors obtained by performing

lattice reduction of the given space. Thus, we break the

problem into problems of smaller dimensions where the task

is to reduce the basis vectors of a subspace of the entire

space spanned by the columns of the channel matrix H.

This gives us better orthogonality and the effect of imperfect

orthogonalization can be reduced. We also alleviate the effect

of imperfect nearest neighbor quantization by finding the best

neighbor of the detected z, which when transformed back into

x-domain gives a valid lattice point in S.

In the proposed ILR algorithm, for 1 ≤ i ≤ 2nt and 1 ≤
j ≤ |A|, xi is assumed to be known as Aj and its effect is

removed from (2). Thus, the system model transforms to

y′ = H′x′ + n, (9)

where y′ = y − Ajhi, H′ = [h1 h2 · · ·hi−1 hi+1 · · ·h2nt
],

x′ = [x1 x2 · · ·x(i−1) x(i+1) · · ·x(2nt)]
T . The solution of (9)

along with Aj gives a candidate solution vector. For different

(i, j) pairs, 2nt|A| candidate solutions are obtained. The final

solution is chosen based on the ML cost among all the 2nt|A|
candidate solutions. The candidate solution is found by the

following procedure.

In order to get the advantages of both MMSE and LR

together, we change (9) to

y′
aug = H′

augx
′ + n′

aug, (10)

where y′
aug =

[
y′

02nt−1

]
, H′

aug =

[
H′

σ√
ntEs

I2nt−1

]
, n′

aug =
[

n

− σ√
ntEs

I2nt−1x
′

]
. Lattice reduction on H′

aug gives H̃′
aug

and T′
aug related as H̃′

aug = H′
augT

′
aug. The system equation

(10) is solved to obtain r′ and z′ as

r′ = (H̃′T
augH̃

′
aug)

−1H̃′T
augy

′
aug, (11)

z′ = Q(r′). (12)

We decide z′i, i ∈ {1, 2, · · · , 2nt} to be reliable based on a

reliability criteria. Reliable coordinates are assumed to be

correctly detected and their effects are removed from z′.
Thus, we are left with an over determined system problem

which is solved in the same way as the original problem,

recursively. The more is the number of reliable coordinates,

the better is the orthogonality in the next recursion. So,

the reliable condition should be such that only the correctly

detected coordinates are considered reliable, and, at the same

time, correctly detected coordinates should not be considered

unreliable. Thus, both too weak and too strong reliable

condition will give us poor performance. We employ the

following reliability criteria:

|z′i − r′i| < θ1,

σ2gi,i < θ2, and

(σ2gi,i)(|z′i − r′i|) < θ3, (13)

where G = ((H̃′
aug)

T (H̃′
aug))

−1, and θ1, θ2, θ3 are heuristi-

cally chosen parameters. For a PAM constellation set with

only odd symbols, e.g., {−3,−1, 1, 3}, |z′i − r′i| < 1 ∀i ∈
{1, 2, · · · , 2nt}. So, the range of θ1 is 0 < θ1 < 1. Smaller

the value of θ1, stronger is the reliable condition. θ2 is a

measure of the covariance of noise. Large values of θ2 means

the coordinate with large variance of noise is considered

reliable. θ3 further strengthens the reliability condition and

is always less than θ1θ2.

The above recursive algorithm is continued until no reliable

coordinate is found or depth of recursion (dp) is less than

the maximum allowed number of recursions, denoted by

max depth. In this case, the quantized solution is assumed

to be free from the effects of imperfect orthogonalization.

We refer to above procedure as ‘modification 1’ (labeled as

‘Mod.1’), which is listed in Algorithm 1 below.

Algorithm 1 Mod.1 Procedure (Detection using reliability criteria)

1: Input: y, H, max depth, dp, θ1, θ2, θ3;
2: Set nt = number of columns in (H);
3: Set R = NULL; /* R is a set of reliable coordinates */
4: ( eH, T) = LR (H); /* Reduce the channel matrix H */

5: r = ( eHT eH)−1 eHT y;
6: z̄ = Q(r);
7: f = z̄;
8: for i = 1 : nt do

9: if (13) is satisfied then
10: Add i to R.
11: else

12: Set fi = 0.
13: end if
14: end for
15: ylayer = y − eHf ;

16: Hlayer = {ehi} ∀i ∈ Rc;
17: if |R| == 0 or dp > max depth then

18: z̄(Rc) = Q([(HT
layerHlayer)

−1HT
layerylayer]);

19: else

20: [z̄(Rc), B] = Mod.1 Procedure(ylayer, Hlayer, max depth,
dp + 1, θ1, θ2, θ3);

21: end if
22: Output: x = Tz̄, T.

Let x′
det be the solution vector obtained from Algorithm 1.

Let z′det = T′−1
aug x′

det. Any lattice point z′lat ∈ V ′, where

V ′ = {v′ : v′ = H′x′,x′ ∈ A2nt−1} is related to z′det as

z′lat = z′det + w, (14)

where w is a quantized noise vector. The problem

now reduces to finding a z′lat close to z′det, such that

‖y′
aug − H̃′

augz
′
lat‖2 is minimum possible. Let z′∗lat be the

solution and the corresponding noise vector be w∗. Let us

consider A ∈ {±1,±3, · · · ,±(2n − 1)} for some n ∈ Z.

Since z′∗lat = T′−1
aug x′, z′∗lati

can be written as

z′∗lati
=

2nt−1∑

j=1

ui,jx
′
j , (15)

where U = T′−1
aug is a unimodular matrix. Defining lmax ,

(2n − 1)
2nt−1∑
j=1

ui,j , from (15), we have

z′∗lati
∈ {−lmax, (−lmax + 2), · · · , lmax} . (16)
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Thus, in (14), we have w∗
i ∈ {0,±2,±4, · · · }. As

H̃′
aug is well conditioned, the chances of w∗

i ∈
{±4,±6, · · · } for any i ∈ {1, 2, · · · , (2nt − 1)} is very low.

This motivates us to consider w∗ ∈ {0,±2}2nt−1 only.

Again, as H̃′
aug is well conditioned, the zeroth norm of

w∗ is directly related to its Euclidean norm. Thus, we find

Z = {z : z′det + w,w ∈ {0,±2}(2nt−1), ‖w‖0 ≤ 2}. The

best vector in Z based on the ML cost is the solution vector

of (9) in the transformed domain. The above procedure,

termed as ‘Modification 2’ (labeled as ‘Mod.2’), aims to

reduce the effect of imperfect nearest neighbor quantization.

The overall ILR algorithm that uses both modifications

Mod.1 and Mod.2 is listed in Algorithm 2.

Algorithm 2 Improved LR-aided (ILR) detection algorithm.

1: Set count = 0, m = [02nt|A|], V = [02nt×2nt|A|];
2: for i = 1 : 2nt do
3: for j = 1 : |A| do
4: y′ = y −Ajhi;
5: H′ = [h1 h2 · · ·hi−1 hi+1 · · ·h2nt ];
6: yaug = [(H′)T 0T

(2nt−1)
]T ;

7: Haug = [(H′)T I(2nt−1)]
T ;

8: [x̄,T] = Mod.1 Procedure (yaug,Haug, max depth, 1, θ1, θ2,
θ3);

9: Z = {z : z′
det

+ w,w ∈ {0,±2}(2nt−1), ‖w‖0 ≤ 2};
10: c = [0|Z|];
11: for k = 1 : |Z| do
12: ck = ‖yaug − HaugZk‖

2;
13: end for
14: l = argmin

k

ck;

15: z̆ = Zl; /* Steps 9 to 15: Mod.2 Procedure */
16: x̆ = Tz̆;
17: count=count+1;
18: vcount = [x̆1 · · · x̆(i−1) Aj x̆(2nt−1)]

T ;

19: mcount = ‖y − Hvcount‖2;
20: end for
21: end for
22: p = argmin

l

ml;

23: Output :vp;

V. RESULTS AND DISCUSSIONS

In this section, we present simulation results on the BER

performance and complexity of the proposed ILR algorithm.

We compare them with those of other LR-aided algorithms.

The following values of the parameters are used in the simu-

lations: θ1 = 0.5, θ2 = 0.3, θ3 = 0.05 and max depth = 3.

First, in Figs. 1 and 2, we present the BER performance of

the ILR detector in comparison with those of other LR-aided

detectors using Seysen’s reduction algorithm for 16 × 16 V-

BLAST MIMO system with 4- and 16-QAM, respectively.

From these figures, it is observed that the ILR detector

performs close to within 0.1 dB and 0.5 dB of the ML

performance in 4- and 16-QAM, respectively, which is quite

attractive. At a BER of 10−3, the ILR detector achieves an

SNR gain of about 1.9 dB and 2.6 dB compared to the

performance of LRdecimp (LR-AUG-ZF) detector for 4- and

16-QAM, respectively.

In order to gain a better insight on the overall performance

of the proposed algorithm, the individual contributions of

dealing with imperfect orthogonalization (using Mod.1 pro-

cedure) and imperfect nearest neighbor quantization (using
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Fig. 1. BER performance of the proposed ILR detector in comparison
with those of other LR-aided detectors in nt = nr = 16 V-BLAST MIMO
system using 4-QAM.
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Fig. 2. BER performance of the proposed ILR detector in comparison
with those of other LR-aided detectors in nt = nr = 16 V-BLAST MIMO
system using 16-QAM.

Mod.2 procedure) are of interest. So, in Fig. 2, we have

plotted separate BER curves for i) the basic LRdecimp

(LR-AUG-ZF) algorithm, ii) LRdecimp with Mod.1 alone,

iii) LRdecimp with Mod.2 alone, and iv) the overall ILR

algorithm which uses both Mod.1 and Mod.2. It is seen

that using either Mod.1 or Mod.2 alone results in some

improvement, but not as good as using them simultaneously.

For e.g., at a BER of 10−3, individual use of Mod.1 and

Mod.2 improves the performance of LRdecimp (LR-AUG-

ZF) algorithm by 2 dB and 1.8 dB, respectively, whereas

when both Mod.1 and Mod.2 parts are used simultaneously

(i.e., ILR algorithm), performance close to ML is achieved.

The improved performance in ILR algorithm is achieved

without much increase in complexity compared to LRdecimp

algorithm complexity. The complexity comparison between

the ILR detector and other LR-aided detectors is plotted in

Fig. 3. It is observed that, to achieve a BER of 10−2, the

average number of real operations required by the ILR algo-

rithm is roughly twice the average number of real operations

required by the LRdecimp (LR-AUG-ZF) algorithm.

The SNR loss in various LR-aided detectors compared to

the ML performance for 16 × 16 MIMO in both 4- and 16-

QAM is presented in Table I. From Table I, it is seen that,

at a BER of 10−4 in 16-QAM, the SNR loss incurred by the

ILR detector compared to ML performance is just 0.4 dB,
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Fig. 3. Complexity comparison of LR-aided detectors at a BER of 10−2

for nt = nr systems using 16-QAM.

which is 2.9 dB, 4 dB and 9.4 dB less than those incurred

by LRdecimp (LR-AUG-ZF), LRdecimp (LR-ZF), and LR-

AUG-ZF detectors, respectively.

SNR loss in dB compared to the ML per-
formance at 10−2 BER and 10−4 BER
for 16 × 16 MIMO

Algorithm 4-QAM 16-QAM

10−2 10−4 10−2 10−4

LR-AUG-ZF [14] 7.2 dB 8.2 dB 7.2 dB 9.8 dB

LRdecimp (LR-ZF) [15] 4.3 dB 4 dB 3.6 dB 4.4 dB
LRdecimp (LR-AUG-ZF) [15] 2.1 dB 2.2 dB 3.1 dB 3.3 dB

Proposed ILR detector 0.1 dB 0.1 dB 0.5 dB 0.4 dB

TABLE I
SNR LOSS IN LR-AIDED DETECTORS COMPARED TO ML PERFORMANCE

FOR nt = nr = 16 V-BLAST MIMO SYSTEM USING 4- AND 16-QAM
AT BER OF 10−2 AND 10−4 .

Next, Fig. 4 shows the BER performance of the ILR de-

tector using Seysen’s reduction algorithm and D-ELR-SLB

reduction algorithm for nt = nr = 24 V-BLAST MIMO

system using 16-QAM. Since the true ML detection for this

system is computationally infeasible, we plot the unfaded

SISO AWGN performance as a lower bound to the ML

performance. From this figure, we observe that the perfor-

mance of the ILR detector using Seysen’s and D-ELR-SLB

reduction algorithms are roughly the same at low to medium

SNRs. At high SNRs, the D-ELR-SLB reduction algorithm

offers slightly better performance than Seysen’s reduction

algorithm. For example, at a BER of 10−6, an SNR gain

of 0.5 dB is seen when D-ELR-SLB reduction algorithm is

employed instead of the Seysen’s reduction algorithm. In Fig.

4 also, we observe that simultaneous use of both Mod.1 and

Mod.2 achieves significantly better performance compared to

individual use of Mod.1 or Mod.2 alone.

VI. CONCLUSION

We proposed a lattice reduction (LR) aided MIMO detection

algorithm which mitigates the imperfect orthogonalization

and imperfect nearest neighbor quantization problems faced

in LR-aided detectors. The proposed improved LR-aided

(ILR) algorithm exhibited good performance and complexity

attributes. It outperformed other LR-aided detection algo-

rithms like LR-ZF, LR-MMSE, LR-AUG-ZF, and LRdecimp,

and achieved near-ML performance in large-MIMO systems.

While the SNR loss in other LR-aided algorithms compared

to ML performance is in the range of 2 to 9 dB in 16×16 V-

BLAST MIMO system with 4-QAM and 16-QAM, the SNR
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Fig. 4. BER performance of the ILR detector using Seysen’s reduction
algorithm in comparison with that of using D-ELR-SLB reduction algorithm
for nt = nr = 24 V-BLAST MIMO system using 16-QAM.

loss in the proposed ILR algorithm is just 0.1 dB for 4 QAM

and < 0.5 dB for 16-QAM. Performance/complexity compar-

isons with LR based K-best algorithm [16] and variants of

sphere decoding are possible future works.
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