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Abstract—Recently, there has been an increasing interest in
the emerging Zak transform based orthogonal time frequency
space (OTFS), termed Zak-OTFS, owing to 1) its increased
resilience to high Dopplers (compared to the multicarrier version
of OTFS (MC-OTFS) that has been widely studied in the past)
due to its non-fading attribute, and 2) its structured input-
output relation through twisted convolution operation, which
renders the input-output relation to be predictable. Zak-OTFS
research is in its nascent stages and several aspects of Zak-
OTFS remain open for investigation. In this paper, we investigate
one such aspect, namely, signal detection in Zak-OTFS. Early
papers on Zak-OTFS have considered only minimum mean
square error (MMSE) detection, whose performance is far from
optimum. In this work, we consider an approximate maximum
a posteriori probability (MAP) detection algorithm based on
mixed Gibbs sampling (MGS), where sampling is done on a
mixed distribution (a weighted mixture of the target distribution
and uniform distribution). The mixing with uniform distribution
helps to alleviate the stalling problem witnessed in sampling
purely from the target distribution. The MGS algorithm is shown
to achieve better performance compared to MMSE detection
as well as message passing (MP) detection, which is a widely
adopted detection scheme in MC-OTFS research, and achieves
near optimal performance. The closeness to optimum maximum-
likelihood (ML) performance is established using a lower bound
on the ML performance obtained using reactive tabu search.

Index Terms—OTFS modulation, Zak-OTFS, delay-Doppler
domain, mixed Gibbs sampling, approximate MAP detection.

I. INTRODUCTION

Owing to its superior performance in high-Doppler wire-
less communication environments, orthogonal time frequency
space (OTFS) modulation is emerging as a potential candidate
for next-generation wireless [1], [2]. The superior performance
is attributed to the signal processing in delay-Doppler (DD)
domain as opposed to the conventional time/frequency domain
processing. The channel is also parameterized in the DD do-
main, which facilitates a sparse representation of the channel
as well as time-invariance in the DD domain over a long
time. In OTFS, the information symbols are embedded in the
DD domain which are subsequently converted to time domain
(TD) for transmission. This conversion can be achieved in
multiple ways, leading to multiple variants of OTFS. One
popularly studied variant achieves this in two-steps [1], viz.,
the DD domain signal is first transformed to time-frequency
(TF) domain using inverse symplectic finite Fourier trans-
form and subsequently to TD using Heisenberg transform.
Corresponding inverse transforms are used at the receiver to

This work was supported in part by the J. C. Bose National Fellowship,
Department of Science and Technology, Government of India. The first author
would like to thank the Prime Minister’s Research Fellowship, Ministry of
Education, Government of India for the support.

convert the received TD signal to DD domain. This variant
is essentially an overlay on existing multicarrier modulation
through the use of additional pre- and post-processing, hence
its name multicarrier OTFS (MC-OTFS). MC-OTFS has been
shown to significantly outperform OFDM in high-Doppler
channels. The first wave of OTFS research was dominated
by the MC-OTFS variant (e.g., references in [3]).

More recently, a single-step conversion approach based
on Zak transform theory [4], named Zak-OTFS, is gain-
ing prominence due to its strong mathematical foundation,
structured input-output relation through twisted convolution
operation, and augmented resilience to a larger range of
Doppler spreads compared to MC-OTFS [5], [6]. The early
Zak-OTFS references [5], [6] reveal the foundational aspects
of Zak-OTFS, especially its ‘non-fading’ channel interaction
and ‘predictability’ of the input-output relation, attributed to
the better localization of the Zak-OTFS waveform in the DD
domain. Zak-OTFS waveform is a quasi-periodic pulse in the
DD domain, localized within the fundamental period with τp
and νp being the delay and Doppler periods. Zak transform
enables a direct conversion of signals from TD to DD domain
and vice-versa. Upon conversion from DD domain to TD
using inverse Zak transform, Zak-OTFS waveform is a pulse
train modulated by a tone, referred to as a ‘pulsone’.

We note that Zak-OTFS research is in its nascent stages
and several aspects of Zak-OTFS remain open for investiga-
tion. In this paper, we investigate one such aspect, namely,
signal detection in Zak-OTFS. In this regard, we note that
the early Zak-OTFS papers [5], [6] consider only minimum
mean square error (MMSE) detection, whose complexity is
polynomial (cubic) in the OTFS frame size but performance
is far from optimum. On the other hand, optimum maximum
likelihood (ML) detection is prohibitively complex for large
frame sizes of practical interest (due to exponential complexity
in frame size). Therefore, detection algorithms which can
achieve near-optimum performance with practical complex-
ities are of interest for Zak-OTFS receivers.

Motivated by the above, in this paper, we explore Markov
chain Monte Carlo (MCMC) techniques for Zak-OTFS signal
detection. MCMC techniques are computational techniques
that make use of sampling from probability distributions in or-
der to make statistical inferences by simulating the underlying
processes through Markov chains, making it possible to reduce
the complexity from exponential to polynomial [7]. Gibbs
sampling is a popular MCMC method. MCMC methods have
been adopted for detection/equalization in MIMO channels,
ISI channels, and OFDM in time-varying channels [8]- [11].
Our contributions in this paper can be summarized as follows.



Fig. 1: Block diagram of Zak-OTFS transceiver.

• We consider an approximate maximum a posteriori prob-
ability (MAP) detection algorithm based on mixed Gibbs
sampling (MGS), where sampling is done on a mixed
distribution (a weighted mixture of the target distribution
and uniform distribution). The mixing with uniform dis-
tribution helps to alleviate the stalling problem witnessed
in sampling purely from the target distribution.

• The MGS algorithm is shown to achieve much better
performance compared to MMSE detection as well as
message passing (MP) detection, which is a widely used
detection scheme in MC-OTFS research [13], [14].

• Using a lower bound on the ML performance obtained
using reactive tabu search (RTS) [15], we demonstrate
the closeness of the MGS performance to the optimum
ML performance.

II. ZAK-OTFS SYSTEM MODEL

Figure 1 shows the block diagram of the Zak-OTFS
transceiver. At the transmitter, a continuous-time quasi-
periodic DD domain signal xwtx

dd (τ, ν) is converted to TD using
inverse time-Zak transform, resulting in a TD signal std(t). At
the receiver, the TD signal rtd(t) is converted to a DD domain
signal ydd(τ, ν) using Zak transform which further undergoes
DD domain processing.

At the transmitter, MN information symbols from a mod-
ulation alphabet A, denoted by x[k, l]s, are mounted on the
DD domain information grid Λdd described as

Λdd =
{(

kτp
M

,
lνp
N

)
; k ∈ [0,M − 1], l ∈ [0, N − 1]

}
, (1)

where τp and νp denote the period along delay and Doppler
axis of the fundamental box/rectangle D0, described as

D0 = {(τ, ν); 0 < τ < τp, 0 < ν < νp}, (2)

such that τpνp = 1. The x[k, l]s are encoded as discrete DD
information signal xdd[k, l], given by

xdd[k + nM, l +mN ] = x[k, l]ej2πn
l
N , (3)

where k = 0, 1, · · ·M − 1, l = 0, 1, · · · , N − 1, and n,m ∈
Z. Note that xdd[k, l] is a quasi-periodic signal [6]. These
symbols are then mounted onto a continuous-time impulse
train resulting in a quasi-periodic DD domain signal xdd(τ, ν),
given by

xdd(τ, ν) =
∑
k,l∈Z

xdd[k, l]δ
(
τ − k

τp
M

)
δ
(
ν − l

νp
N

)
, (4)

where δ(·) denotes Kronecker delta function. Further, the
signal is time- and band-limited by filtering it through the
transmit DD filter wtx(τ, ν), resulting in

xwtx
dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν), (5)

where ∗σ denotes the twisted convolution operation. Note that
this DD domain pulse has a spread of approximately 1

B along
delay axis and 1

T along Doppler axis, where B ≈Mνp is the
bandwidth and T ≈ Nτp is the frame duration. The resulting
continuous DD domain signal xwtx

dd (τ, ν) is converted to TD
using inverse time-Zak transform, given by

std(t) = Z−1
t (xwtx

dd (τ, ν)) =
√
τp

∫ νp

0

xwtx
dd (t, ν)dν. (6)

The TD signal std(t) passes through a doubly-selective chan-
nel with DD domain impulse response

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (7)

where P is the number of resolvable paths in DD domain,
hi, τi, νi denote the channel gain, delay, and Doppler of the
ith path, respectively. The resulting TD signal at the receiver
is given by

rtd(t) =

∫ ∫
h(τ, ν)std(t− τ)ej2πν(t−τ) + n(t), (8)

where n(t) is the additive white Gaussian noise (AWGN).
The received signal is converted to DD domain using Zak
transform as

ydd(τ, ν) = Zt(rtd(t))

=
√
τp

∑
k∈Z

rtd(τ + kτp)e
−j2πνkτp + ndd(τ, ν), (9)

where ndd(τ, ν) = Zt(n(t)) is the DD domain noise signal.
The continuous DD domain received signal ydd(τ, ν) is then
filtered using DD domain receive filter wrx(τ, ν) to obtain
ywrx

dd (τ, ν) as

ywrx
dd (τ, ν) = wrx(τ, ν) ∗σ ydd(τ, ν)

= hdd(τ, ν) ∗σ xdd(τ, ν) + nwrx
dd (τ, ν), (10)

x(τ, ν) ∗σ y(τ, ν) =
∫ ∫

x(τ ′, ν′)y(τ − τ ′, ν− ν′)ej2πν′(τ−τ ′)dτ ′dν′



where hdd(τ, ν) is the effective continuous DD channel filter,
given by

hdd(τ, ν) = wrx(τ, ν) ∗σ h(τ, ν) ∗σ wtx(τ, ν). (11)

The resulting signal is sampled on the information grid Λdd
to obtain the discrete DD domain received signal as

ydd[k, l] = ywrx
dd

(
τ = k

τp
M
,ν = l

νp
N

)
, k, l ∈ Z. (12)

The end-to-end DD domain input-output relation can be
expressed as

ydd[k, l] = hdd[k, l] ∗σ xdd[k, l] + ndd[k, l], (13)

where hdd[k, l] = hdd
(
τ = k

τp
M , ν = l

νp

N

)
, k, l ∈ Z. Using the

definition of discrete twisted convolution in (13), we obtain

ydd[k, l] =
∑

k′,l′∈Z
hdd[k − k′, l − l′]xdd[k

′, l′]ej2π
(l−l′)k′

MN

+ndd[k, l]. (14)

The above expression can be vectorized as

y = Hx+ n, (15)

where y,x,n ∈ CMN×1, such that their (kN+l+1)th entries
are given by ykN+l+1 = ydd[k, l], xkN+l+1 = xdd[k, l], and
nkN+l+1 = ndd[k, l], and H ∈ CMN×MN such that

H[k′N + l′ + 1, kN + l + 1] =
∑

m,n∈Z

hdd[k
′ − k − nM, l′ − l −mN ]

ej2πnl/Nej2π
(l′−l−mN)(k+nM)

MN ,
(16)

where k′, k = 0, 1, · · · ,M − 1, l′, l = 0, 1, · · · , N − 1, and
n ∼ CN (0, σ2IMN ), where 0 denotes a zero vector of length
MN and IMN is an identity matrix of size MN .

III. ZAK-OTFS SIGNAL DETECTION USING MGS

In this section, we present the proposed approximate MAP
detection algorithm based on mixed Gibbs sampling (MGS)
for symbol detection in Zak-OTFS. We also present the
MMSE detector and MP detector which are used for perfor-
mance comparison.

A. Approximate MAP detection algorithm based on MGS

The maximum a posteriori probability (MAP) detection rule
for the input-output relation in (15), assuming perfect channel
knowledge, is given by

x̂MAP = arg max
x∈AMN

P(x|y,H), (17)

where P(a|b) denotes the conditional probability density func-
tion (pdf) of a given b. An exhaustive enumeration of all
possible MN length vectors drawn from A is required to
solve (17), i.e., |A|MN unique vectors. This number grows
exponentially as MN increases rendering an exhaustive enu-
meration based solution to (17) infeasible. Hence, a reduced
complexity detection algorithm based on MCMC approach
using Gibbs sampling (GS) is employed. Note that for the case
under consideration, ML solution and MAP solution are same

since all the symbols have equal prior probability, i.e., 1/MN .
The target distribution that guarantees optimal solution is

P(x1, x2, · · · , xMN |y,H) ∝ exp
(
||y −Hx||2

σ2

)
. (18)

However, directly sampling from this joint distribution is
complex. Hence, the idea is to sample from a conditional
distribution constructed by considering one symbol at a time
and conditioning on the rest of the MN − 1 symbols. The
core idea of detection using GS is to iteratively sample from
the symbol-wise conditional pdf while assuming that the rest
of the MN − 1 symbols are fixed. It is established that after
sufficient iterations, the samples drawn from the conditional
distributions approach to those drawn from the joint distribu-
tion in (18), thereby providing the optimal solution [12]. The
GS algorithm is described below.

An initial vector x0 ∈ CMN×1 drawn from A is considered
at the start of the algorithm. We consider initialization with
random vector. In the (j + 1)th iteration, the MN symbols
are updated by sampling from the following distributions:

xj+1
1 ∼ P(x1|xj2, x

j
3, · · · , x

j
MN ,y,H)

xj+1
2 ∼ P(x2|xj+1

1 , xj3, · · · , x
j
MN ,y,H)

xj+1
3 ∼ P(x3|xj+1

1 , xj+1
2 , · · · , xjMN ,y,H)

...

xj+1
MN ∼ P(xMN |xj+1

1 , xj+1
2 , · · · , xj+1

MN−1,y,H). (19)

The conditional distribution in (19) for the kth symbol, i.e.,
P(xk = a|xj+1

1:k−1,x
j
k−1:MN ,y,H), a ∈ A in (j + 1)th

iteration can be obtained applying Bayes rule and law of total
probability to (18) as

P(xk = a|xj+1
1:k−1,x

j
k−1:MN ,y,H) =

exp
(

||y−Hx̃||2
σ2

)
∑

a∈A exp
(

||y−Hx̃||2
σ2

) ,
(20)

where xj+1
1:k−1 = [xj+1

1 · · · xj+1
k−1]

T , xj
k+1:MN =

[xjk+1 · · · x
j
MN ]T , x̃ = [xj+1

1 · · · xj+1
k−1 a x

j
k+1 · · · x

j
MN ]T ,

and [·]T denotes transpose of a vector. After all the symbols
are updated based on sampling from the corresponding
conditional distribution, the ML cost is computed as

ϕ(xj+1) = ||y −Hxj+1||22, (21)

where xj+1 is the solution vector in (j + 1)th iteration and
||·||2 denotes 2-norm of a vector. The initial vector for the next
iteration is updated to xj+1 if the ML cost ϕ(xj+1) < ϕ(xj),
else the vector xj continues to be the initial vector for the
subsequent iteration. The iterations continue until j = Jmax,
where Jmax is the maximum number of iterations after which
the algorithm stops. Amongst the resultant Jmax vectors, the
one with minimum ML cost is returned as the detected vector.
Note that, theoretically it has been proven that asymptotically

A probability mass function (pmf) over the constellation symbols in A is
constructed for each symbol xk, k = 1, 2, · · · ,MN , and that constellation
symbol with maximum probability is assigned to xk .



the distribution approaches to the joint distribution in (18)
thereby ensuring the convergence to the optimal solution.
However, in practice, the Markov chain is observed to take
prohibitively long time before it reaches the stationary distri-
bution. One reason for this issue is stalling. It is a condition
where the algorithm gets into a local trap, i.e., it gets stuck
in a particular state for which the transition probability to any
other state is close to zero. Hence, the Markov chain takes
a long time before it eventually comes out of that state. It is
observed that this results in BER degradation at high signal-
to-noise ratios (SNR) [10], [11].

The problem of stalling in GS can be circumvented by
sampling from a mixed distribution instead of sampling purely
from the true target distribution [11]. This is the basic
idea in MGS. Sampling from a weighted sum of uniform
distribution U [0, 1] and the target joint distribution in (18)
allows the Markov chain to escape the local trap and converge
quickly in finite number of iterations. In addition, using a
tilted distribution of the target distribution with a temperature
parameter α in place of the target distribution can offer better
convergence characteristics and performance. The modified
target distribution with temperature parameter α is given by

P(x|y,H) ∝ exp
(
||y −Hx||2

α2σ2

)
, (22)

where α is a tunable positive parameter that controls the
mixing time of the Markov chain. A higher value of α implies
a faster mixing of the Markov chain and hence convergence
to stationary distribution in less number of iterations. The

Algorithm 1 MGS algorithm

1: Inputs: y,H, maximum # iterations Jmax

2: Initialize: z = x0, iteration index j = 1, q = 1
MN , c(1) =

ϕ(x0)
3: while j < Jmax do
4: for k = 1 :MN do
5: generate λ ∼ U [0, 1]
6: if λ > q
7: xj+1

k ∼ P(xk|xj+1
1 , · · · , xj+1

k−1, x
j
k, x

j
MN ,y,H)

8: else
9: xj+1

k ∼ U [0, 1]
10: end if
11: end for
12: update c(j + 1) = ϕ(xj+1)
13: if c(j + 1) < c(j)
14: z = xj+1

15: else
16: z = xj

17: end if
18: updatej = j + 1

19: until j = Jmax

20: Obtain m = arg min
j=1···Jmax

c(j)

21: Output: x̂MGS = xm

resulting mixture distribution proposed in this work is

P(x|y,H) ∝ (1− q)ψ(α1) + qψ(α2), (23)

where ψ(α1) ∝ exp
(

||y−Hx||2
α2

1σ
2

)
with α1 > 1 and ψ(α2) ∼

U [0, 1], i.e., α2 = ∞. The optimum value of q that minimizes
the expected number of iterations required to reach the global
minima solution for first time has been observed to be the
inverse of number of dimensions in the transmit vector [11].
Hence, q = 1/MN is used. The MGS algorithm is listed in
Algorithm 1. The per-symbol complexity is quadratic in MN ,
i.e., O(M2N2). In Sec. IV, we will compare the performance
of the above MGS detector with the performance of MMSE
and MP detectors, which are briefly described below.

B. LMMSE detector

Linear MMSE (LMMSE) detector performs Euclidean dis-
tance based symbol-by-symbol detection after performing the
linear equalization of the channel. For the system model in
(15), the linear equalizer HMMSE is obtained by minimizing
the mean squared error between the transmit vector and the
linearly equalized received vector as

HMMSE = arg min
A

E
[
||x−Ay||22

]
. (24)

HMMSE = (HHH+ σ2IMN )−1HH is obtained upon solving
the optimization problem in (24). The computation of the
HMMSE involves computing the inverse of an MN × MN
matrix, which incurs a complexity of O(M3N3), and a per-
symbol detection complexity of O(M2N2).

C. Message passing detector [13], [14]

The MP detector is an iterative symbol-by-symbol MAP
detection algorithm that works on the principle of belief
propagation. The algorithm solves the optimization problem

x̂j = arg max
xj∈A

P(xj |y,H), (25)

by constructing a factor graph with received symbols as
observation nodes and transmit symbols as variable nodes.
The resultant factor graph is fully connected, i.e, it has loops
and therefore results in an approximate solution. In each
iteration, likelihood vectors and a posterior probability vectors
are exchanged on the edges between the observation and
variable nodes as messages. A Gaussian approximation of
interference is adopted in the construction of the messages,
which reduces complexity. The algorithm returns the pmf for
each symbol once the stopping criteria is met. The symbol-
wise detection complexity for MP detection is O(M2N2).

IV. RESULTS AND DISCUSSIONS

In this section, we present the BER performance of Zak-
OTFS using the detectors discussed in Sec. III. For all the
results in this section, a doubly-spread channel with P re-
solvable paths and uniform power delay profile is considered.
The path delays are assumed to be uniformly distributed as
τi ∼ U [0, τmax] and path Dopplers are generated using the



SNR = 20 dB

(a) ML cost evolution

(b) BER vs SNR

Fig. 2: Performance comparison between MGS vs ML detec-
tors for M = 2, N = 2, and BPSK. MGS achieves almost
ML performance.

Jake’s formula νi = νmaxcos(θ), where θ ∼ U [0, 2π], and
τmax and νmax are the maximum delay and Doppler spreads of
the channel, respectively. Channel is assumed to be perfectly
known at the receiver. The DD domain transmit and receive
filters are considered to be sinc filters given by

wtx(τ, ν) = wrx(τ, ν) =
√
BTsinc(Bτ)sinc(Tν). (26)

In conventional Gibbs sampling (GS) and mixed Gibbs sam-
pling (MGS) detectors, we consider a random initial vector
and Jmax ≈ 20MN .

A. BER vs SNR comparison between MGS and ML detection

To compare the performance of the proposed MGS algo-
rithm with that of ML, we consider a Zak-OTFS system with
a small frame size, where B = 7.5 kHz, T = 0.523 ms,
P = 2. The information symbols are drawn from BPSK
constellation. The Doppler and delay periods are νp = 3.75
kHz and τp = 1/νp = 0.2667 ms, respectively. Hence,
M = B

νp
= 2 and N = T

τp
= 2. The path delays and

Dopplers are [τ1, τ2] = [0, 0.133] ms and [ν1, ν2] = [0, 0] kHz,
respectively. Figure 2(a) shows the evolution of the ML cost
∥y −Hxj∥2 of the GS and MGS algorithms over iterations
at an SNR of 20 dB. The cost obtained using ML detection is
also plotted for reference. It is observed that the cost achieved
by GS algorithm floors as the iterations progress indicating a
local trap. However, the MGS algorithm is able to escape
the local traps (indicated by fluctuations in the cost) and
achieve the true ML cost multiple times over the iterations.
This translates into a BER performance which is almost same
as that of the ML detector, as can be observed in Fig. 2(b).

We next consider a Zak-OTFS system with a larger frame
size where the bandwidth B = 180 kHz and frame duration
T = 0.467 ms. The Doppler period is νp = 15 kHz. Hence,
M = 12 and N = 7. The information symbols are drawn from

SNR = 15 dB

Fig. 3: Evolution of the ML cost of the state vector as a
function of iteration index for M = 12, N = 7, and 4-QAM.

Fig. 4: BER as a function of the temperature parameter α in
the MGS algorithm for M = 12, N = 7, and 4-QAM.

4-QAM constellation. The channel is considered to have P =
4 paths with τmax = 22.23 µs and νmax = 6.424 kHz (chosen
parameters ensure the operation in the crystalline regime, i.e.,
τmax < τp and νmax < νp [5]).

B. Convergence behaviour of GS and MGS algorithms

Figure 3 captures the progression of the GS and MGS
algorithms over iterations. The progression is shown in terms
of the ML cost of the state vector at each iteration. The con-
vergence trend of the GS and MGS algorithms for α = 2, 10
is captured at an SNR of 15 dB. It is observed that the ML
cost falls drastically with iterations till j ≈ 10. Beyond this,
it is observed that the GS algorithm cost remains constant
indicating a local trap, while the MGS algorithm escapes the
trap multiple times. For α = 2, the ML cost achieved by both
the algorithms is quite high. With α = 10 both the algorithms
achieve a low ML cost, with cost of MGS being consistently
below that obtained using GS.

C. Effect of temperature parameter.

Figure 4 shows the BER performance of GS and MGS
algorithms as a function of α for three SNR values, viz. 9



Fig. 5: BER vs SNR performance of Zak-OTFS using MMSE,
MP, and MGS detectors. ML lower bound is also shown.

dB, 12 dB, and 15 dB. The performance of both GS and
MGS algorithms saturate, i.e., remains almost constant after a
certain α. The results show an early onset of saturation at low
SNRs, i.e, for SNR of 9 dB, the performance flattens at α = 2,
while the saturation occurs at α = 3 and 5 for SNR of 12 and
15 dB, respectively. The performance of the MGS algorithm
is significantly superior compared to that obtained using GS
algorithm for all the three SNRs. Further, post saturation, the
gap between the performance of GS and MGS algorithms is
seen to progressively increase as SNR increases. Since the
choice of α does not add to the complexity, we fix α = 10
for the subsequent simulations.

D. Comparison of BER vs SNR for different detectors

Figure 5 shows the BER vs SNR performance comparison
between the MMSE, MP, and MGS detectors described in
Sec. III. In order to compare the MGS performance with ML
performance for the large frame size considered, we obtained
a lower bound on ML performance using the reactive tabu
search (RTS) algorithm in [15] with one-symbol neighbor-
hood. This ML lower bound is also plotted in Fig. 5 for
comparison. It is observed that the performance of MMSE
detector is sub-par. The MP algorithm performance is superior
to MMSE performance but is still far from the ML lower
bound. Whereas, the MGS algorithm performance is superior
to both MMSE and MP detectors performance. In addition, the
MGS performance is found to be quite close to the ML lower
bound, and this illustrates the effectiveness of the proposed
MGS approach for Zak-OTFS detection.

V. CONCLUSION

We presented an early investigation of near-optimal de-
tection of Zak-OTFS signals. Exhaustive enumeration based
optimum ML and MAP detection become prohibitive in
complexity as the OTFS frame size grows. MMSE detector
was employed in the early papers on Zak-OTFS. However,
the performance of MMSE detector is far from optimum.

MP detection can provide superior performance compared
to MMSE performance, but is inferior in comparison with
the optimum ML performance. We proposed a mixed Gibbs
sampling based detection algorithm which performed close
to the optimum ML performance at low detection complexity.
Sampling from a mixed distribution (weighted sum of uniform
and target distributions) aided the algorithm to quickly exit
from stalling and achieve near-optimal performance at low
complexity. A lower bound on the ML performance obtained
using reactive tabu search with one-symbol neighborhood
was used to establish the closeness of the proposed MGS
performance to the optimum ML performance. Investigation
of several other algorithms for efficient signal detection and
channel estimation for Zak-OTFS remains open, which can be
explored as future work.
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