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Abstract—In this paper, we analyze the effect of imperfect
delay-Doppler channel state information (CSI) on the bit error
rate (BER) performance of orthogonal time frequency space
(OTFS) modulation. We carry out the BER analysis when a
mismatched maximum-likelihood (ML) detector is used, i.e.,
when an estimated channel matrix is used for detection in place
of the true channel matrix. We derive an exact expression for the
pairwise error probability (PEP) using the characteristic function
of the decision statistic. Using the PEP expression, we obtain
an upper bound on the BER. Our results show that the BER
bound is tight at high SNRs. We also obtain the decision rule
for the true ML detector with imperfect CSI, which takes into
account the delay-Doppler channel estimation error statistics. We
quantify the performance gap between the true ML detector and
the mismatched ML detector through simulations.

Index Terms—OTFS modulation, delay-Doppler domain, chan-
nel estimation error, mismatched and true ML detectors, pairwise
error probability, BER analysis.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is
a promising, recently introduced modulation scheme [1]. In
OTFS, information symbols are multiplexed in the delay-
Doppler (DD) domain rather than in the time-frequency (TF)
domain. Also, the time-varying channel is represented in the
DD domain, where the channel exhibits a more static behavior.
There has been growing interest in this modulation because of
its superior performance compared to orthogonal frequency
division multiplexing (OFDM) in high-mobility/high-Doppler
scenarios [2]-[7]. In terms of bit error performance, OTFS
has been shown to significantly outperform OFDM for vehicle
speeds up to 500 km/h in 4 GHz band [2] and also in mmWave
frequency bands [3], [4]. Also, OTFS is amenable to be
implemented as an overlay on existing multicarrier modulation
schemes such as OFDM.

Signal detection is crucial in any communication receiver.
The task of signal detection requires the knowledge of the
channel. Hence, channel estimation at the receiver is essential.
Typically, the channel is estimated by transmitting pilot sym-
bols. The received signal corresponding to the pilot symbols
is used to estimate the channel. This results in estimation
errors depending on the pilot SNR and the method used for
channel estimation. Several DD channel estimation methods
for OTFS using pilot symbols have been studied [8]-[14].
Embedded pilot based methods where an OTFS frame is
embedded with pilot symbols and data symbols are studied
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in [10]-[12]. In [13],[14], superimposed pilot based methods
have been studied, where pilot symbols are superimposed
on data symbols. The DD channel state information (CSI)
obtained from these methods will be imperfect due to channel
estimation errors. It is of interest to analyze the degrading
effects of imperfect DD CSI on the bit error performance
of OTFS. The above works on OTFS channel estimation
focus primarily on algorithmic and system level aspects of
DD channel estimation, and performance evaluation is carried
out through simulations. To our knowledge, an analytical
derivation of the BER performance of OTFS with imperfect
DD CSI has not been reported.

Based on the observations made above, in this paper, we
present an analytical derivation of the BER performance of
OTFS with imperfect DD CSI. We study the performance
of the following two detectors: 1) mismatched maximum-
likelihood (ML) detector, and 2) true ML detector. The de-
cision rule in the mismatched ML detector is same as that
of the conventional ML detector, except that the imperfectly
estimated DD channel matrix is used in place of the perfect DD
channel matrix in the decision rule. In the true ML detector,
the decision rule is obtained by maximizing the likelihood
function by considering the imperfectly estimated DD channel
statistics. For the mismatched ML detector, we obtain an
exact expression for the pairwise error probability (PEP) using
the characteristic function of the decision statistic. We verify
that the PEP expression is exact by comparing the analytical
PEP with the simulated PEP. Using the PEP expression, we
obtain an upper bound on the BER, which is found to be
tight for large SNR values. For the true ML detector, we
obtain the decision rule with imperfect DD CSI and quantify
the performance gap between the true and mismatched ML
detectors. We also demonstrate the performance of OTFS with
phase rotation in the presence of imperfect CSI.

The rest of this paper is organized as follows. Section II
presents the OTFS system model with imperfect DD CSI.
Section III presents the mismatched ML detector and its
performance analysis. Section IV presents the true ML detector
and obtains its decision rule. Results and discussions are
presented in Sec. V. Conclusions are presented in Sec. VI.

II. OTFS SYSTEM MODEL

The block diagram of the OTFS modulation scheme is
shown in Fig. 1. The OTFS transmitter multiplexes MN
information symbols (e.g., PSK/QAM symbols from a mod-
ulation alphabet A), denoted by x[k, l], k = 0, · · · , N − 1,
l = 0, · · · ,M − 1, onto a N ×M DD grid, where N and M

A. Chockalingam
Highlight



Fig. 1: OTFS modulation scheme.

are the number of Doppler and delay bins, respectively. These
MN symbols are sent over a frame duration of NT seconds
using M∆f bandwidth, where ∆f = 1/T .

A. System model

The DD domain symbols x[k, l]s are mapped to TF domain
using inverse symplectic finite Fourier transform (ISFFT) as

X[n,m] =
1

MN

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π(
nk
N −ml

M ). (1)

Using Heisenberg transform, the TF signal in (1) is mapped
to a time-domain signal as

x(t) =
N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ), (2)

where gtx(t) defines the shape of the transmit pulse. The trans-
mitted signal is passed through the channel whose DD domain
response is given by h(τ, ν) =

∑L
i=1 hiδ(τ − τi)δ(ν − νi),

where τi, νi, and hi denote the delay, Doppler, and channel
gain of the ith path, respectively, and L denotes the number
of resolvable DD paths. The received signal is given by

y(t) =

∫
ν

∫
τ

h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν + w(t), (3)

where w(t) is the additive white Gaussian noise (AWGN). The
received signal y(t) is converted into a TF domain signal using
Wigner transform as Y [n,m] = Agrx,y(t, f)|t=nT,f=m∆f ,
where Agrx,y(t, f) =

∫
g∗rx(t

′ − t)y(t)e−j2πf(t′−t)dt′ and
grx(t) defines the shape of the receive pulse. When the trans-
mit and receive pulses satisfy the bi-orthogonality condition,
the TF input-output relation is obtained as [5]

Y [n,m] = H[n,m]X[n,m] +W [n,m], (4)

where H[n,m] =
∫
τ

∫
ν
h(τ, ν)ej2πνnT e−j2π(ν+m∆f)τdνdτ

and W [n,m] is the TF domain noise. The TF signal in (4)
is transformed to DD domain using SFFT as

y[k, l] =

N−1∑
n=0

M−1∑
m=0

Y [n,m]e−j2π(nk
N −ml

M ). (5)

From (1)-(5), the DD domain input-output relation can be
written as [5]

y[k, l] =
1

MN

N−1∑
l′=0

M−1∑
k′=0

x[k′, l′]hu(
k − k′

NT
,
l − l′

M∆f
) + w[k, l],

(6)
where hu(ν, τ) denotes the circular convolution of the
channel response with a windowing function u(τ, ν) and
hu(

k−k′

NT , l−l′

M∆f ) = hu(ν, τ)|ν= k−k′
NT ,τ= l−l′

M∆f

. The DD domain
input-output relation in (6) can be written as [5]

y[k, l] =

L∑
i=1

h′
ix[(k − bi)N , (l − ai)M ] + w[k, l], (7)

where bi and ai are integers corresponding to indices of
Doppler and delay1, respectively, for the ith path, i.e., τi ≜

ai

M∆f and νi ≜ bi
NT , w[k, l] is the AWGN, and h′

i =

hie
−j2πνiτi , where his are assumed to be i.i.d CN (0, 1/L).

The input-output relation in (7), ∀k, l, can be written in a
vectorized form as

y = Hx+w, (8)

where x,y,w ∈ CMN×1, the (k+Nl)th entry of x, xk+Nl =
x[k, l], k = 0, 1, · · · , N − 1, l = 0, 1, · · · ,M − 1. Similarly,
yk+Nl = y[k, l] and wk+Nl = w[k, l], k = 0, 1, · · · , N−1, l =
0, 1, · · · ,M − 1, and H ∈ CMN×MN is the effective channel
matrix, whose jth row (j = k + Nl), denoted by H[j], is
given by H[j] = [h̃((k − 0)N , (l − 0)M ) h̃((k − 1)N , (l −
0)M ) · · · h̃((k −N − 1)N , (l −M − 1)M )], where h̃(k, l) is
given by

h̃(k, l) =

{
h′
i if k = bi, l = ai, i ∈ {1, · · · , L}

0 otherwise.
(9)

Note that the H matrix has only L non-zero entries in each
row and column, i.e., there are only MNL non-zero elements
in H. The linear vector channel model in (8) is used for OTFS
signal detection/equalization and DD channel estimation. If the
receiver is assumed to have perfect knowledge of H, the ML
detection rule is given by

x̂ = arg min
x∈AMN

∥y −Hx∥2. (10)

B. Channel estimation error

The knowledge of H is needed at the receiver to detect
the transmitted OTFS signal vector x. An estimate of H can
be obtained by transmitting pilot symbols and using suitable
channel estimation schemes at the receiver. The estimate ĥi of
the channel gain hi of the ith path obtained using pilot based
estimation techniques can be written as

ĥi = hi + ei, (11)

where ei is the channel estimation error corresponding to
hi. We assume that eis are independent of each other and
also independent of his, and are identically distributed as
CN (0, σ2

e), where σ2
e is the variance of the channel estimation

error. The statistics of the channel estimation error depend
on the estimation scheme used. From (11), note that ĥis are
i.i.d and distributed as CN (0, σ2

h + σ2
e), where σ2

h = 1/L.
Let Ĥ denote the estimated channel matrix comprising of the
estimated channel gains ĥis and E denote the estimation error
matrix comprising of eis. From (11), Ĥ can be written as

Ĥ = H+E. (12)
The σ2

e value is an indicator of the channel estimate’s. Lower
is the value of σ2

e , better is the estimate. When σ2
e = 0, we

have Ĥ = H, i.e., the channel matrix is perfectly known.
1A similar input-output relation can be obtained for fractional Dopplers, as

described in [5].



III. MISMATCHED ML DETECTOR

In this section, we analyze the BER performance of the
mismatched ML detector. The mismatched ML detector em-
ploys the decision rule in (10) by using the estimated matrix
Ĥ instead of H, i.e., the decision rule for this detector is

x̂ = arg min
x∈AMN

∥y − Ĥx∥2. (13)

We first derive the PEP expression for mismatched ML detec-
tor using characteristic function approach. Assuming that all
the transmit vectors are equally probable, the probability of
the transmitted signal vector x being detected as x′ using the
rule in (13) is given by

P(x → x′) = P(∥y − Ĥx′∥2< ∥y − Ĥx∥2). (14)

Using (8) and (12), (14) can be written as

P(x → x′) = P
(
∥H(x− x′) +w −Ex′∥2< ∥w −Ex∥2

)
= P(∥H(x− x′) +w −Ex′∥2−∥w −Ex∥2< 0)

= P(S < 0), (15)

where S ≜ ∥H(x− x′) +w −Ex′∥2−∥w −Ex∥2 is the
decision statistic. Now, defining a ≜ H(x− x′) +w −Ex′

and b ≜ w −Ex, S can be written as

S = ∥a∥2−∥b∥2, (16)

which can be further written in Hermitian quadratic form as

S = uHQu, (17)

where u = [aT bT ]T and Q = diag(IMN ,−IMN ). Now,
since the channel matrix H has only L non-zero elements in
each row and column (due to modulo operations), we can write
the vectorized relation in (8) in an alternate form as [6]

y = Xh+w, (18)

where h = [h1, · · · , hL]
T and X is an MN ×L matrix whose

ith row, denoted by X[i], i = k +Nl, ∀k, l, is given by

X[i] =


x(k−b1)N+N(l−a1)M

x(k−b2)N+N(l−a2)M
...

x(k−bL)N+N(l−aL)M


T

. (19)

From the system model in (18), Hx = Xh, Hx′ = X′h,
Ex = Xe, and Ex′ = X′e, where e = [e1, · · · , eL]T . Then,
we can rewrite a and b as

a = (X−X′)h+w −X′e, b = w −X′e. (20)

From (20), u can be written as

u =

[
a
b

]
=

[
X−X′ −X′ IMN

0MN×L −X IMN

]
︸ ︷︷ ︸

≜G

h
e
w


︸ ︷︷ ︸
≜n

= Gn, (21)

where 0MN×L is an all-zero matrix with MN rows and L
columns, G is a 2MN×(MN+2L) matrix, and n is a (MN+
2L) × 1 vector. It is noted that n is a circularly-symmetric

complex Gaussian random vector, and its covariance Kn is
given by

Kn = diag(σ2
hIL, σ

2
eIL, σ

2
wIMN ), (22)

Therefore, the vector u is also a circularly-symmetric Gaussian
random vector whose covariance Ku is given by [15]

Ku = GKnG
H

=


σ2
h(X−X′)(X−X′)H σ2

eXXH

+σ2
eX

′X′H + σ2
wIMN +σ2

wIMN

σ2
eXX′H + σ2

wIMN σ2
eXXH

+σ2
wIMN

 . (23)

Thus, the decision statistic S is a Hermitian quadratic form
that allows its characteristic function ΦS(jω) to be written in
closed-form as [16]

ΦS(jω) = E[ejωS ] =
1

det (I2MN − jωKuQ)

=
1

det (I2MN − jωA)
, (24)

where E[.] denotes the expectation operator, j =
√
−1, and

A ≜ KuQ. Let Λ1,Λ2, · · · ,Λ2MN denote the eigenvalues of
A. The characteristic function in (24) can be simplified as

ΦS(jω) =
1∏2MN

i=1 (1− jωΛi)
. (25)

After changing the variable to z = jω, the PEP expression can
be obtained from the characteristic function using inversion
theorem as [17]

P(x → x′) = −sum of the residues of
ΦS(z)

z
computed

at poles on negative z-plane

= −
∑
k

1

(mk − 1)!

dmk−1

dzmk−1

{
(z − Λk)

mk
ΦS(z)

z

}
, (26)

where Λks are the negative eigenvalues of A (i.e., ℜ{Λk} < 0)
having multiplicity mk. Now, denoting the negative eigenval-
ues by λi having multiplicities ci, i = 1, 2, · · · ,Kn and de-
noting the non-negative eigenvalues by νj having multiplicities
dj , j = 1, 2, · · · ,Kp, such that

∑
i ci +

∑
j dj = 2MN , and

using Faa di Bruno’s formula, the mk − 1th derivative in (26)
can be obtained and a closed-form expression for the PEP in
(26) is obtained as [18],[19]

P(x → x′) =

Kn∑
i=1

(−λi)
2MN−ci∏Kp

j=1(µj − λi)dj
∏

k ̸=i(λk − λi)ck

·
∑

(l1,l2,···,lci−1)

ci−1∏
m=1

1

lm!
.
1

m

1 +
Kp∑

j=1

djν
m
j

(νj − λi)m

+
∑
k ̸=i

ckλ
m
k

(λk − λi)m

lm

, (27)

where l1, l2, · · · , lci−1 are such that 0 ≤ l1, l2, · · · , lci−1 ≤
ci − 1 and

∑ci−1
n=1 nln = ci − 1. The possible enumerations of

(l1, l2, · · · , lci−1) satisfying the above conditions can be pre-
computed and kept in a lookup table. With the enumerations



readily available, the PEP expression in (27) can be easily
calculated. Now, using the PEP expression, an upper bound
on the BER can be obtained using union bound as

BER ≤ 1

2MN

∑
x

∑
x′ ̸=x

P(x → x′)
ηx,x′

MN
, (28)

where ηx,x′ denotes the number of bits in which x and x′

differ.
IV. TRUE ML DETECTOR

In this section, we obtain the decision rule for the true
ML detector for OTFS with imperfect DD CSI and compare
its bit error performance with that of the mismatched ML
detector. The true ML criterion when the channel estimate
Ĥ is available at the receiver is

x̂ = arg max
x∈AMN

P(y|Ĥ,x). (29)

To obtain the decision statistic for the true ML detector, the
probability distribution of y conditioned on Ĥ and x has to
be obtained. It can be seen in (11) that hi depends only on ĥi

and ĥis are independent of each other. Thus, his conditioned
on Ĥ are independent. The jth element yj of y is given by

yj =

L∑
i=1

hix(k−bi)N+N(l−ai)M + wj , j = k +Nl. (30)

The linear combination in (30) is a Gaussian r.v. when con-
ditioned on Ĥ [20]. Therefore, conditioned on Ĥ and x, the
received vector y is a complex Gaussian random vector. Its
mean vector µy|Ĥ,x is obtained as

µy|Ĥ,x = E[y|Ĥ,x]

= E[H|Ĥ]x+ E[w]

= ρ2Ĥx, (31)

where ρ2 = σ2
h/(σ

2
h + σ2

e). The covariance matrix Ky|Ĥ,x is
obtained as

Ky|Ĥ,x=E[(y − µy|Ĥ,x)(y − µy|Ĥ,x)
H |Ĥ,x]

=E[(Hx+w − ρ2Ĥx)(Hx+w − ρ2Ĥx)H |Ĥ,x]

=σ2
wIMN + E[(H− ρ2Ĥ)xxH(H− ρ2Ĥ)H |Ĥ,x]

=σ2
wIMN + E[X(h− ρ2ĥ)(h− ρ2ĥ)HXH |Ĥ,x]

=σ2
wIMN +XE[(h− ρ2ĥ)(h− ρ2ĥ)H |Ĥ]XH

=σ2
wIMN + σ2

h(1− ρ2)XXH , (32)

where X and h are as in (18), ĥ = [ĥ1, · · · , ĥL]
T , and

E[(h − ρ2ĥ)(h − ρ2ĥ)H |Ĥ] = σ2
h(1 − ρ2) is due to the

independence among the elements of H having covariance
σ2
h(1− ρ2) conditioned on Ĥ. The pseudo-covariance matrix

Cy|Ĥ,x is given by

Cy|Ĥ,x=E[(y − µy|Ĥ,x)(y − µy|Ĥ,x)
T |Ĥ,x]

=E[(Hx+w − ρ2Ĥx)(Hx+w − ρ2Ĥx)T |Ĥ,x]

=E[wwT ] +XE[(h− ρ2ĥ)(h− ρ2ĥ)T |Ĥ]XT

=0MN×MN , (33)
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Fig. 2: Analytical PEP versus simulated PEP of the mis-
matched ML detector for x = [−1,−1,−1,−1] and x̂ =
[1, 1, 1, 1] with imperfect DD CSI.

where (33) is due to the independence among the elements
of h having zero pseudo-covariance when conditioned on
Ĥ. Therefore, conditioned on Ĥ and x, the received vector
y is a complex Gaussian random vector with mean vector
µy|Ĥ,x = ρ2Ĥx, covariance matrix Ky|Ĥ,x = σ2

wIMN +

σ2
h(1 − ρ2)XXH , and pseudo-covariance matrix Cy|Ĥ,x =

0MN×MN . With the knowledge of the statistics of y condi-
tioned on Ĥ and x, we can write the decision rule in (29)
as

x̂ = arg max
x∈AMN

1

(2π)MN
√

det(Ky)
e−

1
2y

T
µKy

−1yµ , (34)

where

yµ =
[
ℜ{y − µy|Ĥ,x},ℑ{y − µy|Ĥ,x}

]T
,

Ky =
1

2

[ℜ{Ky|Ĥ,x +Cy|Ĥ,x} −ℑ{Ky|Ĥ,x −Cy|Ĥ,x}
ℑ{Ky|Ĥ,x +Cy|Ĥ,x} ℜ{Ky|Ĥ,x −Cy|Ĥ,x}

]
,

and ℜ(·) and ℑ(·), are the real part and imaginary part,
respectively.

V. RESULTS AND DISCUSSIONS

In this section, we present the BER performance of the
mismatched ML detector and the true ML detector with
imperfect DD CSI. The following OTFS system parameters
are used in the numerical evaluation and simulations. A carrier
frequency of 4 GHz and a subcarrier spacing of ∆f = 3.75
KHz are used. The OTFS frame size is M = N = 2 and the
modulation used is BPSK. The number of DD channel paths
is L = 4 and the profile of DD values (τ, ν) of the paths
is given by {( 1

M∆f , 0), (
1

M∆f ,
1

NT ), (
1

M∆f , 0), (
1

M∆f ,
1

NT )}.
Uniform power delay profile is assumed.

In Fig. 2, we compare the analytically derived PEP for
the mismatched ML detector with the corresponding sim-
ulated PEP. The transmitted signal vector is taken to be
x = [−1,−1,−1,−1]. The probability of this transmitted
vector being wrongly decoded as x̂ = [1, 1, 1, 1] is obtained
by using (27) as well as by simulation. This is one of the
pairs which have a dominant PEP causing the BER to floor.
The PEP curves for σ2

e = 0, 0.001, 0.005, 0.01 are obtained
by varying the SNR. It can been seen in Fig. 2 that the
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Fig. 3: Analytical BER upper bound versus simulated BER
performance of the mismatched ML detector with imperfect
DD CSI.

PEP obtained through simulation is same as the PEP obtained
through analysis, thus validating the analysis.

Figure 3 demonstrates the closeness of the BER upper
bound with the simulated BER of the mismatched ML de-
tector. We see that, as the SNR increases, the analytical BER
upper bound gets close to the simulated BER. We further see
that the BER floors at higher SNRs and the flooring occurs at
higher BER values for increasing values of σ2

e . For example,
at σ2

e = 0.001, the BER starts flooring at 24 dB SNR at a BER
value of about 5× 10−4. On the other hand, when σ2

e = 0.01,
the BER starts flooring at 20 dB SNR at a BER value of about
7× 10−2.

Figure 4 shows the comparison between BER performance
of mismatched ML detector and true ML detector with imper-
fect CSI. It can be seen that both the mismatched and true ML
detectors have almost the same performance for small channel
estimation errors. However, the true ML detector outperforms
the mismatched ML detector when the channel estimation
error increases. For example, when σ2

e = 0.001, 0.01, both
the detectors have almost same performance, whereas the true
ML detector has superior performance when σ2

e = 0.05. This
is because of the suboptimality of the mismatched ML detector
in the presence of imperfect CSI.
A. OTFS with phase rotation

It has been shown in [6] that the basic OTFS scheme
achieves an asymptotic diversity order of one. It has also been
shown that OTFS, when used with phase rotation, achieves
the full diversity of L [6]. Here, we are interested in assessing
how OTFS with phase rotation performs in the presence of
imperfect DD CSI.

In OTFS with phase rotation, instead of transmitting the
vector x as in the case of the basic OTFS scheme, a phase
rotated version of the x vector is transmitted. That is, the
transmitted vector in OTFS with phase rotation, denoted by
x̃, is given by

x̃ = Φx, (35)

where the phase rotation matrix Φ is given by

Φ = diag(ϕ(0)
0 , · · · , ϕ(0)

N−1, ϕ
(1)
0 , · · · , ϕ(1)

N−1, · · · , ϕ
(M−1)
N−1 ),

(36)
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Fig. 4: Comparison between the BER performance of the
mismatched ML detector and the true ML detector with
imperfect DD CSI.

where ϕ
(s)
r = ejq

(s)
r , r = 0, · · · , N − 1, s = 0, · · · ,M − 1 are

transcendental numbers with q
(s)
r real and distinct.

Figure 5 compares the BER performance of OTFS
without and with phase rotation using mismatched ML
detector. The phase rotation matrix used is Φ =
diag(1, ej

1
MN , · · · , ej MN−1

MN ). It can be seen that the BER
performance with phase rotation is superior compared to that
without phase rotation. For example, at σ2

e = 0.001 and SNR
= 40 dB, the BER without phase rotation is in the order of
10−4 while it is in the order of 10−6 with phase rotation.
In Fig. 6, a similar performance improvement in OTFS with
phase rotation is observed when true ML detector is used.

VI. CONCLUSIONS

We analyzed the BER performance of OTFS modulation
in the presence of imperfect DD CSI, which has not been
reported before. Using the characteristic function approach, we
derived an exact closed-form expression for the pairwise error
probability of the mismatched ML detector for OTFS, and
obtained a BER upper bound which is tight in the medium to
high SNR regime. Further, we considered the true ML detector
and obtained its decision rule by considering the statistics of
channel estimation error. We showed that true ML detector has
better performance compared to the mismatched ML detector.
We also showed the performance of OTFS with phase rotation
in the presence of imperfect DD CSI.

REFERENCES
[1] R. Hadani et al., “Orthogonal time frequency space modulation,” Proc.

IEEE WCNC’2017, pp. 1-6, Mar. 2017.
[2] R. Hadani et al., “Orthogonal time frequency space modulation,” Aug.

2018. [Online]. Available: https://arxiv.org/abs/1808.00519v1
[3] F. Wiffen et al., ‘Comparison of OTFS and OFDM in ray launched

sub-6 GHz and mmWave line-of-sight mobility channels,” Proc. IEEE
PIMRC’2018, pp. 73-79, Sep. 2018.

[4] R. Hadani et al., “Orthogonal time frequency space (OTFS) modulation
for millimeter-wave communications systems,” Proc. IEEE MTT-S Intl.
Microwave Symp., pp. 681-683, Jun. 2017.

[5] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference can-
cellation and iterative detection for orthogonal time frequency space
modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-
6515, Oct. 2018.

[6] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity
of uncoded OTFS modulation in doubly-dispersive channels,” IEEE
Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019.



0 5 10 15 20 25 30 35 40
10

-8

10
-6

10
-4

10
-2

10
0

Fig. 5: BER performance of OTFS without and with phase
rotation using mismatched ML detector with imperfect DD
CSI.

0 5 10 15 20 25 30 35 40
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 6: BER performance of OTFS without and with phase
rotation using true ML detector with imperfect DD CSI.

[7] S. K. Mohammed, “Derivation of OTFS modulation from first princi-
ples,” IEEE Trans. Veh. Tech., vol. 70, no. 8, pp. 7619-7636, Mar. 2021.

[8] K. R. Murali and A. Chockalingam, “On OTFS modulation for high-
Doppler fading channels,” Proc. ITA’2018, pp. 1-10, Feb. 2018.

[9] M. K. Ramachandran and A. Chockalingam, “MIMO-OTFS in high-
Doppler fading channels: signal detection and channel estimation, Proc.
IEEE GLOBECOM’2018, Dec. 2018.

[10] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel
estimation for OTFS in delay–Doppler channels,” IEEE Trans. Veh.
Tech., vol. 68, no. 5, pp. 4906-4917, May 2019.

[11] L. Zhao, W-J. Gao, and W. Guo, “Sparse Bayesian learning of delay-
Doppler channel for OTFS system,” IEEE Commun. Lett., vol. 24, no.
12, pp. 2766-2769, Dec. 2020.

[12] S. Srivastava, R. K. Singh, A. K. Jagannatham, and L. Hanzo, “Bayesian
learning aided sparse channel estimation for orthogonal time frequency
space modulated systems,” Proc. IEEE Trans. Veh. Tech., vol. 70, no. 8,
pp. 8343-8348, Aug. 2021.

[13] H. B. Mishra, P. Singh, A. K. Prasad, and R. Budhiraja, “OTFS
channel estimation and data detection designs with superimposed
pilots,” IEEE Trans. Wireless Commun., 2021, (early access) doi:
10.1109/TWC.2021.3110659.

[14] W. Yuan et al., “Data-aided channel estimation for OTFS systems with
a superimposed pilot and data transmission Scheme,” IEEE Wireless
Commun. Lett., vol. 10, no. 9, pp. 1954-1958, Sep. 2021.

[15] R. G. Gallager, “Circularly-symmetric Gaussian random vectors,” Jan.
2008. [Online]. Available: http://www.rle.mit.edu/rgallager/documents/
CircSymGauss.pdf

[16] G. L. Turin, “The characteristic function of Hermitian quadratic forms in

complex normal variables,” Biometrika, vol. 47, nos. 1/2, pp. 199–201,
Jun. 1960.

[17] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, pp.
481–482, 1951.

[18] C.-J. de la Vallee Poussin, Cours D’Analyze Infinitesimale, 12th ed,
Paris: Gauthier-Villars, Libraire Universitaire Louvain, 1959, vol. 1.

[19] P. Garg, R. K. Mallik and H. M. Gupta, “Performance analysis of space-
time coding with imperfect channel estimation,” IEEE Trans. Wireless
Commun., vol. 4, no. 1, pp. 257-265, Jan. 2005.

[20] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability, 2nd ed.,
Belmont, MA, USA: Athena Sci., 2002.


