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Abstract—In this paper, we present the optimum selection com-
bining (SC) scheme for M -QAM which minimizes the average bit
error rate on fading channels. We show that the selection com-
bining scheme where each bit in a QAM symbol selects the diver-
sity branch with the largest magnitude of the log-likelihood ratio
(LLR) of that bit is optimum in the sense that it minimizes the
average bit error rate (BER). In this optimum SC scheme, dif-
ferent bits in a given QAM symbol may select different diversity
branches (since the largest LLRs for different bits may occur on
different diversity branches), and hence its complexity is high.
However, this scheme provides the best possible BER perfor-
mance for M -QAM with selection combining, and can serve as
a benchmark to compare the performance of other SC schemes
(e.g., selection based on maximum SNR). We compare the BER
performance of this optimum SC scheme with other SC schemes
where the diversity selection is done based on maximum SNR
and maximum symbol LLR.
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I. INTRODUCTION

Multilevel quadrature amplitude modulation (M -QAM) is an
attractive modulation scheme for wireless communications
due to the high spectral efficiency it provides [1]. Diversity
reception is a well known technique for mitigating the ef-
fects of fading on wireless channels [3],[2]. Typical diversity-
combining schemes include maximal ratio combining (MRC),
equal gain combining (EGC), selection combining (SC), and
generalized selection combining (GSC). Selection combining
is the simplest of all, as it processes only one of the diversity
branches. In this paper, we are concerned with selection com-
bining for M -QAM.

The diversity branch selection in SC schemes can be done in
several ways. One way is to choose the diversity branch with
the largest instantaneous SNR. It is known that choosing the
diversity branch with the maximum SNR is not the optimum.
An alternate way is to choose the branch with the largest mag-
nitude of the log-likelihood ratio (LLR) of the transmitted
symbol (we call this as the ‘symbol LLR’ - SLLR), as pro-
posed in [4], where the authors show that choosing the branch
with the largest SLLR minimizes the symbol error rate (SER)
for M -ary signals.

We, in this paper, obtain the optimum selection combining
scheme for M -QAM which minimizes the average bit error
rate (BER), rather than minimizing the SER. In our scheme,
we compute the LLR for each bit in a given QAM symbol (we
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call this as the ‘bit LLR’ - BLLR) on each diversity branch.
For a given bit in a QAM symbol, the diversity branch having
the largest magnitude of the BLLR is chosen. We show that
the above BLLR based diversity branch selection minimizes
the average BER for M -QAM, and hence is optimum. In this
optimum SC scheme, it can be noted that different bits in a
given QAM symbol may select different diversity branches
(since the largest LLRs for different bits may occur on differ-
ent diversity branches), and hence its complexity is high, i.e.,
the scheme needs all the L receive RF chains to be present
for the bits to choose their respective best antennas. We how-
ever note that this scheme provides the best possible BER
performance for M -QAM with selection combining, and can
serve as a benchmark to compare the performance of other
SC schemes (e.g., selection based on maximum SNR).

We present a BER performance comparison of the BLLR
based optimum SC scheme with other SC schemes where the
diversity branch selection is done based on maximum SNR
and maximum symbol LLR. We show that, for 16-QAM with
one transmit antenna and L receive antennas, at a BER of
10−2, maximum SLLR based SC performance is away from
the BLLR based optimum SC performance by 0.9 dB for
L = 2, by 1.4 dB for L = 3, and by 1.6 dB for L = 4.
Likewise, the maximum SNR based SC performance is away
from the optimum SC performance by 1.4 dB for L = 2, by
2.1 dB for L = 3, and by 2.6 dB for L = 4. We also provide
similar comparisons for 16-QAM with two transmit anten-
nas using Alamouti code [5] and L receive antennas. For 16-
QAM with two transmit antennas and L receive antennas, the
SLLR based SC performance is away from the optimum SC
performance by 1.1 dB for L = 2, by 1.6 dB for L = 3, and
by 1.9 dB for L = 4 at a BER of 10−2. We present similar
performance comparison for 32-QAM as well. Although the
results are shown only for 16- and 32-QAM in this paper, the
method for BLLR derivation can be extended for any M -ary
QAM.

The rest of the paper is organized as follows. In Section 2,
we derive BLLR expressions for 16-QAM on a given receive
antenna in a system with one-Tx/two-Tx antennas. In Section
3, we show that the SC scheme that chooses the branch with
the largest BLLR minimizes the BER, and hence is optimum.
Simulation results of the BER performance of the optimum
SC scheme in comparison with the performance of other SC
schemes are presented in Section 4. Conclusions are given in
Section 5.



Fig. 1. 16-QAM Constellation

II. BIT LOG-LIKELIHOOD RATIOS

In this section, we derive expressions for the BLLRs for 16-
QAM (i.e., M = 16)1 scheme shown in Fig. 1, where 4 bits
(r1, r2, r3, r4) are mapped on to a complex symbol a = aI +
jaQ. The horizontal/vertical line pieces in Fig. 1 denote that
all bits under these lines take the value 1, and the rest take the
value 0. For example, the symbol with coordinates (−3d, 3d)
maps the 4-bit combination r1 = 1, r2 = 0, r3 = r4 = 1.

A. 1-Tx and L-Rx Antennas

First, consider the case of one transmit antenna and L receive
antennas. Assuming that the transmitted symbol a undergoes
multiplicative and independent fading on each diversity path
(the fading is assumed to be slow, frequency non-selective
and remain constant over one symbol interval on each diver-
sity path), the received signal yl at the lth receive antenna
corresponding to the transmitted symbol a can be written as

yl = hl a + nl, l = 0, · · · , L − 1 (1)

where hl, l = 0, · · · , L − 1, is the complex channel coeffi-
cient on the lth receive antenna with E{‖hl‖2} = 1 and the
r.v’s hl’s are assumed to be i.i.d, and nl = nlI + j nlQ is a
complex Gaussian noise r.v of zero mean and variance σ2/2
per dimension.

We define the log-likelihood ratio of bit ri, i = 1, 2, 3, 4, of
the received symbol on the lth antenna, LLRl(ri), as [6]

LLRl(ri) = log
(

Pr{ri = 1|yl, hl}
Pr{ri = 0|yl, hl}

)
. (2)

Clearly, the optimum decision rule for the lth branch is to
decide r̂i = 1 if LLRl(ri) ≥ 0, and 0 otherwise. Define
two set partitions, S

(1)
i and S

(0)
i , such that S

(1)
i comprises

1BLLR expressions for other values of M can be derived likewise.

symbols with ri = 1 and S
(0)
i comprises symbols with ri = 0

in the constellation. Then, from (2), we have

LLRl(ri) = log

(∑
α∈S

(1)
i

Pr{a = α|yl, hl}∑
β∈S

(0)
i

Pr{a = β|yl, hl}

)
. (3)

Assume that all the symbols are equally likely and that fading
is independent of the transmitted symbols. Using Bayes’ rule,
we then have

LLRl(ri) = log

(∑
α∈S

(1)
i

fyl|hl,a(yl|hl, a = α)∑
β∈S

(0)
i

fyl|hl,a(yl|hl, a = β)

)
. (4)

Since fyl|hl,a{yl|hl, a = α} = 1
πσ2 exp

(
−1
σ2 ‖yl − hlα‖2

)
, (4)

can be written as

LLRl(ri) = log

(∑
α∈S

(1)
i

exp
(−1

σ2 ‖yl − hlα‖2
)∑

β∈S
(0)
i

exp
(−1

σ2 ‖yl − hlβ‖2
)). (5)

Using log
(∑

j exp(−Xj)
) ≈ −minj(Xj), which is a good

approximation [7], we can approximate (5) as

LLRl(ri) =
1

σ2

[
min

β∈S
(0)
i

‖yl − hlβ‖2 − min
α∈S

(1)
i

‖yl − hlα‖2

]
. (6)

Define zl as

zl
∆=

yl

hl
= a +

nl

hl
= a + n̂l, (7)

where n̂l is complex Gaussian with variance σ2/‖hl‖2. Us-
ing (7) in (6), and normalizing LLRl(ri) by 4/σ2, we get

LLRl(ri) =
‖hl‖2

4

[
min

β∈S
(0)
i

‖zl − β‖2 − min
α∈S

(1)
i

‖zl − α‖2

]
. (8)

Further simplification of (8) gives

LLRl(ri) =
‖hl‖2

4

[
min

β∈S
(0)
i

{
‖β‖2 − 2zlIβI − 2zlQβQ

}
− min

α∈S
(1)
i

{
‖α‖2 − 2zlIαI − 2zlQαQ

}]
, (9)

where zl = zlI + jzlQ, α = αI + jαQ and β = βI + jβQ.

Note that the set partitions S
(1)
i and S

(0)
i are delimited by hor-

izontal or vertical boundaries. As a consequence, two sym-
bols in different sets closest to the received symbol always lie
either on the same row (if the delimiting boundaries are ver-
tical) or on the same column (if the delimiting boundaries are
horizontal). Using the above fact, the LLRs for bit r1, r2, r3

and r4 are given by

LLRl(r1) =


−‖hl‖2zlId |zlI | ≤ 2d
2‖hl‖2d(d − zlI) zlI > 2d
−2‖hl‖2d(d + zlI) zlI < −2d,



LLRl(r2) =


−‖hl‖2zlQd |zlQ| ≤ 2d
2‖hl‖2d(d − zlQ) zlQ > 2d
−2‖hl‖2d(d + zlQ) zlQ < −2d,

LLRl(r3) = ‖hl‖2d(|zlI | − 2d),
LLRl(r4) = ‖hl‖2d(|zlQ| − 2d) (10)

where 2d is the minimum distance between pairs of signal
points.

B. 2-Tx and L-Rx Antennas

Next, we consider the case of two transmit antennas and L
receive antennas. During a given symbol interval, two sym-
bols are transmitted simultaneously on the two antennas using
Alamouti code [5]. Let a1, −a∗

2 be the symbols transmitted
on the first and the second transmit antennas, respectively,
during a symbol interval. During the next symbol interval,
a2, a∗

1 are transmitted on the first and the second transmit an-
tennas, respectively [5]. We denote the fading coefficients as
follows: h2l−1 represents the fading coefficient from transmit
antenna 1 to receive antenna l, l = 1, · · · , L, and h2l repre-
sents the fading coefficient from transmit antenna 2 to receive
antenna l, i = 1, · · · , L. Let y2l−1 and y2l, l = 1, · · · , L be
the received signals at the lth antenna during two successive
symbol intervals, respectively. Assuming that the channel re-
main constant over two consecutive symbol intervals, the re-
ceived signals during the two consecutive symbol intervals
can be written as

y2l−1 = a1h2l−1 − a∗
2h2l + n2l−1

y2l = a2h2l−1 + a∗
1h2l + n2l, (11)

where {h2l−1}L
l=1 and {h2l}L

l=1 are the complex fading co-
efficients and n2l−1 and n2l are complex Gaussian random
variables of zero mean and variance σ2. Assuming perfect
knowledge of the fading coefficients at the receiver, we form
â1l and â2l, for the lth receive branch as

â1l =
(
h∗

2l−1 y2l−1 + h2l y∗
2l

)
â2l =

(
h∗

2l−1 y2l − h2l y∗
2l−1

)
. (12)

After further simplification, â1l and â2l can be rewritten as

â1l =
(
‖h2l−1‖2 + ‖h2l‖2

)
a1 + ζ1

â2l =
(
‖h2l−1‖2 + ‖h2l‖2

)
a2 + ζ2, (13)

where ζ1 and ζ2 are complex Gaussian random variables with
of mean and variance (‖h2l−1‖2 + ‖h2l‖2)σ2.

Following similar steps as in the case of one transmit and L
receive antennas above, the LLR of bits ri, i = 1, 2, 3, 4 of
symbol aj , j = 1, 2 on the lth antenna, LLR

aj

l (ri), for the
two transmit and L receive antennas, can be derived as

LLR
aj

l
(r1) =

{ −{‖h2l−1‖2 + ‖h2l‖2}ẑI
jld |ẑI

jl| ≤ 2d

2{‖h2l−1‖2 + ‖h2l‖2}d(d − ẑI
jl) ẑI

jl > 2d

−2{‖h2l−1‖2 + ‖h2l‖2}d(d + ẑI
jl) ẑI

jl < −2d,

LLR
aj

l
(r2) =


−
(
‖h2l−1‖2 + ‖h2l‖2

)
ẑQ
jl

d |ẑQ
jl
| ≤ 2d

2
(
‖h2l−1‖2 + ‖h2l‖2

)
d(d − ẑQ

jl
) ẑQ

jl
> 2d

−2
(
‖h2l−1‖2 + ‖h2l‖2

)
d(d + ẑQ

jl
) ẑQ

jl
< −2d,

LLR
aj

l (r3) =
(
‖h2l−1‖2 + ‖h2l‖2

)
d
(
|ẑI

jl| − 2d
)
,

LLR
aj

l (r4) =
(
‖h2l−1‖2 + ‖h2l‖2

)
d
(
|ẑQ

jl | − 2d
)
. (14)

In the above equations, ẑI
jl and ẑQ

jl are the real and imaginary
parts of ẑjl, respectively, where ẑjl is given by

ẑjl =
âjl

‖h2l−1‖2 + ‖h2l‖2
. (15)

It is noted that the LLRs of the various bits in any M -QAM
constellation of order M and for any arbitrary mapping of
bits to the M -QAM symbols can be derived following similar
steps given above for 16-QAM.

III. BLLR BASED OPTIMUM SC

In this section, we derive the rule for optimal selection com-
bining so as to minimize the BER of each of the bits forming
the QAM symbol. We prove that in order to minimize the
BER of bit ri, we must select the diversity branch which has
the largest |LLRl(ri)|. The proof is as follows.

The BER for bit ri, Pbi, is given as

Pbi = 1 −
∫
y,h

Pr
{
r̂i = ri |y,h

}
fy,h dy dh, (16)

where y = (y0, y2, · · · , yL−1), h = (h0, h2, · · · , hL−1), and
fy,h is the joint probability density function of y,h. It fol-
lows from the above equation that Pbi in minimized by max-
imizing Pr

{
r̂i = ri |y,h

}
for all y,h. Now,

Pr
{
r̂i = ri |y,h

}
=

L−1∑
l=0

Pr
{
r̂i = ri | lthbranch selected,y,h

}
· Pr{lthbranch selected |y,h}

=

L−1∑
l=0

Pr
{
r̂i = ri |yl, hl

}
· Pr{lthbranch selected|y,h}

≤ max
l

Pr
{
r̂i = ri |yl, hl

}
. (17)

Note that Pbi is minimized by selecting the branch that pro-
vides the maximum Pr

{
r̂i = ri |yl, hl

}
, or, equivalently, se-

lecting the branch that provides the minimum Pr
{
r̂i �= ri |yl, hl

}
,

which can be written as

Pr
{
r̂i �= ri |yl, hl

}
= Pr

{
r̂i = 1, ri = 0 |yl, hl

}
+ Pr

{
r̂i = 0, ri = 1 |yl, hl

}
= Pr

{
LLRl(ri) ≥ 0, ri = 0 |yl, hl

}
+ Pr

{
LLRl(ri) < 0, ri = 1 |yl, hl

}
. (18)



If LLRl(ri) ≥ 0, then

Pr
{
r̂i �= ri |yl, hl

}
= Pr

{
ri = 0 |yl, hl

}
=

1
1 + eLLRl(ri)

. (19)

If LLRl(ri) < 0, then

Pr
{
r̂i �= ri |yl, hl

}
= Pr

{
ri = 1 |yl, hl

}
=

1
1 + e−LLRl(ri)

. (20)

Hence, we have

Pr
{
r̂i �= ri |yl, hl

}
=

1
1 + e|LLRl(ri)| . (21)

Therefore, to minimize Pr
{
r̂i �= ri |yl, hl

}
, we need to maxi-

mize the denominator in (21), or, equivalently, maximize the
term, |LLRl(ri)|. Hence, by selecting the branch that pro-
vides the largest magnitude of LLRl(ri), we minimize the
BER, Pbi, and hence minimize the average BER.

It is noted that different bits in a given symbol may choose
different antennas, since the largest BLLRs for different bits
may occur on different antennas, and hence will require that
all the L receive RF chains are present for the bits to choose
their respective best antennas. This scheme however provides
the best possible BER performance of M -QAM with selec-
tion combining, and can serve as a benchmark to compare the
performance of other SC schemes (as illustrated in the next
section).

IV. SIMULATION RESULTS

In this section, we present the simulated BER performance of
the BLLR optimum SC scheme derived in the previous sec-
tion in comparison with the performance of other SC schemes
where the diversity branch selection is done based on maxi-
mum SNR (i.e., choose the branch with largest instantaneous
SNR) and maximum SLLR (i.e., choose the branch with the
largest magnitude of the symbol LLR). The channel gain co-
efficients hl’s are taken to be i.i.d complex Gaussian (i.e., fade
amplitudes are Rayleigh distributed) with zero mean and
E{||hl||2} = 1. Figure 2 shows the simulated average BER
performance as function of average SNR per branch for the
following a) BLLR based optimum SC scheme, b) SNR based
SC scheme, and c) SLLR based optimum SC scheme, for 16-
QAM with one transmit and L = 1, 2, 3, 4 receive antennas.
From Fig. 2, it is observed that, at a BER of 10−2, the SLLR
based SC performance is away from the BLLR based opti-
mum SC performance by 0.9 dB for L = 2, by 1.4 dB for
L = 3, and by 1.6 dB for L = 4. Likewise, the SNR based
SC performance is away from the optimum SC performance
by 1.4 dB for L = 2, by 2.1 dB for L = 3, and by 2.6 dB for
L = 4. Since both the SNR based SC as well as the SLLR
based SC have the same complexity (i.e., only one of the di-
versity branches needs to be processed in both cases), SLLR
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Fig. 2. Comparison of various selection combining schemes for 16-QAM
for 1 Tx antenna and L = 1, 2, 3, 4 Rx antennas – BLLR based optimum
SC, SLLR based SC, and SNR based SC.

based SC is preferred over SNR based SC since it achieves
BER performance closer to that of the BLLR based optimum
SC

Figure 3 shows similar comparison for 16-QAM with two
transmit antennas using Alamouti code and L receive anten-
nas. It is pointed out that the plots corresponding to the SLLR
based selection in this figure has been obtained by deriving
the expressions for the symbol LLRs for the two transmit and
L receive antennas case (i.e., by extending derivation in [4]
to the 2 Tx antennas case using Alamouti code). From Fig.
3, it is observed that, for 2-Tx and L = 4 Rx antennas, the
SLLR based SC performance is away from the BLLR based
optimum SC performance by 1.1 dB for L = 2, by 1.6 dB
for L = 3, and by 1.9 dB for L = 4, at a BER of 10−2.
Similarly, the SNR based SC performance is away from the
optimum SC performance by 1.5 dB for L = 2, by 2.6 for
L = 3, and by 3.1 for L = 4, at a BER of 10−2.

We also derived the BLLR expressions for 32-QAM (deriva-
tion not given in this paper), and evaluated the BER perfor-
mance of the three SC schemes for 32-QAM. Figure 4 shows
the BER performance of the three SC schemes for 32-QAM
for 1-Tx and L = 2, 4 Rx antennas. It can be observed that
for 32-QAM, L = 4, at a BER of 10−2, the SLLR based SC is
worse by 1.6 dB and the SNR based SC by 2.5 dB compared
to the BLLR based optimum SC.

V. CONCLUSIONS

We presented the optimum selection combining (SC) scheme
for M -QAM which minimize the average bit error rate (BER)
on fading channels. We showed that the SC scheme which
chooses the diversity branch with the largest magnitude of
the log-likelihood ratios (LLRs) of the individual bits in the
QAM symbol minimizes the BER, and hence is optimum.
It was pointed out that the complexity of this optimum SC
scheme is higher since different bits in a given QAM symbol
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Fig. 3. Comparison of various selection combining schemes for 16-QAM
for 2 Tx antennas using Alamouti code and L = 1, 2, 3, 4 Rx antennas –
BLLR based optimum SC, SLLR based SC, and SNR based SC.
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Fig. 4. Comparison of various selection combining schemes for 32-QAM
for 1 Tx antenna and L = 2, 4 Rx antennas – BLLR based optimum SC,
SLLR based SC, and SNR based SC.

may select different diversity branches and since the largest
LLRs for different bits may occur on different diversity bran-
ches. However, this scheme provides the best possible BER
performance for M -QAM with selection combining, and can
serve as a benchmark to compare the performance of other
SC schemes. We presented a BER performance comparison
of this optimum SC scheme with other SC schemes where
the diversity selection is done based on maximum SNR and
maximum symbol LLR.
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