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Abstract—In this paper, we study the achievable rate region of
two-user Gaussian broadcast channel (GBC) when the messages
to be transmitted to both the users take values from finite signal
sets and the received signal is quantized at both the users. We
refer to this channel as quantized broadcast channel (QBC). We
first observe that the capacity region defined for a GBC does
not carry over as such to QBC. Also, we show that the optimal
decoding scheme for GBC (i.e., high SNR user doing successive
decoding and low SNR user decoding its message alone) is not
optimal for QBC. We then propose an achievable rate region
for QBC based on two different schemes. We present achievable
rate region results for the case of uniform quantization at
the receivers. We find that rotation of one of the user’s input
alphabet with respect to the other user’s alphabet marginally
enlarges the achievable rate region of QBC when almost equal
powers are allotted to both the users.

Keywords – Gaussian broadcast channel, finite input alphabet, quantized

receiver, achievable rate region, successive decoding.

I. INTRODUCTION

Communication receivers are often based on digital signal

processing, where the analog received signal is quantized

into finite number of bits using analog-to-digital converters

(ADC) whose outputs are then processed in digital domain.

These ADCs are expected to operate at high speeds in order

to meet the increasing throughput and bandwidth require-

ments. However, at high conversion speeds, the precision

of ADCs is typically low which results in loss of system

performance [1]. For example, low-precision receiver quan-

tization can cause floors in the bit error performance [2],[3].

Also, it has been shown that in a single-input single-output

(SISO) point-to-point single user system with additive white

Gaussian noise (AWGN), low-precision receiver quantization

results in significant loss of capacity when compared to an

unquantized receiver [4]. Motivated by the increasing need

to investigate the effect of receiver quantization in high-

throughput communication, we, in this paper, address the

issue of characterizing the achievable rate region in Gaussian

broadcast channel with finite input alphabet and quantized

receiver output1, and report some interesting results.

Gaussian broadcast channel (GBC) comes under the class
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1We refer to Gaussian broadcast channel (GBC) with finite input alphabet
and quantized receiver output as Quantized Broadcast Channel (QBC).
In a related recent study in [5], we have investigated the achievable rate
region of two-user Quantized MAC (QMAC), i.e., a Gaussian MAC with
finite input alphabet and quantized receiver output.

of stochastically degraded broadcast channels, for which

capacity is known. For a two-user GBC, it is known that

the capacity is achieved when superposition coding is done

at the transmitter assuming that the users’ messages are from

Gaussian distribution, and, at the receiver, the high SNR user

does successive decoding and the low SNR user decodes its

message alone considering the other user’s message as noise

[6]. However, the capacity region of two-user GBC when

the messages to be transmitted to both the users take values

from finite signal sets and the received analog signals at the

users are quantized, is not known. Recently, achievable rate

region for two-user GBC when the input messages are from

finite signal sets and the received signals are unquantized has

been studied in [7], and it is referred to as the constellation

constrained (CC) capacity of GBC [8].

In the above context, our present contribution gives achiev-

able rate region for two-user GBC with finite input alphabet

as well as quantized receiver output (we refer to this channel

as QBC - Quantized Broadcast Channel). The main results

are summarized as follows.

• The capacity region defined for a GBC does not carry

over as such to QBC.

• With quantization at the receiver in a GBC, the channel

no more remains stochastically degraded. Therefore, the

optimal decoding scheme for GBC (i.e., high SNR user

alone doing successive decoding) does not necessarily

result in achievable rate pairs for QBC.

• We then propose achievable rate region for QBC based

on two different schemes (scheme 1 and scheme 2).

In scheme 1, user 1 will do successive decoding and

user 2 will not. Whereas, in scheme 2, user 2 will do

successive decoding and user 1 will not. In addition, in

both the schemes, the message for the user which does

not do successive decoding is coded at such a rate that

the message of that user can be decoded error free at

both the receivers.

• Rotation of one of the user’s input alphabet with re-

spect to the other user’s alphabet marginally enlarges

the achievable rate region of QBC when almost equal

powers are allotted to both the users.

II. SYSTEM MODEL

We consider a two-user GBC as shown in Fig. 1. Let x1 and

x2 denote the messages to be transmitted to the users 1 and

2, respectively. Let x1 and x2 take values from finite signal

sets X1 and X2, respectively. The sets X1 and X2 contain N1

and N2 equi-probable complex entries, respectively. Let the
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Fig. 1. (a) Two-user Gaussian broadcast channel with receiver quantization.
(b) Equivalent discrete memoryless channel.

sum signal set of X1 and X2 be defined as

X = {x1 + x2 | x1 ∈ X1, x2 ∈ X2}. (1)

Let XI and XQ be defined as

XI �
= max

a∈X
|aI |, XQ �

= max
a∈X

|aQ|, (2)

where aI and aQ represent the real and imaginary compo-

nents of a, respectively. Let x ∈ X be the message sent by

the transmitter to the users 1 and 2 with an average power

constraint P . We assume that the average power constraint on

x1 is αP and the average power constraint on x2 is (1−α)P ,

where α ∈ (0, 1). Let z1 ∼ CN (0, σ2
1) and z2 ∼ CN (0, σ2

2)
denote the AWGN at receivers 1 and 2, respectively. The SNR

at user 1 (SNR1) is P/σ2
1 and the SNR at user 2 (SNR2) is

P/σ2
2 . The received signals at user 1 and user 2 are given by

y1 = x+ z1 = x1 + x2 + z1, (3)

y2 = x+ z2 = x1 + x2 + z2. (4)

The received analog signals, y1 at user 1 and y2 at user 2,

are quantized independently, resulting in outputs r1 at user

1 and r2 at user 2. The complex quantizer at each user is

composed of two similar quantizers acting independently on

the real and imaginary components of the received analog

signal. The real and imaginary components of the quantized

output for the users 1 and 2 are then given by

rI1 = Qb1(y
I
1), rQ1 = Qb1(y

Q
1 ), (5)

rI2 = Qb2(y
I
2), rQ2 = Qb2(y

Q
2 ), (6)

where the functions Qb1(.) and Qb2(.) model the quantizers

having a resolution of b1 and b2 bits, respectively. Qb1(.) is

a mapping from the set of real numbers R to a finite alphabet

set Sb1 of cardinality 2b1 , i.e.,

Qb1 : R �→ Sb1 , Sb1 ⊂ R, |Sb1 | = 2b1 , (7)

Qb2 : R �→ Sb2 , Sb2 ⊂ R, |Sb2 | = 2b2 . (8)

Thus, the quantized received signals r1 at user 1 and r2 at

user 2 take values from the sets R1 and R2, respectively:

R1 = {rI1 + jrQ1 | rI1 , r
Q
1 ∈ Sb1}, |R1| = 22b1 , (9)

R2 = {rI2 + jrQ2 | rI2 , r
Q
2 ∈ Sb2}. |R2| = 22b2 . (10)

Henceforth, we refer to the above system model as quantized

broadcast channel (QBC).

III. ACHIEVABLE RATE REGION OF QBC

In this section, we derive analytical expressions for the

achievable rate region of two-user QBC.

Capacity and Degradedness in GBC: The capacity region of

a two-user GBC is known [9],[10], and is given by the set

of all rate pairs (R1, R2) satisfying

R1 ≤ I(x1; y1 |x2) (11)

R2 ≤ I(x2; y2), (12)

assuming σ2
1 < σ

2
2 , where R1 and R2 represent the rates

achieved by users 1 and 2, respectively. The optimal input

distribution that attains the capacity is Gaussian. The optimal

decoding scheme is that, user 1 does successive decoding

(i.e., user 1 first decodes user 2’s message assuming its own

message as noise and subtracts the decoded user 2’s message

x̂2 from its received signal y1, and then decodes its own

message from the subtracted signal y1 − x̂2), and user 2

decodes its message by taking user 1’s message as noise.

Definition 1. A broadcast channel is said to be physically

degraded [9] if p(y1, y2|x) = p(y1|x) p(y2|y1).

Definition 2. A broadcast channel is said to be stochastically

degraded [9] if its conditional marginal distributions are the

same as that of a physically degraded broadcast channel;

that is, if there exists a distribution p�(y2|y1) such that

p(y2|x) =
�

y1

p(y1|x) p
�(y2|y1). (13)

GBC belongs to the class of stochastically degraded broad-

cast channels. In the following, we show that QBC, unlike

GBC, is not stochastically degraded, and hence GBC capacity

expressions do not carry over to QBC.

Degradedness in QBC: If QBC is stochastically degraded,

then there must exist a p�(r2|r1) such that

p(r2|x) =
�

r1

p(r1|x) p
�(r2|r1) (14)

for all r2 and x. Towards checking the existence of such a

p�(r2|r1), we define the following.

Let A
�
= [Aij ]|X |×|R2|, B

�
= [Bik]|X |×|R1| and P �

�
=

[P �kj ]|R1|×|R2| where2 Aij
�
= p(r2 = R2(j) |x = X (i)),

Bik
�
= p(r1 = R1(k) |x = X (i)) and P �kj

�
= p(r2 =

R2(j) | r1 = R1(k)). Solving (14) is same as finding a

matrix P � such that A = BP � under the constraint
�

j

P �ij =

1, ∀ i and P �ij ≥ 0, ∀ i, j. Equivalently, this can be written

as the following convex optimization problem

P � = arg min
P∈R|R1|×|R2|

�A−BP�2
F s.t.

�

j

Pij = 1, ∀ i and Pij ≥ 0, ∀ i, j, (15)

where �.�F is the Frobenius norm. Observe that, the chan-

nel is stochastically degraded only if �A − BP ��2
F = 0.

When both the users use the same quantizer resolution,

2Assuming that the elements of the sets X , R1 and R2 are ordered, we
denote the lth element of the sets X , R1 and R2 by X (l), R1(l) and
R2(l), respectively.
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Fig. 2. Plot of the residual norm �A−BP ��2
F

as a function of b1 = b2 = b
bits for different SNR combinations with α = 0.7.

b1 = b2 = b, it is clear that the residual norm �A−BP ��2
F >

0, ∀ b ≤ � 1
2 log2(|X | + 1)�. For b > � 1

2 log2(|X | + 1)�
also, �A − BP ��2

F is observed to be greater than zero by

numerically solving (15) using convex programming tools;

this is illustrated in Fig. 2. Fig. 2 shows the plot of the

residual norm, �A−BP ��2
F , for different SNR combinations

when both the users use uniform receiver quantizers of

same resolution. The input alphabet of user 1 is 4-QAM.

User 2 uses 45◦ rotated 4-QAM. Therefore, |X | = 16, and

� 1
2 log2(|X | + 1)� = 2. Observe that the residual norm in

Fig. 2 is greater than zero even for b > 2 (i.e., for b = 3, 4),

showing that the condition for stochastic degradedness is not

satisfied for QBC.

A. Achievable rate region in QBC

As a consequence of QBC being not stochastically degraded,

capacity expressions (11),(12) are not valid for QBC. Here,

we obtain the achievable rate region for QBC based on two

coding/decoding schemes. The motivation for the proposed

scheme is explained below.

Motivation: We observed that, even in the presence of Gaus-

sian noise with σ2
1 < σ

2
2 , I(x2; r1) is not always greater than

I(x2; r2). Table I shows a listing of the mutual information

for a two-user QBC when both the users use a 1-bit uniform

quantizer and the input messages for both the users are from

4-QAM input alphabet at SNR1 = 10 dB and SNR2 = 7

dB. Observe that at α = 0.6 and 0.8, I(x2; r1) < I(x2; r2),
which implies non-degradedness.

Mutual Information α = 0.2 α = 0.4 α = 0.6 α = 0.8

I(x1; r1|x2) 0.08083 0.37272 0.93188 1.59350

I(x1; r1) 0.00893 0.15668 0.71584 1.52160

I(x1; r2) 0.03572 0.20718 0.60551 1.19670

I(x2; r1) 1.52160 0.71584 0.15668 0.00893

I(x2; r2) 1.19670 0.60551 0.20718 0.03572

I(x2; r2|x1) 1.31920 0.82872 0.43039 0.15825

TABLE I
MUTUAL INFORMATION FOR A 2-USER QBC WHEN BOTH USERS

EMPLOY 1-BIT UNIFORM QUANTIZER AND INPUT MESSAGES FOR BOTH

USERS ARE FROM 4-QAM ALPHABET AT SNR1= 10 DB, SNR2 = 7 DB.

Hence, user 1 can not decode user 2’s message when

I(x2; r1) < I(x2; r2) and the rate of user 2’s message is

I(x2; r2), which, in turn, implies that user 1 can not do

successive decoding. However, if we set the rate of user 2

to min{I(x2; r2), I(x2; r1)}, then it is guaranteed that both

user 1 and user 2 can decode user 2’s message and user 1

can do successive decoding.

Proposed Scheme: Based on the above observation, we obtain

an achievable rate region for two-user QBC as follows.

We consider two schemes characterizing two different cod-

ing/decoding procedures to get the achievable rate region.

Scheme 1: User 1 does successive decoding and user 2

decodes its message alone.

User 1 can achieve a rate of I(x1; r1 | x2) by successive

decoding (i.e., user 1 will cancel the interference due to user

2’s message and then it will decode its own message) only

when it can decode user 2’s message error free. From the

observations made in Table I, we know that I(x2; r1) is not

always greater than I(x2; r2) and hence, for user 1 to decode

user 2’s message error free, user 2’s information must be

restricted to a rate of min{I(x2; r2), I(x2; r1)}. So, the set of

achievable rate pairs (R
(1)
1 , R

(1)
2 ) when user 1 does successive

decoding and user 2 decodes its message alone, is given by

R
(1)
1 ≤ I(x1; r1 | x2) (16)

R
(1)
2 ≤ min{I(x2; r2), I(x2; r1)}. (17)

Scheme 2: User 2 does successive decoding and user 1

decodes its message alone.

User 2 can achieve a rate of I(x2; r2|x2) by successive

decoding only when the information to user 1 is restricted to a

rate of min{I(x1; r1), I(x1; r2)}. Thus, the set of achievable

rate pairs (R
(2)
1 , R

(2)
2 ), when user 2 does successive decoding

and user 1 decodes his message alone, is given by

R
(2)
1 ≤ min{I(x1; r1), I(x1; r2)} (18)

R
(2)
2 ≤ I(x2; r2 | x1). (19)

Since any line joining a pair of achievable rate pairs in the

above two schemes is also achievable by time sharing, we

propose the achievable rate region of QBC, S, as the set of all

rate pairs (R1, R2) which are in the convex hull [11] of the

union of the achievable rate pairs of the above two schemes.

The proposed achievable rate region, S, is then given by

S = {(R1, R2) | (R1, R2) ∈ conv( (R
(1)
1 , R

(1)
2 ) ∪ (R

(2)
1 , R

(2)
2 ))},

(20)

where conv(.) denotes convex hull, and (R
(1)
1 , R

(1)
2 ) satisfies

(16),(17) and (R
(2)
1 , R

(2)
2 ) satisfies (18),(19).

The mutual information in the expressions (16), (17), (18),

(19) are calculated using the probability distribution

p (r1 = R1(k) |x1 = X1(l), x2 = X2(m))

= p(rI1 = RI
1(k), r

Q
1 = RQ

1 (k) |x1 = X1(l), x2 = X2(m))

= p(zI
1 ∈ F1(X

I
1 (l),X I

2 (m),RI
1(k)))

× p(zQ
1 ∈ F1(X

Q
1 (l),XQ

2 (m),RQ
1 (k))), (21)



where j =
√
−1, and X1(i), X2(i) refer to ith elements of

sets X1, X2, respectively. The region F1(.) is defined as

F1(p, q, t) = {n ∈ R |Qb1(p+ q + n) = t}, (22)

and n ∼ N (0, σ2
1/2). From (21), the marginal probability

distributions p(r1|x1), p(r1|x2) and p(r1) are calculated as

p(r1 = R1(k) |x1 = X1(l))

=
1

N2

N2X

m=1

p(r1 = R1(k) |x1 = X1(l), x2 = X2(m)), (23)

p(r1 = R1(k) |x2 = X2(m))

=
1

N1

N1X

l=1

p(r1 = R1(k) |x1 = X1(l), x2 = X2(m)), (24)

p(r1 = R1(k)) =
1

N2

N2X

m=1

p(r1 = R1(k) |x2 = X2(m)). (25)

Similarly, the probability distributions p(r2|x1, x2), p(r2|x1),
p(r2|x2) and p(r2) can be calculated. Using the above

probability distributions, the final expressions of (16)-(19)

are given by Eqns. (26)-(29), which are listed in next page.

In the illustration of numerical results, we plot the boundary

of the achievable rate region of two-user QBC by varying the

proportion of power α allocated to each user from 0 to 1,

and finding the achievable rate pairs using (20). When both

x1 and x2 take values from the same signal set, we consider

rotation of the second user’s signal set by an angle θ with

respect to the first user’s signal set for further enlargement

of the achievable rate region, i.e.,

X2
�
= {u ejθ | u ∈ X1}, (30)

where θ is the rotation angle. We observe that, the rate

expressions now become a function of θ, and hence they are

explicitly denoted as R
(1)
1 (θ), R

(1)
2 (θ), R

(2)
1 (θ) and R

(2)
2 (θ).

The achievable rate region of QBC with rotation, Sθ , is

Sθ =
n
(R1, R2) | (R1, R2) ∈

conv
“ [

θ∈(0,2π)

{(R
(1)
1 (θ), R

(1)
2 (θ)) ∪ (R

(2)
1 (θ), R

(2)
2 (θ))}

”o
. (31)

IV. QBC WITH UNIFORM QUANTIZER

In this section, we present the achievable rate region results

for two-user QBC with uniform receiver quantization.

A. Uniform Quantizer

A uniform b-bit quantizer, Qb(.) acting on the real component

of the analog received signal y is given by

Qb(y
I)

�
=

8
>><

>>:

+1, ζ(yI) > (2b−1 − 1)
−1, ζ(yI) < −(2b−1 − 1)

2ζ(yI) + 1

2b − 1
, otherwise,

(32)

where ζ(yI)
�
=

�
yI

XI

(2b−1)
2

�
. The quantizer for the imaginary

component, Qb(y
Q), is defined likewise.

We assume that the user 1 uses a b1-bit uniform quantizer and

user 2 uses a b2-bit uniform quantizer. Applying the above

uniform quantizer to the analog received signal at the users

1 and 2, their quantized outputs on the real and imaginary

components are given by

rI1 = Qb1(y
I
1), rQ1 = Qb1(y

Q
1 ), (33)

rI2 = Qb2(y
I
2), rQ2 = Qb2(y

Q
2 ). (34)

With the uniform quantizer defined in (33) and (34), we

numerically evaluate the proposed achievable rate region of

two-user QBC using (31) or (20), the results of which are

discussed in the following subsection.

B. Results and Discussion
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Fig. 3. Plots of the boundary of the achievable rate region of QBC when
the input alphabet for user 1 is 16-QAM and user 2 is rotated 16-QAM with
SNR1 = 15 dB, SNR2 = 13 and b1 = b2 = 5.

In Fig. 3, we illustrate the significance of using the two

schemes instead of assuming that the user with high SNR

alone does successive decoding. Fig. 3 shows the proposed

achievable rate region of QBC when the input alphabet for

user 1 is 16-QAM and the input alphabet for user 2 is

rotated 16-QAM. Both the users use 5-bit uniform quantizer

with SNR1 = 15 dB and SNR2 = 13 dB. We observe that

most of the contribution to the proposed achievable rate

region of QBC is due to Scheme 1, i.e., the scheme of the

user with high SNR doing successive decoding and the user

with low SNR decoding his message alone. However, there

is an appreciable contribution to the proposed achievable

rate region of QBC when the user with low SNR performs

successive decoding and the user with high SNR decodes

his message alone, especially when the proportion of the

total transmit power allotted to that user (the one with low

SNR) is more than that of the other. For instance, observe

the performance in the circled region of Scheme 2 in Fig. 3.

Fig. 4 shows the significance of rotation on the proposed

achievable rate region of QBC when both the users use

uniform quantizer of same resolution, i.e., b1 = b2 at SNR1 =

10 dB and SNR2 = 7 dB. The input alphabet for user 1 is 4-

QAM and the input alphabet for user 2 is rotated 4-QAM. We

observe that there is no increase in the achievable rate region

for a 1-bit uniform quantizer due to rotation. Also, observe

that for a b = 1 bit uniform quantizer, time-sharing between

the two users is sufficient to achieve the boundary points of

the rate region. For b1 = b2 = 2 or 3 bit uniform quantizers,

there is a small increase in the achievable rate region due

to rotation only when α is around 0.5. The reason could be
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Fig. 4. Comparison of achievable rate region of QBC when both the users
use uniform quantizer of same resolution i.e., b1 = b2 at SNR1 = 10 dB
and SNR2 = 7 dB.

that rotation gives significant enlargement in the achievable

rate region only when the sum signal set is not uniquely

decodable. This happens more only when α is around 0.5.

For instance, when α = 0.5, X1 = X2 and thus the set X is

not uniquely decodable. Hence, when α = 0.5, rotation by

even a small angle makes the set X to be uniquely decodable

resulting in an increase in the achievable rate region of QBC.

We have computed the proposed achievable rate region for

QBC with asymmetric quantizers also, i.e., with b1 �= b2.

V. CONCLUSIONS

We showed that the capacity expressions known for GBC are

not valid for QBC as the channel is no more stochastically

degraded. We proposed an achievable rate region for 2-user

QBC based on two different coding/decoding procedures. We

studied the proposed achievable rate region of QBC, with

and without rotation of the user’s input alphabet and uniform

receiver quantization.
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