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Abstract—In this paper, we analyze the performance of
multiple-input multiple-output orthogonal time frequency space
(MIMO-OTFS) modulation with selective decode-and-forward
(SDaF) relaying. Communication between the sender and destina-
tion nodes happens in two hops using multiple relays out of which
some selected relays aid the communication. All the nodes are
provided with multiple transmit and multiple receive antennas.
We derive closed-form expressions for the end-to-end pairwise
error probability and bit error probability upper bounds in
MIMO-OTFS with SDaF relaying, and characterize the achieved
asymptotic diversity orders. We also investigate the considered
system when phase rotation of OTFS frames is performed to
improve the diversity performance. Simulation results are shown
to validate the analytically predicted diversity results.

Index Terms—OTFS modulation, MIMO-OTFS, selective
decode-and-forward relaying, pairwise error probability, diver-
sity analysis. I. INTRODUCTION

As carrier frequencies increase and high-speed use cases
emerge in next generation mobile communications, modu-
lation waveforms have to deal with high-Doppler channels
which are rapidly time-varying. Orthogonal time frequency
space (OTFS) modulation has been shown to offer robust
performance in high-Doppler channels [1]. OTFS modulation
multiplexes information symbols in the delay-Doppler (DD)
domain. Several papers in the literature have examined various
aspects in OTFS, such as low-complexity signal detection,
DD channel estimation, peak-to-average power ratio, pulse
shaping, and multiple access [2]-[4]. In terms of performance
analysis of OTFS, the work reported in [5] analyzed the
diversity performance of OTFS in a point-to-point setting.
This study showed that the asymptotic diversity order achieved
by uncoded single-input single-output OTFS is one. Also, it
demonstrated that full diversity in the DD domain is achieved
when phase rotation is applied to the OTFS signal vector be-
fore transmission. Results on the achievable diversity orders in
both spatial and DD domains have been reported for multiple-
input multiple-output OTFS (MIMO-OTFS) and space-time
coded OTFS (STC-OTFS) in [5] and [6], respectively. In
[6], the performance of different multi-antenna OTFS systems
with receive antenna selection are analyzed and the achievable
diversity orders are derived. The error performance of coded
OTFS is analyzed in [7], which shows a trade-off between
the coding gain and the diversity gain in OTFS systems. The
bit error rate (BER) performance of OTFS with zero-forcing
receiver is analyzed in [8].

Cooperative relaying is a widely recognized means to en-
hance the range and coverage in wireless communications [9],
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[10]. Amplify-and-forward and decode-and-forward protocols
are widely studied owing to their simplicity and practicality.
Single-relay and multi-relay schemes without and with relay
selection have been investigated in a variety of system settings
[11]-[13]. The performance of cooperative communication in
the presence of node mobility has been studied in [13], where
it has been shown that node mobility causes performance
degradation. The inherent robustness of OTFS can alleviate
this issue in cooperative communications with node mobility.
Therefore, understanding the performance of OTFS in relaying
systems in high-mobility environments is of interest. In this
paper, we present an analysis of the end-to-end performance
of MIMO-OTFS in selective decode-and-forward (SDaF) re-
laying systems. Our contributions in this paper are as follows.

• We derive closed-form expressions for the end-to-end
pairwise error probability (PEP) and bit error probability
upper bounds for MIMO-OTFS with SDaF relaying, and
characterize the achieved asymptotic diversity orders.

• We also analyze the system when phase rotation (PR) of
OTFS frames is employed to achieve improved diversity
performance.

• Simulation results are shown to corroborate the ana-
lytically derived diversity orders for MIMO-OTFS with
SDaF relaying.

The remainder of the paper is organized as follows. The con-
sidered OTFS system model with SDaF relaying is presented
in Sec. II. The performance analysis of this system is presented
in Sec. II-B. Numerical results and discussions are presented
in Sec. III. A summary of conclusions is given in Sec. IV.

Notations: A matrix is denoted by uppercase boldface letter,
a vector by lowercase boldface letter, a diagonal matrix with
entries x1, · · · , xn by diag{x1, · · · , xn}, and Frobenius norm
of matrix X by ∥X∥. (·)T , (·)H , (·)∗ denote transposition,
Hermitian, and conjugation operators, respectively. A complex
Gaussian distribution with mean a and variance b is denoted by
CN (a, b). Expectation operation is denoted by E[·]. |.| denotes
absolute value of a number or cardinality of a set.

II. SYSTEM MODEL

The OTFS modulation and demodulation consist of 2D
transforms at the transmitter and the receiver. MN information
symbols, y[k, l], k = 0, · · · , N−1, l = 0, · · · ,M−1, are mul-
tiplexed over a N ×M DD grid, given by {( k

NT ,
l

M∆f ), k =
0, · · · , N − 1, l = 0, · · · ,M − 1}, where M and N are the
number of delay and Doppler bins, respectively, and 1

M∆f and
1

NT are the delay and Doppler bin sizes, respectively. The
information symbols in the DD domain are mapped to the



TF domain using inverse symplectic finite Fourier transform
(ISFFT) and windowing. The TF symbols are converted to
time domain using Heisenberg transform for transmission
over the channel. At the receiver, the time domain signal is
converted to TF domain using Wigner transform, which is
converted to DD domain using SFFT. The end-to-end input-
output relation in the DD domain is given by [3]

z[k, l] =

P∑
i=1

g′iy[(k − βi)N , (l − αi)M ] + v[k, l], (1)

where g′i = gie
−j2πνiτi , (gi, τi, νi) are the channel coefficient,

delay, and Doppler of the ith path, respectively, P is the
number of paths, gis are i.i.d and distributed as CN (0, 1/P )
with uniform scattering profile, αi and βi are integers cor-
responding to indices of delay and Doppler, respectively, for
the ith path, i.e., τi ≜ αi

M∆f and νi ≜
βi

NT , and v[k, l] is the
additive white Gaussian noise. By vectorizing the input-output
relation in (1), we can write [3]

z = Gy + v, (2)
where y, z,v ∈ CMN×1, the (k+Nl)th entry of y, yk+Nl =
y[k, l], k = 0, · · · , N − 1, l = 0, · · · ,M − 1 and y[k, l] ∈ A,
where A is the modulation alphabet

(
e.g., QAM/PSK). Sim-

ilarly, zk+Nl = z[k, l] and vk+Nl = v[k, l], k = 0, · · · , N −
1, l = 0, · · · ,M − 1, and G ∈ CMN×MN is the effective
channel matrix, whose jth row (j = k + Nl), denoted by
G[j], is given by G[j] = [ĝ((k − 0)N , (l − 0)M ) ĝ((k −
1)N , (l − 0)M ) · · · ĝ((k −N − 1)N , (l −M − 1)M )], where
ĝ(k, l) denotes the (k, l)th element of the N×M DD channel
matrix, given by

ĝ(k, l) =

{
g′i if k = βi, l = αi, i ∈ {1, 2, · · · , P}
0 otherwise.

(3)

It can be seen from the above that the effective channel matrix
G has only P non-zero entries in each row and column, i.e.,
there are only MNP non-zero elements in G.

An alternate representation of input-output relation (2): In
order to enable the diversity analysis, the input-output relation
in (2) is written in an alternate form. Observing that the
effective channel matrix G contains only P non-zero entries
in each row and column, the vectorized input-output relation
in (2) can be written in the following alternate form:

zT = g′Y + vT , (4)
where g′ ∈ C1×P is the channel vector with ith entry given by
g′i = gie

−j2πνiτi , zT , vT ∈ C1×MN , are the received signal
vector and noise vector, respectively, and Y ∈ CP×MN is
the signal matrix with ith column Y[i], i = k + Nl, k =
0, · · · , N − 1, l = 0, · · · ,M − 1, given by

Y[i] =


y(k−β1)N+N(l−α1)M

y(k−β2)N+N(l−α2)M
...

y(k−βP )N+N(l−αP )M

 . (5)

A. MIMO-OTFS
The input-output relation in a MIMO-OTFS system with nr

receive antennas and nt transmit antennas can be written as

zi =

nt∑
j=1

Gijyj + vi, i = 1, · · · , nr, (6)
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ḠsrK
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Fig. 1: MIMO-OTFS with SDaF relaying.

where Gij is the effective channel matrix between the jth
transmit and ith receive antennas. Concatenating zi, (6) can
be written as

z̄ = Ḡȳ + v̄, (7)
where z̄ = [zT1 , zT2 , · · · zTnr

]T ∈ CnrMN×1, zi be-
ing the received signal vector of the ith receive antenna,
ȳ = [yT

1 , yT
2 , · · · , yT

nt
]T ∈ CntMN×1, yj being the

transmit signal vector from the jth transmit antenna, v̄ =
[vT

1 , vT
2 , · · · , vT

nr
]T ∈ CnrMN×1, vi being the noise vector

of the ith receive antenna, and Ḡ ∈ CnrMN×ntMN is the
overall effective MIMO-OTFS channel matrix.

An alternate input-output relation for MIMO-OTFS: We ob-
serve that in the overall effective MIMO-OTFS channel matrix
Ḡ, each row contains only ntP unique non-zero elements
and each column contains nrP unique non-zero elements.
Therefore, (7) can be written in the following alternate form:

zTi =

nt∑
j=1

g′
ijYj + vT

i , i = 1, · · · , nr, (8)

Concatenating zTi , (8) can be written in a compact form as
Z̃ = G̃Ỹ + Ṽ, (9)

where Z̃ ∈ Cnr×MN is the received signal matrix with zTi
as the row corresponding to the ith receive antenna, G̃ ∈
Cnr×ntP is the channel matrix with g′

ij ∈ C1×P being the row
containing the unique non-zero entries of the channel matrix
Gij , Ỹ ∈ CntP×MN is the transmit symbol matrix with Yj ∈
CP×MN being the transmit signal matrix from the jth transmit
antenna, and Ṽ ∈ Cnr×MN is the noise matrix.

B. Selective decode and forward relaying

The considered selective decode and forward relaying
scheme is presented here. Figure 1 shows the block diagram of
the MIMO-OTFS scheme with SDaF relaying. In this scheme,
in addition to a direct link, there are K relays between the
source and destination to aid the communication. Let ns and
nr denote the number of transmit antennas at the source (S)
and relay (R), respectively, and nd denote the number of
receive antennas at the destination (D), nd ≥ nr = ns.
In sDaF relaying, the source transmits the message to the
destination and relays during the first phase. In the first phase,
the destination will not decode the message, but all the relays
will decode the message. The relays that decode the message
correctly will forward the decoded message to the destination



in the second phase. In the second phase, the destination jointly
decodes the messages received from the source (in the first
phase) and the forwarding relays (in the second phase).

In the first phase, the received signal at the kth relay, k =
1, 2, · · · ,K, and the destination are given by

z̄srk = Ḡsrk ȳ + v̄srk , (10)

z̄sd = Ḡsdȳ + v̄sd, (11)

where z̄srk ∈ CnrMN×1, z̄sd ∈ CndMN×1 are the received
signal vectors at the kth relay (Rk) and destination, respec-
tively, Ḡsrk ∈ CnrMN×nsMN , Ḡsd ∈ CndMN×nsMN are
the effective channel matrices between S-to-Rk, and S-to-D,
respectively, ȳ ∈ CnsMN×1 is the transmit signal vector, and
v̄srk ∈ CnrMN×1, v̄sd ∈ CndMN×1 are the noise vectors
at Rk and D, respectively. In the second phase, the relays
transmit one-by-one in K orthogonal time slots [12]. Let Ω
denote the set of relays which decoded the message correctly.
The received signal at the destination on the Rk-to-D link is
then given by

z̄rkd = Ḡrkdȳ + v̄rkd, ∀k ∈ Ω, (12)

where z̄rkd, v̄rkd ∈ CndMN×1 are the received signal and
noise vectors, respectively, for the Rk-to-D link, Ḡrkd ∈
CndMN×nrMN is the effective channel matrix on the Rk-to-D
link, and ȳ ∈ CnrMN×1 is the transmit signal vector.

Alternate form for MIMO-OTFS with SDaF: The input-
output relation in (10), (11), and (12) can be written in an
alternate form as follows. The received signals at Rk and D
in the first phase are

Z̃srk = G̃srkỸ + Ṽsrk , k = 1, 2, · · · ,K, (13)

Z̃sd = G̃sdỸ + Ṽsd, (14)

where Z̃srk , Ṽsrk ∈ Cnr×MN , Z̃sd, Ṽsd ∈ Cnd×MN , G̃srk

∈ Cnr×nsPsrk , and G̃sd ∈ Cnd×nsPsd . The received signal at
D on the Rk-to-D link in the second phase is given by

Z̃rkd = G̃rkdỸ + Ṽrkd, ∀k ∈ Ω, (15)

where Z̃rkd, Ṽrkd ∈ Cnd×MN , G̃rkd ∈ Cnd×nrPrkd , and
Psrk and Prkd are the number of resolvable DD domain paths
between S-to-Rk and Rk-to-D links, respectively.
C. OTFS with phase rotation

Phase rotation (PR) of symbols in the OTFS signal vector
can be performed before transmission in order to achieve
improved DD domain diversity. PR in OTFS is performed by
pre-multiplying the OTFS vector y by a PR matrix Θ, given by
Θ = diag{ej

q
MN }, q = 0, · · · ,MN − 1. Therefore, y′ = Θy

is the phase rotated OTFS transmit vector.

III. PERFORMANCE ANALYSIS WITH SDAF RELAYING

In this section, we analyze the diversity performance of
MIMO-OTFS with SDaF relaying. Maximum likelihood (ML)
detection is considered at the relays and the destination. The
minimum rank of the difference matrices in a given system
plays a key role in determining the diversity performance of
the system. Therefore, we first characterize the minimum rank
in the considered relaying system.

A. Minimum rank on various links with relaying

In the S-to-Rk link, let Ỹi and Ỹj be two distinct MIMO-
OTFS symbol matrices without PR defined in (13), and Ỹ′

i and
Ỹ′

j be two such matrices with PR. As in [5], the minimum
ranks of (Ỹi − Ỹj) and (Ỹ′

i − Ỹ′
j) on the S-to-R link

for MIMO-OTFS are 1 and Psrk , respectively. Similarly, the
minimum ranks of (Ỹi − Ỹj) and (Ỹ′

i − Ỹ′
j) on the S-to-

D link for MIMO-OTFS are 1 and Psd, respectively. Now,
consider the Rk-to-D link. In this scheme, a given relay will
forward the symbol vector in the second phase if it correctly
decoded the message in the first phase. In the Rk-to-D link,
let Ỹi and Ỹj denote two distinct symbol matrices without
PR, and let Ỹ′

i and Ỹ′
j denote two such matrices with PR. We

are interested in the minimum rank of the difference matrix
(Ỹi − Ỹj), ∀i, j. To find that, we note that the elements
of the symbol matrices Ỹi and Ỹj are symbols from the
modulation alphabet A. Without PR, the set of all the possible
symbol matrices will include the matrix a1nrPrkd×MN , where
a ∈ A. Now, considering the two distinct matrices to be
Ỹi = a1nrPrkd×MN and Ỹj = a′1nrPrkd×MN , a ̸= a′, the
difference matrix is given by (a− a′)1nrPrkd×MN whose all
elements will be the same. Therefore, its rank is one which is
the minimum rank. Next, with PR, letting ∆̃′

ij = (Ỹ′
i − Ỹ′

j),
we have

∆̃′
ij =

∆′
1,ij
...

∆′
nr,ij

 , (16)

where ∆′
m,ij = Y′

m,i − Y′
m,j , and Y′

m,i and Y′
m,j are

the transmitted symbol matrices from the mth antenna. The
minimum rank of ∆′

m,ij is Prkd for all m = 1, · · · , nr.
Therefore, the minimum rank of (Ỹ′

i − Ỹ′
j) is Prkd.

B. Diversity analysis of SDaF

As mentioned in Sec. II-B, the relays which decode the
symbols successfully will forward the decoded symbols to the
destination in the second phase. The K relays in the system
can be in either one of two possible states depending on
whether the symbols are decoded correctly or incorrectly. As
a result, there are 2K possible states. Let a(k) indicate the
state of the kth relay for 1 ≤ k ≤ K with a(k) = 1 if the
kth relay decodes correctly and 0 otherwise. Let S denote the
set which includes all possible 2K binary states, with sl ∈ S
for 0 ≤ l ≤ 2K − 1 representing one of them. The end-to-end
PEP at the destination between symbol matrices Ỹi and Ỹj

assuming Ỹi is the transmitted symbol matrix is given by [11]

Pe(Ỹi → Ỹj) =
∑
sl∈S

Pe(Ỹi → Ỹj |a = sl)P (a = sl), (17)

where a = [a(1) a(2) · · · a(K)]T denotes the system state
vector, Pe(Ỹi → Ỹj |a = sl) is the end-to-end PEP when the
relays are in state sl, and P (a = sl) denotes the corresponding
probability of the system being in state sl ∈ S. The probability
that the system will be in state a = sl ∈ S can be calculated
as

P (a = sl) =

K∏
k=1

P (a(k) = sl(k)), (18)



where P (a(k) = sl(k)) corresponds to the net PEP at the kth
relay, given by
P (a(k) = sl(k)) ={

ρ
∑

p

∑
q,q ̸=p dpq PS→Rk

(Ỹp → Ỹq), if sl(k) = 0

1− ρ
∑

p

∑
q,q ̸=p dpq PS→Rk

(Ỹp → Ỹq), if sl(k) = 1,
(19)

where dpq = dH(ȳp, ȳq) is the number of information bits in
ȳq which differ from those in ȳp, ρ = 1

LnsMN log2 |A| , and L =

|AnsMN |. Following similar steps in [5] for the MIMO-OTFS
system in point-to-point communication, the upper bound on
the average PEP between the symbol matrices Ỹp and Ỹq for
the source and kth relay is given by

PS→Rk
(Ỹp → Ỹq) ≤

( rsrk∏
m=1

1

(1 +
λmpq
srk

γsrk

4Psrk
)

)nr

, (20)

where rsrk is the rank of (Ỹp − Ỹq) on the S-to-Rk link,
λmpq
srk

is the eigenvalue of (Ỹp−Ỹq)(Ỹp−Ỹq)
H , and γsrk is

the normalized SNR for the S-to-Rk link. The unconditional
average end-to-end PEP at the destination between Ỹi and Ỹj

is obtained as (see Appendix A for the derivation)

Pe(Ỹi → Ỹj) ≤ γ−ndrsd
sd Dij [γ

−ndrr1d

r1d
Cij

1 + γ
−nrrsr1
sr1 C1]

[γ
−ndrr2d

r2d
Cij

2 + γ
−nrrsr2
sr2 C2] · · ·

[γ
−ndrrKd

rKd Cij
K + γ

−nrrsrK
srK CK ]. (21)

For equal power allocation between source and relays, we have
γsrk = γrkd = γsd = γ , k = 1, · · · ,K. Expansion in (21)
contains 2K terms. We can write

Pe(Ỹi → Ỹj) ≤ γ−ndrsdDij

[
γ−

∑K
k=1 ndrrkd

K∏
k=1

Cij
k

+γ−
∑K−1

k=1 ndrrkdγ−nrrsrKCK

K−1∏
k=1

Cij
k +

· · ·+ γ−
∑K−1

k=1 nrrsrk γ−ndrrKdCij
K

K−1∏
k=1

Ck

+γ−
∑K

k=1 nrrsrk

K∏
k=1

Ck

]
. (22)

At high SNRs, the minimum power of γ will dominate.
Therefore, the diversity order (DO) is given by

DO = ndrsd +min

{ K∑
k=1

ndrrkd,

K−1∑
k=1

ndrrkd + nrrsrK ,

· · · ,
K−1∑
k=1

nrrsrk + ndrrKd,

K∑
k=1

nrrsrk

}
. (23)

The above expression can be equivalently written as

DO = ndrsd +min{nrrsr1 , ndrr1d}+min{nrrsr2 , ndrr2d}
+ · · ·+min{nrrsrK , ndrrKd}

= ndrsd +

K∑
k=1

min{nrrsrk , ndrrkd}. (24)

Parameter Value
Carrier frequency, fc 4 GHz
Subcarrier spacing, ∆f 3.75 kHz
DD profile (τi, νi) for 1 DD path ( 1

M∆f
, 1
NT

)

DD profile (τi, νi) for 2 DD paths, (0, 0), ( 1
M∆f

, 1
NT

)

for M = 2, 4, N = 2

DD profile (τi, νi) for 4 DD paths, (0, 0), (0, 1
NT

),
for M = 2, 4, N = 2 ( 1

M∆f
, 0), ( 1

M∆f
, 1
NT

)

Maximum speed 506.2 kmph
Modulation BPSK

TABLE I: Simulation parameters.

Fig. 2: BER performance of SISO-OTFS with selective DaF
without and with PR for K = 1, Psd = Psr = Prd = 2.

MIMO-OTFS without PR achieves a diversity of nd +∑K
k=1 min{nr, nd} = nd + Knr, since the minimum ranks

are rsrk = rrkd = rsd = 1. MIMO-OTFS with PR achieves
a diversity of ndPsd+

∑K
k=1 min{nrPsrk , ndPrkd}, since the

minimum ranks are rsd = Psd, rsrk = Psrk , rrkd = Prkd.

IV. RESULTS AND DISCUSSIONS
In this section, we present analytical and simulation results

on the BER and diversity performance of the MIMO-OTFS
scheme with SDaF relaying analyzed in the previous section.
The number of DD paths considered on the various links are
1, 2, and 4. Table I shows the system parameters used in the
simulations.

SISO-OTFS with SDaF relaying (without and with PR):
Figure 2 shows the BER of SISO-OTFS (ns = nr = nd = 1)
with selective DaF relaying without and with PR for K = 1,
M = N = 2, Psd = 2, Psr = 2, and Prd = 2. In
addition to simulated BERs, the BER upper bounds are also
plotted. We observe that the upper bounds are found to be
tight at high SNRs. We also observe that the diversity slope
for the simulated system without PR is two and the analytically
predicted diversity order in Sec. III-B is also nd +Knr = 2.
The figure also shows the BER of the same system with
PR. From the analysis in Sec. III-B, the achieved diversity
order with PR is Psd + min{Psr, Prd} = 4. In Fig. 2,
the diversity slope is observed to be 4, corroborating the
analytically predicted diversity order.

MIMO-OTFS with SDaF relaying (with and without PR):
Figure 3 shows the BER performance of MIMO-OTFS with



Fig. 3: BER performance of MIMO-OTFS with selective DaF
without and with PR for K = 2, ns = nd = nr = 2.

selective DaF relaying with and without PR for K = 2,
M = N = 2, ns = nr = nd = 2, Psd = 1, 2, Psr = 1, 2, 4,
and Prd = 1, 2, 4. From the analysis, the diversity order
without PR is nd + Knr. For the considered systems, these
diversity orders are 6. For the system with PR, Psd = 2,
Psr1 = 2, Pr1d = 1 and Psr2 = 1, Pr2d = 2, the diversity
order from analysis is ndPsd+

∑2
k=1 min{nrPsrk , ndPrkd} =

4 + min{4, 2} + min{2, 4} = 8. For the system with PR,
Psd = 1, Psr1 = 2, Pr1d = 4 and Psr2 = 4, Pr2d = 2,
the diversity order is 2 + min{8, 4} + min{4, 8} = 10. The
simulation BER plots indicate these high diversity slopes.

Results for fractional delay-Dopplers In Figs. 2 and 3,
integer delay-Dopplers without fractional parts (as in Table I)
are considered. We have carried out the performance analysis
for fractional DDs also in a similar way as in Sec. III. The
diversity order results are found to be the same for both
fractional and integer DDs. We do not present this analysis
for lack of space, and provide only the numerical results here.

Small values of (M,N): Figure 4 shows the simulated BER
performance of MIMO-OTFS with SDaF relaying with K = 1
without PR for ns = nr = nd = 2, M = N = 2, Psd = 2,
Psr = 2, and Prd = 2, 4. The Doppler corresponding to the ith
channel tap is generated using Jakes’s formula [3]. The delay
corresponding to ith channel tap is generated as uniformly
distributed over [0, M−1

M∆f ]. Exponential power delay profile
and Jakes Doppler spectrum are considered. ML detection is
used. From Fig. 4, we observe a diversity slope of 4 for the
considered MIMO-OTFS with SDaF relaying is 4, which is
also the diversity order we predicted through analysis.

MIMO-OTFS vs MIMO-OFDM for large values of (M,N):
In Fig. 5, we compare the BER performance of MIMO-OTFS
and MIMO-OFDM with SDaF relaying, utilizing system pa-
rameters according to the IEEE 802.11p standard [14]. The
system operates at a carrier frequency of 5.9 GHz with a
subcarrier spacing of 0.156 MHz. A frame size of M = 64
and N = 12 is employed for the simulations, along with
Psd = Psr = Prd = 8 DD paths, rectangular pulse and
K = 1. Fractional DDs are used with a maximum speed
of 220 km/h, corresponding to a maximum Doppler of 1.2
kHz and BPSK modulation with minimum mean square error

Fig. 4: BER performance of MIMO-OTFS with SDaF without
PR for M = N = 2, ns = nr = nd = 2, and fractional DDs.

Fig. 5: BER comparison between MIMO-OTFS and MIMO-
OFDM with SDaF for M = 64, N = 12, and fractional DDs.

(MMSE) detection is used. From Fig. 5, we observe that the
performance of MIMO-OTFS is significantly better than the
MIMO-OFDM system for considered relaying scheme. For
example, at a BER of 10−3, MIMO-OTFS with SDaF has a
gain of about 6 dB compared to MIMO-OFDM with SDaF.

V. CONCLUSIONS

In this work, we investigated the performance of MIMO-
OTFS systems with selective decode and forward relaying. We
considered MIMO-OTFS with relaying where a selected set of
relays among multiple relays aid communication between the
transmitter and receiver in two hops. We derived closed-form
expressions for the end-to-end PEP and BER upper bounds for
this relaying system, and quantified the achieved asymptotic
diversity orders with and without PR. Simulation results were
shown to validate the analytically derived diversity orders. The
analysis for practical pulses can be carrier out on similar lines,
which can be taken as future work. Optimal power allocation
schemes for the source and relay nodes and the effect of inter-
node distances on the performance can also be analyzed as
future work.

APPENDIX A
DERIVATION OF (21)

Continuing from (20), let ξl = {k|sl(k) = 1, 1 ≤ k ≤ K}
denote the set of all relays that correctly decode the message.



The average PEP at the destination between Ỹi and Ỹj with
relays in state a = sl ∈ S is given by

Pe(Ỹi → Ỹj |a = sl) ≤
rsd∏
m=1

{(
1

1 +
λmij
sd γsd

4Psd

)nd
}

∏
k∈ξl

rrkd∏
m=1

(
1

1 +
λmij
rkdγrkd

4Prkd

)nd

, (25)

where rsd and rrkd are the ranks of (Ỹi − Ỹj) on the S-to-
D link and Rk-to-D link, respectively, γsd is the normalized
SNR for the S-to-D link, γrkd is the normalized SNR for
the Rk-to-D link, and λmij

sd and λmij
rkd

are the eigenvalues of
(Ỹi− Ỹj)(Ỹi− Ỹj)

H on the S-to-D link and Rk-to-D link,
respectively. We note that at high SNRs, in (19), the term
1 − ρ

∑
p

∑
q,q ̸=p dpqPS→Rk

(Ỹp → Ỹq) ≈ 1 if sl(k) = 1.
As a result, the bound on the bit error probability for ML
detection at the destination can be obtained by adding up all
PEP terms corresponding to (Ỹi → Ỹj) for all possible i, j.
Hence, the bit error probability at the destination is given by

Pb ≤ ρ
∑
i

∑
j,j ̸=i

dijPe(Ỹi → Ỹj)

≤ ρ
∑
i

∑
j,j ̸=i

dij
∑
sl∈S

[
rsd∏
m=1

(
1

1 +
λmij
sd γsd

4Psd

)nd

∏
k∈ξ

rrkd∏
m=1

(
1

1 +
λmij
rkdγrkd

4Prkd

)nd

∏
k∈ξ̄

{
ρ
∑
p

∑
q,q ̸=p

dpq

rsrk∏
m=1

(
1

1 +
λmpq
srk

γsrk

4Psrk

)nr
}]

, (26)

where dij = dH(ȳi, ȳj) and ξ̄ denotes the complement of ξ.
At high SNRs, the additive unity term can be ignored in the
denominator of (20). So, P (a = sl) can be approximated as

P (a = sl) ≤
∏
k∈ξ̄l

{
ρ
∑
p

∑
q,q ̸=p

dpq

rsrk∏
m=1

(
1

λmpq
srk

γsrk

4Psrk

)nr
}

=
∏
k∈ξ̄l

γ
−nrrsrk
srk

∏
k∈ξ̄l

Ck, (27)

where Ck = ρ
∑

p

∑
q,q ̸=p dpq

∏rsrk
m=1

(
λmpq
srk

4Psrk

)−nr

. Similarly

Pe(Ỹi → Ỹj |a = sl) can be written as

Pe(Ỹi → Ỹj |a = sl) ≤ γ−ndrsd
sd

rsd∏
m=1

(
1

λmij
sd

4Psd

)nd

∏
k∈ξl

(γ
−ndrrkd

rkd
)
∏
k∈ξl

rrkd∏
m=1

(
1

λmij
rkd

4Prkd

)nd

= γ−ndrsd
sd Dij

∏
k∈ξl

(γ
−ndrrkd

rkd
)
∏
k∈ξl

Cij
k , (28)

where Dij =
∏rsd

m=1

(
λ
mij
sd

4Psd

)−nd

and Cij
k =

∏rrkd

m=1

( λ
mij
rkd

4Prkd

)−nd

.

Now, Pe(Ỹi → Ỹj) can be written as

Pe(Ỹi → Ỹj) ≤
∑
sl∈S

∏
k∈ξ̄l

γ
−nrrsrk
srk

∏
k∈ξ̄l

Ckγ
−ndrsd
sd Dij

∏
k∈ξl

γ
−ndrrkd

rkd

∏
k∈ξl

Cij
k . (29)

The vector sl is a K-tuple vector. By convention, we can
assign the first element of sl for the state of the first relay,
second element to the state of second relay, and so on.
Therefore, (29) can be expanded as [12]

Pe(Ỹi → Ỹj) ≤ γ−ndrsd
sd Dij [γ

−ndrr1d

r1d
Cij

1 + γ
−nrrsr1
sr1 C1]∑

s′l∈S′

∏
k∈ξ̄l,k ̸=1

γ
−nrrsrk
srk

∏
k∈ξ̄l,k ̸=1

Ck

∏
k∈ξl,k ̸=1

γ
−ndrrkd

rkd

∏
k∈ξl,k ̸=1

Cij
k , (30)

where s′l is the state vector except for the first relay and S ′ is
the set of all possible states for the K − 1 relays. In a similar
way, we can expand for the remaining relays to get (21).
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