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Abstract—Motivated by its inherent robustness to Doppler
spread, Zak transform-based orthogonal time-frequency space
(OTFS) modulation has emerged as a promising candidate for
next-generation wireless technologies, particularly in the 6G
and beyond framework. In this paper, we introduce a novel
channel estimation algorithm for discrete Zak transform (DZT)-
based OTFS, employing a superimposed pilot frame structure
and capable of accommodating arbitrary pulse shapes and
fractional delay-Dopplers (DD). The proposed algorithm lever-
ages the DD channel invariance across multiple OTFS frames,
which offers the benefit of multiple measurements in channel
estimation. Extensive simulation results demonstrate that the
proposed algorithm achieves good bit error rate (BER) and
normalized mean square error (NMSE) performance, showcasing
its effectiveness in practical communication settings. Impact of
the use of different detectors on the iterative channel estimation/
detection performance is also studied.

Index Terms—Discrete Zak transform, OTFS modulation,
delay-Doppler domain, iterative channel estimation/detection,
superimposed pilot.

I. INTRODUCTION

Initial works on orthogonal time frequency space (OTFS)
modulation viewed it as pre- and post-processing over the
existing multicarrier modulation, i.e., orthogonal frequency
division multiplexing (OFDM), which is referred to as mul-
ticarrier OTFS (MC-OTFS) [1], [2]. This approach to OTFS
involves conversion of the DD domain symbols to interme-
diate time frequency (TF) domain before conversion to time
domain for transmission. At the transmitter, inverse symplectic
finite Fourier transform (ISFFT) is used to convert symbols
from DD domain to TF domain, followed by Heisenberg
transform for converting symbols from TF domain to time
domain. The corresponding inverse transforms are used at the
receiver. Just like Fourier transform provides a mathematical
basis for frequency to time domain conversion and vice versa,
Zak transform provides a mathematical framework to convert
a DD domain signal directly to time domain and vice versa
[3]. Zak transform for OTFS has been studied in the recent
literature [1], [4]- [6]. In [4], the author considers continuous
Zak transform based receiver, while the transmitter processing
is still that of MC-OTFS. It shows that the spectral efficiency
performance of the Zak receiver approach remains invariant
to user velocity, whereas it degrades in OFDM as the velocity
increases. In [5], the author provides a derivation of the com-
plete OTFS transceiver based on continuous Zak transform
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from first principles and demonstrates its superior resilience to
high Dopplers. The most recent Zak based OTFS works in [1]
and [6] bring out the basic differences between MC-OTFS and
Zak OTFS and shows the complete OTFS transceiver based on
continuous Zak transform to have better resilience to large DD
spreads. It also justifies why Zak based approach to OTFS is a
natural fit to channels with large DD spreads and establishes
its superiority over MC-OTFS, TDM, and FDM. However,
the practical implementation of Zak based approach calls for
a need for the discrete Zak transform (DZT) based approach
[7]. In a related work, [8] studies OTFS using DZT (DZT-
OTFS). The BER performance of DZT-OTFS is studied in
[9] assuming perfect channel knowledge, which is compared
with that of the MC-OTFS model in [4]. The works in [10]-
[12] consider channel estimation in DZT-OTFS. While [10]
considers an exclusive pilot frame for channel estimation,
[11] and [12] consider two different approaches to channel
estimation using embedded pilot frame. Both exhaustive and
embedded pilot frames incur throughput loss due to pilot and
guard symbols.

Superimposed pilot frames for channel estimation in MC-
OTFS have been studied in [13]- [15]. In the superimposed
pilot scheme in [13], both data and pilot symbols are super-
imposed in all the DD bins, and hence there is no loss in
throughput. But this study assumes integer DDs and derives
a minimum mean square error (MMSE) estimate of channel
gains while assuming the perfect knowledge of path delays
and Dopplers and the channel power delay profile. In [14], a
sparse superimposed pilot frame structure is considered, where
an MMSE estimate of channel gains is derived for integer
DDs under the assumption that path delays and Dopplers are
known. Optimum number of pilots and their placement is also
studied. In [15], a single pilot superimposed in one of the bins
in DD grid filled with data symbols is considered. The authors
in [15] propose a threshold based channel estimator assuming
integer Dopplers and fractional delays and a sum-product
algorithm for data detection. To our knowledge, channel
estimation for DZT-OTFS with superimposed pilot frames and
fractional DDs is not studied in the literature so far.

In this paper, we consider the problem of channel esti-
mation for DZT-OTFS using superimposed pilot frames in
fractional DD channels and propose a novel algorithm for
this purpose. The proposed algorithm cashes on the DD
channel invariance across multiple OTFS frames, which offers
the benefit of multiple measurements in channel estimation.
Extensive simulation results are carried out to characterize
the bit error rate (BER) and normalized mean square error



(NMSE) performance of the algorithm. Our results demon-
strate that the proposed algorithm achieves good BER and
NMSE performance, showcasing its effectiveness in practical
communication settings. We also study the impact of the
use of different detectors on the iterative channel estima-
tion/detection performance.

II. DZT-OTFS SYSTEM MODEL

In this section, the end-to-end DD domain input-output
relation of the DZT-OTFS system with fractional DD and
arbitrary transmit/receive pulse shape is derived. Informa-
tion symbols XDD[n,m] drawn from a modulation alpha-
bet A is placed on the N × M DD grid defined as{(

n∆ν = n
NMTs

,m∆τ = mTs

)
, n = 0, · · · , N − 1,m =

0, · · · ,M − 1
}

, where Ts is the symbol duration, ∆τ = Ts

and ∆ν = 1
NMTs

are the resolutions along the delay and
Doppler axis, respectively. XDD[n,m] is converted to time
domain using the inverse DZT (IDZT) [7], [8] as

xTD[u] =
1√
N

N−1∑
n=0

XDD[n, u mod M ]ej2π
⌊u/M⌋

N n. (1)

After adding a cyclic prefix (CP) UCP > ⌈τmax/Ts⌉ to i)
mitigate the inter-frame interference, ii) convert liner convo-
lution to circular convolution at the receiver after dropping CP,
the resultant time domain sequence of length NM + UCP is
mounted over the continuous time pulse ht(t); 0 ≤ t ≤ Ts

to obtain a continuous time signal xTD(t); 0 ≤ t ≤ (NM +
UCP )Ts given by

xTD(t) =

NM+UCP−1∑
u=0

xTD[(u− UCP )NM ]ht(t− uTs).

(2)

This signal then passes through a doubly-dispersive channel
whose complex baseband channel response in DD domain is

c(τ, ν) =

P∑
i=1

ciδ(τ − τi)δ(ν − νi), (3)

where ci, τi, and νi represent the ith path channel coeffi-
cient, delay, and Doppler, respectively. For fractional DD,
τi
∆τ = ηi = αi + ai and νi

∆ν = ζi = βi + bi, where αi

and βi are the integer parts of the delay index and Doppler
index, respectively, while − 1

2 ≤ ai, bi ≤ 1
2 represent the

corresponding fractional parts. The output of the time-varying
channel is given by

yTD(t) =

∫
ν

∫
τ

c(τ, ν)xTD(t− τ)ej2πν(t−τ)dτdν + w(t),

(4)

where w(t) is the additive white Gaussian noise (AWGN)
added at the receiver. The resultant time domain signal is

sampled at t = kTs after matched filtering (MF) with the
receive pulse hr(t) to obtain the discrete time signal

yMF [k] =

P∑
i=1

ci

NM−1∑
u=0

xTD[u]f [(k−u)Ts−τi]e
j2πνi(τ+nTs)+v[k],

(5)
where f(t) ≜

∫
τ
h(τ)h∗(t − τ)dτ is the effective pulse

obtained at the output of the MF, where h(t) = ht(t) =
hr(t), and f [k] and v[k] are the samples of f(t) and v(t),
respectively, where v(t) is the noise at the output of the
MF. Simplifying (5) by substituting for τi and νi, we get the
received vector yMF ∈ C1×NM as

yMF [k] =

P∑
i=1

cie
j2πηiζi

NM

NM−1∑
u=0

xTD[u]di[u]fi[k − u] + v[k]

(6)

=

P∑
i=1

c′iy
MF
i [k] + v[k], (7)

where c′i = cie
j2πηiζi

N , fi[u] = f [u − ηi], di[u] = ej2π
ζi

NM u,
and k, u = 0, · · · , NM − 1. Here, fi[u] and di[u] capture the
effect of delay and Doppler of the ith path, respectively, and
yMF
i [k] is the component of received signal corresponding to

the ith path, given by

yMF
i [m] =

NM−1∑
u=0

xTD[u]di[u]fi[k − u]. (8)

At the receiver, yMF is converted to DD domain using DZT
as

YDD[n,m] =
1√
N

N−1∑
u=0

yMF [m+ uM ]e−j2π n
N u. (9)

The equivalent DD domain representations of (7) and (8) are

YDD[n,m] =

P∑
i=1

c′iY
DD
i [n,m] +VDD[n,m], (10)

YDD
i [n,m]=

M−1∑
l=0

N−1∑
k=0

XDD[k, l]DDD
i [n− k, l]FDD

i [k,m− l],

(11)

respectively, where DDD
i , FDD

i , and VDD are the DZT of
the sequences di, fi, and v, respectively.

A. Vectorized input-output relation

Further, for vectorizing (10), let Am be a N × N matrix
whose jth row is Am[j − 1, :] = (DDD

i [:,m − 1])TPj−1
N ,

where m = 1, · · · ,M , j = 1, · · · , N , and PN is a
N×N basic circulant permutation matrix (BCPM) [17]. Next,
define block diagonal matrix Di with matrices {Am}Mm=1

along the diagonal. Likewise, define a N × N block ma-
trix B = [diag{FDD

i [:, 0]}, · · · , diag{FDD
i [:,M − 1]}]. Let

Qm = Pm−1
M ⊗ IN be an NM ×NM matrix, where PM is

an M×M BCPM and ⊗ operator denotes Kronecker product.



Also, define an NM ×NM matrix Fi =

[
BQ1

...
BQM

]
. Using Di

and Fi, the effective channel matrix H in DD domain can be
written as

H =

P∑
i=1

c′iDiFi. (12)

Note that, since Fis capture the effect of delays (ηis) and Dis
capture the effect of Dopplers (ζis), the channel representation
in (12) is in a form that decouples the effect of channel
gains (cis), delays (ηis), and Dopplers (ζis). This decoupled
representation is instrumental in devising the low complexity
algorithm proposed in Sec. III. Finally, (10) can be written as

yDD = xDDH+ vDD, (13)

where yDD = vec(YDD),xDD = vec(XDD), and vDD =
vec(VDD) ∈ C1×N , where, vec(·) denotes column-wise vec-
torization of matrix and unvec(·) denotes the inverse operation.

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

For the purpose of data detection, an estimate of the channel
H is required at the receiver. To enable the channel estimation,
a known symbol called pilot is transmitted as a part of the
OTFS frame. There are different frame structures such as i)
exclusive pilot frame (an entire OTFS frame is dedicated for
the pilot, and data is transmitted over the consecutive OTFS
frames), and ii) embedded pilot frame (both data and pilot
are present in a frame, and the pilot is surrounded by a guard
band to mitigate interference between pilot and data). Both the
above frame structures suffer loss in spectral efficiency. Hence,
in this paper a superimposed pilot scheme is considered.
In this superimposed pilot scheme, the entire OTFS frame
is filled with data symbols. In addition, pilot symbols are
superimposed on select locations. The superimposed pilot
frame structure considered in this paper is defined below.

A. Superimposed pilot frame structure

The OTFS frame is filled with NM data symbols xd ∈ A.
In addition, one pilot symbol with amplitude xp is mounted
on top of the one of the data symbols at the selected location
in the DD grid, denoted by (np,mp). Fig. 1 shows the
superimposed pilot frame structure considered in this paper,
which can be written as

XDD[n,m] = Xd[n,m] +Xp[n,m], (14)

Xp[n,m] =

{
xp ; n = np,m = mp

0 ; otherwise,
(15)

and Xd[n,m] = xd ∀n ∈ [0, N − 1],m ∈ [0,M − 1].

Fig. 1: Superimposed pilot frame structure.

B. Proposed channel estimation algorithm

The proposed algorithm is iterative in nature. In each
iteration, channel estimation followed by channel equalization
and data detection is performed. The proposed algorithm is
described as follows. Using (14) in (13), the contributions of
data and pilot symbols in the received DD domain signal can
be separated as

yDD = xpH+ xdH+ vDD, (16)

where xDD = xp + xd, xp and xd are obtained as vec(Xp)
ans vec(Xd), respectively. In (16), xdH is the contribution
of data symbols in the received OTFS frame and xpH is
the contribution of pilot. Note that there is significantly high
interference from the data symbols present in the frame to
the pilot. This hinders the channel estimation which in turn
affects the BER performance of the system. To mitigate the
interference from the data symbols in the OTFS frame, we
propose the following algorithm.

1) Interference (data + noise) cancellation through aver-
aging: The data symbols xds are drawn independently and
uniformly from A whose mean is zero. Taking expectation on
(16), under the assumption that the DD channel is invariant,

E[yDD] = E[xpH] + E[xdH] + E[vDD]

= xpH, (17)

where the vDD samples are from zero mean AWGN process.
In practice, E[yDD] can be obtained by using the time average
of the received DD frame, assuming channel is invariant over
I OTFS frames, as

E[yDD] ≈
1

I

I∑
i=1

yi
DD, (18)

where {yi
DD}Ii=1 are I consecutive received OTFS frames.

Note that (18) becomes increasingly accurate for large I .
The choice of I in practical scenarios depends on the spatial
coherence of the channel in the DD domain (e.g., [16] assumes
that the scattering environment and DD channel gains are
invariant over 20 OTFS frames). When I is small, the aver-
aging in (18) becomes less accurate, in which case iterations
between channel estimation and detection as described below
can improve performance.



Fig. 2: Proposed iterative channel estimation/detection algo-
rithm.

Let {y̆i
DD}Ii=1 = {yi

DD}Ii=1. In the first channel estima-
tion/detection iteration, i.e., j = 1, obtain yj

avg = 1
I

∑I
i=1 y̆

i
DD.

The algorithm described in Sec. III-B2 (channel estimation
algorithm proposed for embedded pilot frame in [12] modified
and adopted) is used to obtain an estimate of the effective
channel matrix, i.e., Hj

est. Next, for the ith frame (i ∈
[1, · · · , I]), the contribution of the pilot is removed from
received frame yi

DD to obtain ỹi
DD as

ỹi
DD = yi

DD − xpH
j
est. (19)

Further, ỹi
DD is used to obtain the detected data symbols

denoted as x̂i
d. The y̆i

DD is then updated by cancelling the
data interference as

y̆i
DD = yi

DD − x̂i
dH

j
est. (20)

An average for the subsequent iteration is computed as
yj+1

avg = 1
I

∑I
i=1 y̆

i
DD. This completes one iteration of proposed

algorithm. The algorithm terminates when j = J , where J is
the maximum number of iterations.

2) Obtaining Hj
est: The algorithm proceeds iteratively es-

timating channel coefficients, delay and Doppler for each path
(strongest path first) and successively removing the effect of
estimated path from yj

avg before going on to estimate the next
strongest path. The strength of the path is measured by the
energy in received frame. The iterations start by initializing
p = 1 and continue till p = Pmax or till the bin energy in the
received frame after successively removing the contributions
of estimated paths reduces to that of the interference (noise +
data) floor, i.e, based on a stopping criteria. Here note that, P ′

paths are estimated where P ′ ≥ P and P ′ ≤ Pmax. Estimating
P ′ ≥ P is necessary since i) number of paths P in the

channel is unknown and ii) due fractional DD nature, there is
a considerable spillover of the path energy over the adjacent
DD bins along both delay and Doppler. Assuming data is
absent, a maximum likelihood (ML) estimate of channel gain
is obtained as a function of path delay and Doppler as

ĉp(η̂p, ζ̂p) =
Yj

avg[np
r ,m

p
r ]

φη̂p,ζ̂p
[Nmp

r + np
r ]
, (21)

where (np
r ,m

p
r) is the maximum energy location in Yj

avg in
pth iteration (see Step 1 below), φη̂p,ζ̂p

= xpD̂p(ζ̂p)F̂p(η̂p),
with F̂p(η̂p) and D̂p(β̂p) computed by using the estimated de-
lay and Doppler indices η̂p and ζ̂p in Fi and Di, respectively.
The steps involved in obtaining the estimates {ĉp, η̂p, ζ̂p}P

′

p=1

are described below. Start by initializing p = 1.
Step 1 : Coarse estimates of DD
Let Yj

avg be the N × M matrix obtained as unvec(yj
avg).

Let Yj,p
avg = Yj

avg the maximum energy location in Yj,p
avg be

denoted by (np
r ,m

p
r), i.e., (np

r ,m
p
r) = arg max

n,m
|Yj,p

avg[n,m]|2.

Then the coarse estimate (denoted by superscript c) of delay
and Doppler of pth path is η̂cp = mp

r −mp and ζ̂cp = np
r −np,

respectively.
Step 2 : Refining delay estimate by correlating the received
signal on delay axis with f(t)
In this step, a fractional estimate of the delay index (ηp)
is obtained using the knowledge of η̂cp as follows. For the
pth path, the L1-norm is minimized between the normalized
received vector and the MF response vector of lengths 2q+1
centered around their respective maximum amplitude loca-
tions, where q is the number of bins on either side of the
maximum amplitude location. These (2q + 1)-length vectors
are called normalized adjacent bin level (NABL) vectors.
The received NABL vector is denoted by yp

NABL, obtained as
yp

NABL =
[Y̆j,p

avg[n
p
r ,m

p
r−q],Y̆j,p

avg[n
p
r ,m

p
r−q+1]···Y̆j,p

avg[n
p
r ,m

p
r+q]]

Y̆j,p
avg[n

p
r ,m

p
r ]

where

Y̆j,p
avg = |Yj,p

avg|. The MF response NABL vector, denoted by
fNABL, is obtained as follows. The delays around η̂cp for fine
search is defined as L = {η̂cp − 0.5, η̂cp − 0.5 + ∆η, η̂

c
p −

0.5 + 2∆η, · · · , η̂cp + 0.5}, where ∆η is the delay search
resolution. For each L(l), f(t;L(l)) is obtained by delaying
f(t) by L(l)Ts, which on sampling at Ts intervals (i.e.,
t = uTs) yields f [u;L(l)], where u = 0, 1, · · · , NM − 1.
Now, for each f [u;L(l)], the location of maximum ampli-
tude is obtained as k = arg max

u
f̆ [u;L(l)]. Next, the

fNABL(L(l)) vector is obtained by picking q values on either
side of k as fNABL(L(l)) = [f̆ [k−q;L(l)] f̆ [k−q+1;L(l)]···f̆ [k+q;L(l)]]

f̆ [k;L(l)]

where, ˘f [u;L(l)] = |f [u;L(l)]| Finally, a minimization of
∥yp

NABL − fNABL(L(l))∥1 is performed over L(l) to obtain η̃fp .
Through simulations, it is observed that q = 1 attains the best
NMSE and BER performance. Also, through simulations it is
observed that L1-norm gives more robust estimation compared
to L2-norm. Hence, we adopt q = 1 and L1-norm in all the
simulations.
Step 3 : Refining Doppler estimate - ML estimation
The estimated η̃fp (superscript f denotes fine estimate) is



used to obtain ζ̂fp as follows. The Doppler search area is
defined as G = {ζ̂cp − 0.5, ζ̂cp − 0.5 + ∆ζ , ζ̂

c
p − 0.5 +

2∆ζ , · · · , ζ̂cp + 0.5}, where ∆ζ is the Doppler search
resolution. For each ρl ∈ G, l = 1, 2, · · · ,G, the channel coef-
ficients (ci(η̃fp , ρl)) are computed using (21) (with η̂p = η̃

(f)
p ,

ζ̂p = ρl), followed by the computation of the channel matrix,
Ĥ(η̃

(f)
p , ρl, ci(η̃

f
p , ρl)) using (12). An ML estimate of Doppler

is obtained by maximizing the log-likelihood function over G,
i.e., arg max

ρl∈G
log(P (yj,p

avg|Ĥ(η̃
(f)
p , ρl, ci(η̃

f
p , ρl)),xp)), which

is equivalent to

ζ̂fp= arg min
ρl∈G

∥∥yj,p
avg − xpĤ

(
η̃(f)p , ρl, ci(η̃

f
p , ρl)

)∥∥
2
, (22)

where P (yj,p
avg|Ĥ,xp) ∼ CN (xpĤ, σ2I), σ2I is the N × N

covariance matrix of noise (vDD), and ∥ · ∥2 is vector 2-norm.
Step 4 : Re-refining delay estimate - ML estimation
This ζ̂fp is used to obtain a refined delay estimate η̂fp . As
described above, an ML estimate of delay is obtained in (23),
where the search is carried over µl ∈ L, for l = 1, 2, · · · ,L
(· denotes cardinality of a set). For each µl, the channel
coefficients ci(µl, ζ̂

f
p ) are computed using (21) (with η̂p = µl,

ζ̂p = ζ̂fp ), followed by the computation of the channel matrix,
Ĥ(µl, ζ̂

(f)
p , ci(µl, ζ̂

f
p )), and η̂

(f)
p is obtained as

η̂fp = arg min
µl∈J

∥∥yj,p
avg − xpĤ

(
µl, ζ̂

(f)
p , ci(µl, ζ̂

f
p )
)∥∥

2
. (23)

The fine estimate of channel coefficient ĥ(f)
i is obtained using

(21). We note that while α̃
(f)
i is an initial estimate, α̂(f)

i is a
refined estimate, refined using the knowledge of β̂(f)

i and h
(c)
i

in (23), and the refinement helps to improve performance.
Step 5 : Inter-path interference (IPI) cancellation
The effect of pth estimated path is removed from Yj,p

avg . To do
this, the channel matrix for the pth path, Hj,p

est(η̂
(f)
p , ζ̂

(f)
p , ĉ

(f)
p )

is constructed. The pth path’s estimated contribution is
ŷest,p = xpH

j,p
est(η̂

(f)
p , ζ̂

(f)
p , ĉ

(f)
p ). Next, Yest,p obtained as

unvec(yest,p) is used for IPI cancellation as

Yj,p+1
avg = Yj,p

avg −Yest,p, (24)

and Yj,p+1
avg is used in Steps 1-4 to estimate the channel

parameters for the (p+ 1)th path.
Step 6 : Stopping criteria
The algorithm stops at the pth iteration if either p = Pmax or∣∣∥Yj,p

avg∥F − ∥Yj,p−1
avg ∥F

∣∣ ≤ ϵj , where ϵj is the convergence
parameter for the jth iteration.

Once the algorithm terminates after estimating P ′ paths, the
vector of estimated delays, Dopplers, and channel coefficients
are used to construct the estimated channel matrix Hj

est using
(12).

IV. RESULTS AND DISCUSSIONS

In this section, we present the NMSE and BER perfor-
mance obtained using the proposed estimation algorithm for
different pulse shapes and detectors. An OTFS frame of size

Fig. 3: BER performance as a function of ϵ1.

N = 16 and M = 48 is considered for this purpose and
total available bandwidth is B = 200 kHz. The Delay and
Doppler spreads of the channel are τmax = 20 µs and
νmax = 781.25 Hz, respectively. The channel is assumed
to have P = 4 paths with uniform power delay profile
(PDP). The delays of the paths are assumed to be uniformly
distributed in [0, τmax] and the Dopplers of the paths are
assumed to have uniform distribution in [−νmax, νmax]. The
following algorithm parameters are used: I = 5, 20, J = 6,
(np,mp) = (N/2,M/2), Pmax = 15, ∆η = ∆ζ = 0.01.
Results are provided for transmit and receive pulse being i)
square-root raised cosine (SRRC) pulse with roll off factor
γ = 0.5, i.e., h(t) = sin(π(1−γ)t/Ts)+4γ(t/Ts) cos(π(1+γ)t/Ts)

π(t/Ts)(1−(4γ(t/Ts))2)

(where f(t) is raised cosine pulse), and ii) rectangular pulse

given by h(t) =

{
1/
√
Ts; 0 ≤ t ≤ Ts

0 ; otherwise
(where f(t) is

triangular pulse). 4-QAM modulation alphabet is considered.
MMSE detector and message passing (MP) detector [18] are
employed. Pilot signal to noise ratio (SNR) is considered to
be same as data SNR.

1) Choice of convergence parameter: The choice of con-
vergence parameter ϵj for jth iteration is crucial since it
decides the number of estimated paths P ′. A very small
value of ϵj could imply that noise may be estimated as
a valid path, while a large value of ϵj may imply that
P ′ < P paths are estimated. The value of convergence factor
depends on the residual interference (data + noise) floor. With
small I , there will be significant data residue in j = 1th
iteration. However, in subsequent iterations, the interference
floor is mostly governed by noise statistics only owing to data
interference cancellation and averaging. Hence, it is expected
that ϵ1 ≥ ϵj ; j ̸= 1. Simulation results are found to corroborate
this observation as seen in Fig. 3, which shows BER as a
function of ϵ1 for data SNR = 20 dB and 15 dB. For I = 5, it is
observed that ϵ1 = 0.1 is optimum. Similar study for ϵj , j ̸= 1
showed that ϵj = 0.01 is optimum. In all the simulations with
I = 5, ϵ1 = 0.1 and ϵj = 0.01 ∀j ̸= 1 are considered. For
I = 20, ϵj = 0.01∀j.

2) NMSE performance of proposed algorithm: NMSE in
iteration jth is computed as ∥H−Hj

est∥
2
F

∥H∥2
F

. Figure 4 shows the



Fig. 4: NMSE performance of the proposed algorithm as a
function of I and J .

Fig. 5: BER performance of the proposed algorithm as a
function of SNR.

NMSE performance of the proposed algorithm as a function
of SNR (data SNR) for different values of I and J for SRRC
pulse. I = 5, 20 and J = 1, 2, 6 are considered. For I = 5,
the performance improvement is marginal after J = 6, while
in case of I = 20, the performance gain is marginal just
after J = 2. It is observed that as I increases, the maximum
number of iterations (J) required decreases. This is attributed
to effective data interference cancellation due to averaging.

3) BER performance of proposed algorithm: Figure 5
shows the BER performance of the proposed algorithm as a
function of SNR with different transmit pulse shapes, for two
detectors, namely, MMSE and MP detectors. The performance
obtained using the estimated channel is compared against
that obtained using the perfect channel knowledge. BER
performance using MMSE detector is obtained for SRRC
pulse for I = 5, 20 and rectangular pulse for I = 5. The BER
performance for SRRC pulse is also obtained using MP detec-
tor with I = 5. It is observed that the performance obtained
using both perfect channel knowledge and estimated channel
knowledge with MP detector is superior over that obtained
using MMSE detector. Also, the performance obtained using
SRRC pulse is superior compared to that obtained using the
rectangular pulse, owing to better spectral characteristics of
the SRRC pulse.

V. CONCLUSION

In this work, we presented a novel iterative channel es-
timation/detection algorithm for DZT-OTFS utilizing super-

imposed pilot frames. Leveraging the inherent DD domain
channel invariance over multiple OTFS frames, the proposed
algorithm effectively mitigates data and pilot interference. We
analyzed the impact of statistical channel characteristics on
performance (e.g., impact of number of frames over which
the DD channel remains invariant). Additionally, we inves-
tigated the effect of different detection algorithms (MMSE
and MP detection algorithms) within the iterative channel esti-
mation/detection framework. Simulation results demonstrated
that the proposed algorithm not only achieves superior NMSE
performance but also a BER performance that is close to
that obtained using perfect channel state information, while
achieving full spectral efficiency.
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