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Abstract—Orthogonal time-frequency space (OTFS) modula-
tion has been shown to be robust in channels with high Doppler
spreads. Conventional approach of OTFS signaling involves two
steps, viz., conversion from delay-Doppler (DD) domain to time-
frequency (TF) domain and then to time domain (TD) for
transmission. A more direct approach converts the DD domain
symbols to TD directly using the inverse Zak transform in one
step, which is performance-wise better for large channel spreads.
In this paper, we consider discrete Zak transform based OTFS
(DZT-OTFS) and propose a deep learning based low-complexity
channel estimation algorithm for fractional DD channels. The
proposed approach learns the delay-Doppler matrix (DDM)
through training rather than analytically computing it explicitly,
and this drastically reduces complexity. A key novelty in the
proposed approach is that learning is carried out in the TF
domain for DD domain channel estimation. This is motivated
by the observation that the values in the channel matrix in
TF domain has a smaller swing compared to that in DD
domain, which is more favorable for training. Simulation results
show that the proposed TF learning based channel estimation
achieves almost the same performance as that of a state-of-the-art
algorithm in the literature but at a significantly lesser complexity,
making the proposed approach practically appealing.

Index Terms—OTFS modulation, discrete Zak transform, DD
channel estimation, deep learning, time-frequency learning, frac-
tional delay-Doppler.

I. INTRODUCTION

Orthogonal time-frequency space (OTFS) modulation is a
promising modulation scheme for next generation wireless
systems owing to its resilience to high Doppler channels [1]-
[3]. In OTFS, information symbols are multiplexed in the
delay-Doppler (DD) domain and the channel is also viewed
in the DD domain. In conventional OTFS, the information
symbols in the DD domain are converted to time domain for
transmission in two steps, viz., conversion from DD domain to
TF domain using inverse symplectic finite Fourier transform
(ISFFT) and from TF domain to time domain using Heisen-
berg transform [1]-[8]. Corresponding inverse transforms are
carried out at the receiver to convert the received time domain
signal to DD domain where signal detection is carried out.

More recently, an alternate way to realize OTFS that con-
verts the DD domain symbols directly to time domain using
the inverse Zak transform at the transmitter [9],[10] and time
domain signal to DD domain using the Zak transform at
the receiver has been shown to achieve better performance
compared to the conventional two-step OTFS in large Doppler
spreads [11],[12]. Drawing parallel to the discrete implemen-
tation of OFDM using discrete Fourier transform, discrete
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implementation of the Zak based OTFS system can be realized
using discrete Zak transform (DZT) [13],[14]. Further, this
implementation can be achieved using the efficient discrete
Fourier transform of the sub-sampled sequence [13], which
makes this approach computationally efficient. The input-
output relation for DZT based OTFS (DZT-OTFS) is derived
in [14]. The bit error performance of DZT-OTFS has been
investigated in [15],[16], with the assumption of perfect chan-
nel knowledge at the receiver. Motivated by the above, in this
paper, we focus on DD channel estimation for DZT-OTFS
systems in channels with fractional DDs. For this, we adopt a
learning approach in the TF domain.

Recently, deep learning techniques have been widely used
in the field of wireless communications. Advances in the
hardware tailor made for training have resulted in lower testing
and deployment times. Deep neural networks (DNN) are being
used for the implementation of several wireless transceiver
functionalities including signal detection [17], beam tracking
[18], and channel prediction [19]. DNN based approaches
show robustness to model mismatches along with providing
complexity advantages [18].

In this paper, we propose a learning approach for DD
channel estimation in DZT-OTFS. Specifically, in the pro-
posed approach, we learn a delay-Doppler matrix (DDM) in
the estimation algorithm that captures the effect of channel
delays and Dopplers through training instead of analytically
computing it explicitly. This results in a significant reduction
in the computational complexity without compromising much
on the performance. A key novelty in the proposed approach
lies in the way we learn this matrix. We observed that learning
the DDM directly in the DD domain is not favorable for
training because of the large swing in the magnitude of the
elements of the matrix. This can be seen in Fig. 1a where the
swing is in the range of about -30 dB to 10 dB. Whereas, the
magnitude swing is much less if the DDM is considered in
the TF domain (see Fig. 1b where the magnitude swing is in
the range of about -5 dB to 0 dB), and this is favourable for
training. Therefore, we train the DDM in the TF domain and
take the symplectic finite Fourier transform (SFFT) to obtain
the trained matrix in the DD domain. Our simulation results
show that the proposed TF learning based channel estimation
achieves almost the same performance as that of a state-of-
the-art algorithm in the literature [8], but at a significantly
lesser complexity. This shows that a judicious adoption of
learning approach for the problem at hand can yield efficient
solutions. Once trained, the proposed DNN architecture is
found to achieve robust performance under various channel



(a) DD domain (b) TF domain

Fig. 1: Magnitude of elements of DDM in log scale in DD
and TF domain.

conditions. The achieved complexity reduction and robustness
make the proposed approach practically appealing.

The rest of the paper is organized as follows. the DZT-OTFS
system model is presented in Sec. II. The proposed TF learning
approach for DD channel estimation is presented in Sec. III.
Results and discussions are presented in Sec. IV. Conclusions
are presented in Sec. V.

II. DZT-OTFS SYSTEM MODEL

Figure 2 shows the block diagram of DZT-OTFS system.
Zx ∈ AM×N is the DD domain frame of information symbols
to be transmitted, where M and N are the number of delay and
Doppler bins, respectively, and A is the modulation alphabet.
The MN symbols are mounted on the DD grid in locations
given by (mT

M , n∆f
N ), m = 0, · · · ,M − 1, n = 0, · · · , N −

1, where ∆fT = 1, M∆f = B, and B is the bandwidth
available for communication. Zx is converted to time domain
(TD) using inverse DZT (IDZT) before transmission. The TD
signal vector x ∈ CMN×1 is obtained from Zx using IDZT
as [14]

x[m+ nM ] =
1√
N

N−1∑
s=0

Zx[m, s]ej2π
ns
N , (1)

which can be written as

x = vec(ZxF
H
N ), (2)

where FN is the N -point unitary discrete Fourier transform
(DFT) matrix and vec(·) is the vectorization operation. Cyclic
prefix (CP) of length LCP is added to x to obtain the vector
s as

s[u] =

{
x[(u)MN ], −LCP ≤ u ≤ MN − 1

0, otherwise,

which is converted to a continuous time signal as

s(t) =

MN−1∑
u=−LCP

s[u]g(t− uTs), (3)

where g(t) is the transmit pulse and Ts = 1/B. The signal s(t)
is transmitted through a time-varying channel with impulse
response h(τ, ν) =

∑I
i=1 αiδ(τ − τi)δ(ν−νi), where I is the

number of paths, and αi, τi, and νi are the channel coefficient,

Fig. 2: Block diagram of the DZT-OTFS system.

delay, and Doppler of the ith path, respectively. The received
signal, r(t), at the receiver is

r(t) =

I∑
i=1

αis(t− τi)e
j2πνit + w(t), (4)

where w(t) is the additive noise. The received signal is passed
through the matched filter, whose output is given by

y(t) =

∫ ∞

−∞
r(τ)g∗(τ − t)dτ. (5)

Using (3) and (4) in (5), we get

y(t) =

I∑
i=1

αi

MN−1∑
u=−LCP

s[u]∫ ∞

−∞
g(τ − uTs − τi)g

∗(τ − t)ej2πνiτdτ + w̃(t), (6)

where w̃(t) is the match filtered noise. Assuming that the
maximum Doppler, max

i
{νi}, is much less than the bandwidth

of the pulse, and denoting f(t) =
∫
g(τ)g∗(τ− t)dτ , y(t) can

be approximated as [14]

y(t) ≈
I∑

i=1

αie
j2πτiνi

MN−1∑
u=−LCP

s[u]ej2πνiuTsf(t− uTs − τi)

+w̃(t). (7)

For the considered g(t), f(t) can be approximately bounded
to finite duration in time [14]. The signal y(t) is sampled at
rate 1/Ts to obtain the discrete signal

y[v] =

I∑
i=1

αie
j2πτiνi

MN−1∑
u=−LCP

s[u]ej2πuνiTsfi[v−u]+ w̃[v], (8)

where fi(u) = f(uTs−τi) is assumed to have a finite support
satisfying the condition that the range of the support is much
less than MN . Removing the CP, (8) can be approximated as

y[v] ≈
I∑

i=1

αie
j2π

liki
MN

MN−1∑
u=0

s[u]ej2πu
ki

MN f̃i[v − u] + w̃[v],

(9)



where f̃i[u] is the periodic version of fi[u] with period MN ,
ki = νiMNTs ∈ R, and li =

τi
Ts

∈ R+. Equation (9) can be
written in a vectorized form as

y =

I∑
i=1

αie
j2π

liki
MN [(x · vi)⊛ f̃i] + w̃, (10)

where vi[u] = ej2πu
ki

MN , x · vi denotes the element-wise
product of x and vi, and ⊛ is the circular convolution operator.
The vector y is transformed to DD domain using DZT to
obtain Zy as [14]

Zy[m,n] =
1√
N

N−1∑
k=0

y[m+ kM ]e
−j2πnk

N . (11)

Substituting y in (11) and using modulation and circular
convolution properties of DZT [13], Zy can be written as

Zy =

I∑
i=1

αie
j2πτiνiZyi

+w, (12)

where

Zyi
[m,n] =

M−1∑
l=0

(
N−1∑
k=0

Zx[l, k]Zvi [l, n− k]

)
Zf̃i

[m− l, n],

(13)
and Zvi and Zf̃i

are Zak transforms of vi and f̃i, respectively.

A. Vectorization of input-output relation

Let zy, zyi
, zx denote the vectorized forms of Zy,Zyi

,Zx,
respectively, i.e., the (nM + m)th element in the vector is
the [m,n]th entry in the corresponding matrix. The vectorized
form of input-output relation between zyi and zx is derived
as follows.

Let A ∈ CM×N and B ∈ C2M−1×N be two matrices with
entries A[m,n] = Zvi [m,n] and B[m,n] = Zf̃i

[m − (M −
1), n], m = 0, · · · ,M − 1, n = 0, · · · , N − 1. Also, let
RN ∈ CN×N be a reversal matrix and PN be a basic circulant
permutation matrix of size N [20]. Define a matrix H

(i)′

q ∈
CM×N as

H(i)′

q [m,n] =

{
A[m,n], if m = [q]M

0, otherwise,
(14)

for q = 0, 1, · · · ,MN − 1. Here, [·]M denotes the modulo-M
operation. Let H(i)

1 ∈ CMN×MN be a matrix whose qth row
is filled with vec(H(i)′

q RNP
⌊ q
M ⌋+1

N ), where ⌊·⌋ denotes the
floor operator. Define H

(i)′′

q ∈ CM×N as

H(i)′′

q [m,n] =

{
B[m+ [q]M , n], if n = ⌊ q

M ⌋
0, otherwise.

(15)

Also, define H
(i)
2 ∈ CMN×MN whose qth row is filled with

vec(RMH
(i)′′

q ). Finally, (13) and (12) can be vectorized as

zyi
= H

(i)
2 H

(i)
1 zx (16)

and

zy =

I∑
i=1

αie
j2π

liki
MN zyi

, (17)

respectively. Here, the matrix H
(i)
1 effectively carries out

element-wise multiplication with vi and H
(i)
2 carries out the

circular convolution with f̃i in (10).

III. PROPOSED TF LEARNING BASED DD CHANNEL
ESTIMATION

In this section, we present the pilot frame architecture,
describe the iterative channel estimation algorithm in [8] by
adapting it for DZT-OTFS, and present the proposed TF
learning approach that offers significant complexity reduction.

To estimate the DD domain channel at the receiver, a known
pilot frame is transmitted. We consider a pilot frame consisting
of a pilot symbol at the center and zeros elsewhere, i.e.,

Zx[m,n] =

{√
MNEp, if m = M

2 , n = N
2

0, otherwise,
(18)

Channel estimation algorithm: Equation (17) can be writ-
ten in an alternate form as

zy =

I∑
i=1

giαi +w = Gα+w, (19)

where gi = ej2π
liki
MN H

(i)
2 H

(i)
1 zx ∈ CMN×1, G =

[g1(l1, k1),g2(l2, k2), · · · ,gI(lI , kI)] ∈ CMN×I , and α =
[α1, α2, · · · , αI ]

T ∈ CI×1. The matrix G is referred to as
the delay-Doppler matrix (DDM) as it captures the effect of
the channel delay and Doppler on the transmitted symbols.
The maximum likelihood (ML) solution for the three tuple
estimation is then given by

(̂l, k̂, α̂) = argmin
l,k,α

∥zy −G(l,k)α∥22, (20)

where ∥ · ∥2 denotes 2-norm. This is an estimation problem in
three variables. To reduce the complexity, we first solve for α
given (l,k) as

α =
[
GH(l,k)G(l,k)

]−1
GH(l,k)zy. (21)

Now, to estimate k and l, given α, (20) can be solved to obtain

l̂, k̂ = arg max
l,k

[
Θ(G)

]
, (22)

where G = zHy G(l,k)
(
GH(l,k)G(l,k)

)−1
GH(l,k)zy .

Substituting l = l̂ and k = k̂ in (21), we obtain the estimate
of the channel coefficient vector α̂.

The channel estimation algorithm proceeds in a path-wise
fashion, i.e., the delay and Doppler values of pth path (1 ≤ p ≤
Pmax) are estimated before the values of (p+1)th path values
are estimated. Since the knowledge of the number of paths is
not assumed to be known, a maximum of Pmax paths are esti-
mated. The estimates of lp and kp for the pth path is carried out
in two steps. First, a coarse estimation (integer estimation) is
carried out to obtain l̃p, k̃p. This is followed by an iterative fine
estimation step where the fractional estimation of the delay and
Doppler is carried out to obtain l̂p, k̂p. In each of the steps,
the cost function in (22) is maximized over different search
ranges as described below. The algorithm begins by initializing
G(l,k) = [g1(l1, k1) g2(l2, k2) · · · gPmax

(lPmax
, kPmax

)] =
0MN×Pmax

.



Coarse estimation: The search range in this step is defined
as G = L ⊗ K, where L = {0, 1, · · · , ⌈lmax⌉},K =
{−⌈kmax⌉, · · · , 0, · · · , ⌈kmax⌉}, lmax = max

i
{li}, kmax =

max
i

{ki}, and ⊗ denotes the Cartesian product of two sets.
For estimating the parameters of the pth path, gp(lp, kp) is
computed for all (lp, kp) in G and the coarse estimates are
obtained using (22) by maximizing the cost function over the
search range.
Iterative fine estimation: Following the coarse estimation step,
the search area is now defined around the optimal coarse value
(for s = 1) or the fine estimate obtained in the previous
iteration of the fine estimation step (for s > 1), given by

I(s) =

{{
l(s−1)
p − 5

10s
, l(s−1)

p − 4

10s
, · · · , l(s−1)

p +
5

10s

}

⊗
{
k(s−1)
p − 5

10s
, k(s−1)

p − 4

10s
, · · · , k(s−1)

p +
5

10s

}}
, (23)

with s denoting the iteration number in the fine estimation step.
To begin the iterations, s = 1, l(0)p = l̃p, and k

(0)
p = k̃p. A

similar procedure as in coarse estimation step is followed using
I(s) as the search range for obtaining the first fine estimate
(l

(1)
p , k

(1)
p ), following which s is incremented by 1. Note that

the search resolution becomes finer as s increases. Next, for
s > 1, the search area is centered over the newly obtained
fine estimate with finer resolution. This iterative procedure
is stopped when a predefined value for s is achieved, i.e.,
s = smax, and (l̂p, k̂p) = (l

(smax)
p , k

(smax)
p ).

Stopping criterion: The algorithm stops once Pmax paths
have been estimated or ∥z(p)c − z

(p−1)
c ∥22 < ϵ, where z

(p)
c =

G(̂l, k̂)α̂(̂l, k̂).

A. Proposed TF based learning approach using DNN

In the channel estimation algorithm described above, the
coarse estimation step and the iterative fine estimation step
require multiple estimations using cost function in (22), which
requires the computation of the DDM, G. Computing the
columns of G, gi(li, ki), for each path involves high com-
plexity. Therefore, in order to reduce the complexity, we
propose to design and train a network to learn the columns
of G. Specifically, we note that the DDM is a function of
delay and Doppler

(
i.e., each column of DDM, g(l, k), has

a one-to-one relation to (l, k)-tuple
)
, and we use DNNs to

learn this one-to-one relation. It turns out that the proposed
learning/training architecture is able to effectively learn this
relation accurately, offering complexity benefit in the process.
The architecture and training methodology are presented in
the following sections.

1) Architecture: Figure 3 shows the block diagram of
the proposed TF learning approach. The architecture consists
of two architecturally identical neural networks, DNN1 and
DNN2, which receive the delay and Doppler indices (̆l, k̆) as
input. The input is a matrix of size S × 2, where S is the
cardinality of G for coarse estimation step or the cardinality
of I(s) for the sth iteration of the fine estimation step and
l̆ = ζl/lmax, k̆ = ζk/kmax. The division by lmax (kmax) is
carried out to normalize the values of delay (Doppler) indices

Fig. 3: Proposed TF learning architecture for learning G.

between 0 and 1 (−1 and 1)1. Further, the multiplication by
ζ is carried out to magnify small changes in the delay and
Doppler indices in the training and test data. The vectors
l and k are obtained from the search area G or I(s). The
input matrix is passed through DNN1 and DNN2. DNN1
(DNN2) is trained to output the real (imaginary) part of the
column, ℜ{GTF

col } ∈ RS×MN (ℑ{GTF
col } ∈ RS×MN ), of

the DDM in TF domain. The real and imaginary parts are
combined and reshaped to obtain GTF

col ∈ RS×M×N . Each
M × N matrix in GTF

col is then converted to DD domain
from TF domain using SFFT and vectorized column-wise to
obtain an MN -length vector. These vectors form the rows of
Gcol ∈ CS×MN . The DNN1 and DNN2 are trained so as to
provide g(l[t],k[t]) ∈ C1×MN as the tth row of Gcol as output
for (̆l[t], k̆[t]) ∈ R1×2 as the tth row in the input matrix.

Architectures of DNN1 and DNN2 are comprised of fully
connected layers. For each layer, the output dimension is
twice the input dimension, i.e., the ith layer (i = 1, 2, · · · )
of DNN1 and DNN2 has input and output dimensions 2i

and 2i+1, respectively. Number of layers, NL, in DNN1 and
DNN2 are determined by the choices of M and N , such that
the last layer has input dimension 2NL and output dimension
min(2NL+1,MN), with 2NL < MN and 2NL+1 ≥ MN .
For each fully connected layer except the last layer, a rectified
linear unit (ReLU) activation function is used and a linear
activation function is used for the last layer to allow the output
of DNN1 and DNN2 to span R.

2) Training methodology: Training data is obtained by
generating (l, k) tuples and the corresponding g(l, k) vectors
using g(l, k) = ej2π

lk
MN H2H1zx (see (19)). The vectors

g(l, k) ∈ CMN×1 are reshaped into matrices of size M ×N
and converted to TF domain using ISFFT, following which
they are vectorized to obtain gTF(l, k) ∈ C1×MN . To train
the network, the tuples (l, k) are fed as input to the DNN1
and DNN2 to generate the output. Training is carried out
using an Adam optimizer to minimize the mean square error
loss evaluated between the output of the DNN1 (DNN2) and
ℜ{gTF(l, k)} (ℑ{gTF(l, k)}). The other hyper parameters
used while training are presented in Table I. We note that this

1The normalization of values between 0 and 1, and -1 and 1 for delay and
Doppler indices, respectively, are done so that ranges are similar, which aids
training. Without this normalization, delay indices would span 0 to lmax and
Doppler indices would span −kmax and kmax. Note that lmax and kmax

need not be equal.



Hyper parameter Value
Batch size 40000

Mini batch size 8000
Number of epochs 40000

Learning rate 0.001, multiply by 0.9 every 4000 epochs
Number of training samples 325000

TABLE I: Hyper parameters used while training.

training has to be carried out offline, only once. Subsequently,
the network weights are stored. During test time, the same
trained weights are used for both coarse and fine estimation
steps of the channel estimation algorithm.

IV. RESULTS AND DISCUSSIONS

This section presents the performance of the proposed TF
learning based channel estimation algorithm. A DZT-OTFS
system with M = 64, N = 32 is considered. Square-root
raised cosine pulse with roll-off factor 0.5 is used as the
transmit and receive pulse. Two parameter sets are considered
for the simulation: For the first set, ∆f = 3.75 kHz, I = 4
with uniform power delay profile (PDP), delays are uniformly
distributed in (0, τmax], τmax = 0.133 ms, and νmax = 937 Hz.
The second set, a more practical scenario, considers Vehicular
A (VehA) channel model [21] with ∆f = 156.25 kHz, and
νmax = 1700 Hz. For both the cases, Dopplers are generated
using Jakes’ Doppler spectrum, νi = νmaxcos(θi), where θi is
uniformly distributed in (0, 2π], and carrier frequency fc = 4
GHz. Further, the following algorithm parameters are chosen:
Pmax = 15, nmax = 2, and ϵ = 20σ2, where σ2 is the variance
of noise. For the networks DNN1 and DNN2, NL = 10
and ζ = 103. A single training is carried out and the same
trained network is used during the testing phase in both the
scenarios which shows the network’s generalizability. Pilot
signal-to-noise ratio (SNR) is taken to be the same as data
SNR. Normalized mean square error (NMSE) is computed as
∥Ĥ−H∥2

F

∥H∥2
F

, where Ĥ is the channel matrix obtained using the

estimated (α̂, l̂, k̂) and ∥ · ∥F denotes the Frobenius norm.
DD domain vs TF domain training: The NMSE and BER

performances of the channel estimation algorithm using learn-
ing in DD domain and TF domain are presented in Figs. 4
and 5, respectively. It is seen that with DD domain learning,
both NMSE and BER performances are poor. This is because
the large swing in the absolute values of the G matrix entries
in the DD domain (see Fig. 1a) results in ineffective training.
Since the same network needs to cater to both the high and
low values, the training accuracy and thereby the NMSE and
BER performances is poor when trained in the DD domain.
Whereas, the performances are seen to significantly improve
with the proposed TF domain learning, which is a consequence
of the effective training achieved in the TF domain due to a
smaller swing in the absolute values in the TF domain (see
Fig. 1b). Further, it is also seen that the learning in the TF
domain achieves close to perfect channel state information
(CSI) performance.

NMSE and BER performance: The NMSE performance of
the proposed TF learning based channel estimation algorithm

Fig. 4: NMSE performance comparison between DD domain
learning and TF domain learning.

Fig. 5: BER performance comparison between DD domain
learning and TF domain learning.

is plotted as a function of pilot SNR in Fig. 6. The NMSE
performance obtained for uniform PDP using the estimation
algorithm in [8] and a modified maximum likelihood estima-
tion (M-MLE) algorithm in [4] is also added for comparison.
It is seen that for uniform PDP, the performance of the
proposed approach is quite close2 to that in [8]. Further, the
performance of M-MLE is observed to be worse than the
proposed approach. The NMSE performance of the proposed
approach with VehA PDP is also seen to perform closely
to that with uniform PDP. It is noted that the same trained
network works effectively for uniform PDP and VehA PDP
channel models, highlighting its generalizability. Next, Fig.
7 shows the BER performance of the algorithm in [8], M-
MLE algorithm in [4], and the proposed approach as a function
of SNR. The performance attained using perfect CSI is also
plotted for comparison. It is seen that BER performance close
to that with perfect CSI is achieved by the proposed method

2The performance of the proposed approach is slightly inferior compared
to that in [8] in Fig. 6. This is because [8] uses exact computation of the
DDM, whereas the proposed approach learns the DDM, which is a close
approximation of the exact DDM. This difference between the exact and learnt
DDM translates to a slight performance degradation.



Fig. 6: NMSE performance of the algorithm in [8], M-MLE
[4], and the proposed algorithm for different PDPs.

Fig. 7: BER performance of the algorithm in [8], M-MLE [4],
and the proposed algorithm for different PDPs.

at a much reduced complexity, which is detailed below.
Complexity: The run time complexities required for the

generation of g(l, k) using 1) the proposed TF learning ap-
proach and 2) the exact analytical computation, i.e., computing
g(l, k) = ej2π

lk
MN H2H1zx, are presented here. We obtained

the run time complexities using both the approaches on the
same machine for fair comparison. The proposed approach
takes about 0.04 seconds (including the conversion to DD
domain) to generate g(l, k), while the exact analytical compu-
tation takes about 0.4 seconds. This is a significant reduction
in complexity. We note that while the analytical computation
gives exact values, the proposed method gives the values
through learning which need not be exact. Yet, the perfor-
mance achieved by the proposed learning is quite close to
those obtained using the exact analytical computation. The one
order complexity reduction achieved by the proposed learning
without compromising much on performance is substantial and
is quite attractive for practical implementation.

V. CONCLUSIONS

We proposed a novel TF learning based channel estimation
algorithm for DZT-OTFS systems with fractional DDs. The

training of the network was carried out in the TF domain
instead of DD domain, which yielded better training accuracy
and learning performance. The trained network was shown
to generalize well across different channel models. Numerical
results demonstrated that the proposed TF learning approach
achieved good NMSE and BER performance while being
computationally efficient. The proposed learning approach for
embedded pilot frames and general pulse shapes can be carried
out as future work.
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