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Abstract—In this paper, we consider signal detection in nt×nr

underdetermined MIMO (UD-MIMO) systems, where i) nt >

nr with a overload factor α = nt

nr

> 1, ii) nt symbols are

transmitted per channel use through spatial multiplexing, and
iii) nt, nr are large (in the range of tens). A low-complexity
detection algorithm based on reactive tabu search is considered.
A variable threshold based stopping criterion is proposed which
offers near-optimal performance in large UD-MIMO systems at
low complexities. A lower bound on the maximum likelihood
(ML) bit error performance of large UD-MIMO systems is also
obtained for comparison. The proposed algorithm is shown
to achieve BER performance close to the ML lower bound
within 0.6 dB at an uncoded BER of 10−2 in 16× 8 V-BLAST
UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML
performance results are shown for 32× 16, 32× 24 V-BLAST
UD-MIMO with 4-QAM/16-QAM as well. A performance and
complexity comparison between the proposed algorithm and the
λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO
shows that the proposed algorithm achieves almost the same
performance of λ-GSD but at a significantly lesser complexity.

Keywords – Underdetermined MIMO systems, near-optimal performance,

low-complexity detection, tabu search, generalized sphere decoder.

I. INTRODUCTION

MIMO wireless systems with large number of antennas are

getting increased attention because of their high spectral

efficiency advantage [1],[2]. Gigabit transmissions at high

spectral efficiencies (tens of bps/Hz) using large number of

antennas are being considered in emerging wireless stan-

dards; e.g., IEEE 802.11ac (Gigabit WiFi) and LTE-A con-

sider 8 × n, n ≤ 8 and 16 × m, m ≤ 16 MIMO architec-

tures. With spatial multiplexing, such systems will become

underdetermined, where the vector of observed statistics

lie in a space of dimension smaller than the number of

unknowns. Our focus in this paper is on achieving near-

optimal detection performance in underdetermined MIMO

(UD-MIMO) systems with large number of antennas.

We consider underdetermined nt×nr MIMO systems, where

i) nt > nr with a overload factor α = nt

nr

> 1, ii)
nt symbols are transmitted per channel use through spatial

multiplexing, and iii) nt, nr are large (in the range of tens).

Achieving near-optimal detection in such underdetermined

systems is of interest. Detection in UD-MIMO systems with

small number of antennas has been reported in the literature

[3]-[7]. In particular, the generalized sphere decoding (GSD),

first proposed by Damen et al in [3], solved the closet

lattice point problem with a complexity exponential in the

difference between the number of equations and unknowns.

Subsequently, faster versions of GSD were proposed by

Dayal and Varanasi in [4], and Yang et al in [5]. In [6],

Wong and Paulraj have proposed a geometrical approach to

achieve near maximum-likelihood (ML) performance in UD-

MIMO systems; near-ML BER performance was shown for

2 × 1, 3 × 1, 3 × 2 and 4 × 3 MIMO. More recently, in

[7], Wang and Le-Ngoc proposed an approach (termed as

λ-GSD) where the underdetermined problem is transformed

into full-column-rank one so that standard SD can be directly

applied on the transformed problem; here again, the systems

considered are small (up to 6 transmit antennas).

In this paper, we propose a low-complexity detection al-

gorithm that achieves near-ML performance in UD-MIMO

systems with tens of antennas. The algorithm is based on

reactive tabu search (RTS) [8],[9] in conjunction with a

threshold based stopping criterion. In order to compare its

BER performance with that of ML, we develop a low

complexity lower bound on ML performance. The bound is

important for comparison purposes because obtaining exact

ML performance through either brute-force exhaustive search

or sphere decoding is prohibitively complex for more than

32 real dimensions. Our simulation results show that the

proposed algorithm achieves BER performance close to the

ML lower bound for 16 × 8, 16 × 12, 32 × 16, 32 × 24 V-

BLAST UD-MIMO with 4-QAM/16-QAM. We also present

performance and complexity comparison between the pro-

posed algorithm and the λ-GSD algorithm in [7]. Because

of its low complexity, the proposed algorithm, referred to

as enhanced RTS (ERTS) algorithm, scales well for large

number of antennas whereas the λ-GSD does not scale well

due to its high complexity.

II. SYSTEM MODEL

Consider an underdetermined V-BLAST MIMO system with

nt transmit and nr receive antennas, where nt > nr and the

overload factor α = nt

nr

> 1. The transmitted symbols take

values from a modulation alphabet A. Let xc ∈ A
nt denote

the transmitted vector. Let Hc ∈ C
nr×nt denote the channel

gain matrix, whose entries are assumed to be i.i.d. Gaussian

with zero mean and unit variance. The received vector yc is

yc = Hcxc + nc, (1)

where nc is the noise vector whose entries are modeled as

i.i.d. CN (0, σ2). The goal is to obtain an estimate of xc,

given yc and Hc. We assume Hc is known at the receiver.

The ML detection rule is given by

�xML = arg min
xc∈Ant

�yc −Hcxc�
2 = arg min

xc∈Ant

φ(xc), (2)
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where φ(xc)
�
= xH

c HH
c Hcxc − 2�

�
yH

c Hcxc

�
is the ML

cost. We will use a real-valued system model corresponding

to (1), i.e., use the system model y = Hx + n, where

H =

�
�(Hc) −�(Hc)
�(Hc) �(Hc)

�

, y =

�
�(yc)
�(yc)

�

,

x =

�
�(xc)
�(xc)

�

, n =

�
�(nc)
�(nc)

�

. (3)

III. PROPOSED ALGORITHM FOR UD-MIMO DETECTION

Tabu search, attributed to F. W. Glover [8],[9], is a math-

ematical optimization method that can be used to solve

combinatorial optimization problems. It is a heuristic method

which is found to be very effective when the problem size

becomes large to an extent that the computational burden

of finding the exact solution becomes prohibitive given its

combinatorial complexity. Tabu search methods have yielded

impressive successes in a wide range of application domains

including multiuser detection in CDMA [10] and MIMO

detection [11],[12]. In [11],[12] reactive tabu search (RTS)

is shown to achieve good performance in V-BLAST MIMO

systems with tens of antennas, but only in fully determined

and overdetermined scenarios (i.e., for nt ≤ nr). However,

its performance in UD-MIMO systems is far from optimal.

Here, we propose an enhanced RTS algorithm which employs

a variable threshold based stopping criterion to improve

performance in UD-MIMO scenarios.

The RTS algorithm in [11] starts with an initial solution

vector, defines a neighborhood around it (i.e., defines a set of

neighboring vectors based on a neighborhood criteria), and

moves to the best vector among the neighboring vectors (even

if the best neighboring vector is worse, in terms of ML cost

�y − Hx�2, than the current solution vector); this allows

the algorithm to escape from local minima. This process

is continued for a certain number of iterations, after which

the algorithm is terminated and the best among the solution

vectors in all the iterations is declared as the final solution

vector. MMSE solution vector is used as the initial vector.

Alternately, running the RTS algorithm multiple times, each

time with a different random initial vector, and choosing the

best among the resulting solution vectors can be done [12].

A. Motivation for the Proposed Algorithm

The motivation for the proposed algorithm arises from the

observed characteristics of the distribution of the ML cost

of the output vector from the RTS algorithm in UD-MIMO

when the output is incorrect/correct. We observed that the

chances of the ML cost of the incorrect RTS output being low

are more in underdetermined MIMO than in fully determined

MIMO. This observation is illustrated in Figs. 1(a) and

1(b), where histograms of the ML cost of incorrect/correct

output from RTS with random initial vector for 8 × 8 fully

determined MIMO and 8 × 4 underdetermined MIMO are

compared at an SNR of 10 dB.

In the algorithm in [12], a fixed threshold of Θ = nrσ
2 +

2
√

nrσ4 was used to compare with the RTS output ML
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Fig. 1. Histograms of the ML cost of the output vector from RTS with
random initial vector when output is incorrect/correct for a) 8 × 8 fully
determined MIMO and b) 8× 4 underdetermined MIMO. SNR = 10 dB.

cost for limiting the number of restarts. This fixed threshold

in the stopping criterion is a good choice for the case of

fully determined MIMO since the chances of the ML cost of

incorrect RTS output being lower than Θ is very small, as

can be seen in Fig. 1(a). However, since the incorrect outputs

have lower ML costs than Θ = nrσ
2 + 2

√
nrσ4 with high

probability in UD-MIMO (as can be seen in Fig. 1(b)), the

resulting performance can suffer if this Θ value is used in

UD-MIMO (we will see this in the BER plots later).

One way to address the above problem is to fix Θ at a

much lower value. But this would result in a large number

of restarts leading to a significantly increased complexity.

Clearly, to improve performance, we need more number

of restarts when the RTS output is not trustworthy, i.e.,

when its ML cost lies in the region where the chances

of incorrect decision is not small. So, an intuitive way to

improve performance without paying much in complexity

would be to start the algorithm with a low value of threshold

and increase it in subsequent restarts. The threshold has to be

upper-bounded as high values of threshold can cause decision

errors. The above ideas are incorporated in the proposed

algorithm, referred to as enhanced RTS (ERTS) algorithm,

which is presented in the following subsection.

B. Proposed ERTS Algorithm

The following three parameters are defined to limit the

number of RTS searches in the ERTS algorithm: MAX, p,
Θ(n). The ERTS algorithm works as follows.

Initialize n = 0.

• Step 1: Increment n by 1. Choose a random initial

vector. Run RTS algorithm in [11] using this initial

vector. Obtain corresponding solution vector.

• Step 2: Check if n is less than MAX. If yes, go to Step

3; else go to Step 5.



• Step 3: If the minimum of the ML costs of the solution

vectors obtained so far is less than Θ(n), then output the

solution vector from Step 1 as the final solution vector

and stop; else go to Step 4.

• Step 4: Let L denote the number of distinct solution

vectors obtained from Step 1 so far. If L/n ≤ p, go to

Step 5; else go to Step 1.

• Step 5: Output the best (in terms of ML cost) among

the solution vectors obtained so far and stop.

The threshold Θ(n) is varied in each restart as per the

following equations:

Θ(n) = nrσ
2 + K(n)

p
nrσ4, (4)

and

K(n) = 0, n ≤ T

= 0.5, T < n ≤ 2T

= 1, 2T < n ≤ 3T

= 1.5, 3T < n ≤ 4T

= 2, n > 4T, (5)

where T = �(5q(α−1))�, q = log
2
M for M -QAM alphabet.

The threshold comparison in Step 3 reduces the number of

searches and hence the complexity. The reason for doing

Step 4 is to reduce complexity in realizations where �n�2

happens to be greater than Θ(n). We have used p = 0.05
and MAX=500 in the simulations, which are found to result

in good performance. In order to compare the performance

achieved by the ERTS algorithm in large dimensions relative

to ML performance, we propose to obtain a lower bound on

ML performance as outlined in the following section.

IV. A LOWER BOUND ON ML PERFORMANCE

We obtain a lower bound on the ML bit error performance

using the algorithms in [11] and [12] with suitable neighbor-

hood definition and error counting, as follows.

• Step a): Run the RTS algorithm in [11] using the

transmitted vector x as the initial vector, and obtain the

output vector. Denote this output vector by xA.

• Step b): Run the algorithm in [12] with multiple restarts

using random initial vectors and obtain the output vector.

Denote this vector by xB .

• Step c): Define Nx as the m-symbol neighborhood1 of

x. Choose the best vector in Nx which has the least ML

cost. Denote this vector by xN .

• Step d): Choose the best vector among xA, xB , and xN

in terms of ML cost. Denote this vector as xout.

Error Counting for Bounding:

Let eout denote the number of symbol errors in xout com-

pared to x. For each realization in the simulations, x, xout,

and hence eout are known. Also, let xML denote the true

ML vector, and eML denote the number of symbol errors in

xML (which we do not know, and seek to get a lower bound

1A vector is said to be in the m-symbol neighborhood of x, if it differs
from x in i, i ≤ m coordinates.

on). Note that the vector xout may or may not lie in the

m-symbol neighborhood of x.

Since xout has the least ML cost among all the tested vectors,

if xout /∈ Nx, then xML /∈ Nx. Also, by the definition of Nx,

the number of errors in xout and xML are lower bounded

by m + 1, i.e., eout, eML ≥ m + 1. So, in the simulations,

if eout ≥ m + 1 in a given realization, then take eML as

m + 1 as a lower bound on the number symbol errors in the

ML vector. On the other hand, if xout ∈ Nx, which implies

that eout = k, 1 ≤ k ≤ m, then two cases are possible: 1)

xout is the ML vector, and 2) xout is not the ML vector. In

case 1) eout = eML = k, and in case 2) eout = k and xML

being outside Nx, eML ≥ m + 1. So, in the simulations, if

eout = k, k ≤ m, then take eML as k as a lower bound.

Lastly, if eout = 0, then xout = x which may or may not

be the ML vector; in such a realization, take eML = 0 as a

lower bound. In summary, in the simulations,

• if eout = k, k ≤ m, then take eML as k, and
• if eout ≥ m + 1, then take eML as m + 1,

which results in a lower bound on ML symbol error perfor-

mance. Since the number of symbol errors is a lower bound

on the number of bit errors, it is a bit error bound as well.

A. Results on the ML Lower Bound

To illustrate the tightness of the proposed ML bound, we

evaluated the proposed bound (outlined as above) as well as

the ML performance (obtained through simulation of λ-GSD
in [7]) for 16 × 8 V-BLAST UD-MIMO with 4-QAM. The

results are shown in Fig. 2. Plots for the proposed bound are

shown for m = 1, 2, 3, 4. In addition to the proposed bounds,

we plot the ML lower bound in [11] for comparison. We

note that the bound in [11] is obtained using RTS algorithm

in [11] alone, whereas the proposed bound improves upon

it by using the restart algorithm in [12] (Step b) as well as

the m-symbol neighborhood of the transmitted vector (Step

c). It can be seen that the proposed bound gets increasingly

tighter as m increases. At 10−2 BER, the proposed bound for

m = 4 is close to within 0.5 dB from the ML performance,

whereas the bound in [11] is about 1.7 dB away from ML

performance. This illustrates the improved tightness of the

proposed bound.

Henceforth, we will use the proposed ML lower bound with

m = 4 for comparison with the performance of different de-

tection schemes for V-BLAST UD-MIMO with large number

of antennas (e.g., nt = 16, 32) reported next.

V. PERFORMANCE AND COMPLEXITY RESULTS

We evaluated the BER performance and complexity of the

proposed ERTS algorithm through simulations. Perfect chan-

nel state information is assumed at the receiver. The follow-

ing RTS parameters are used in the simulations: max rep =
75, max iter = 300, β = 0.1, P0 = 2 for 4-QAM, and

max rep = 250, max iter = 1000, β = 0.01, P0 = 2 for

16-QAM. We compare the performance and complexity of

the ERTS algorithm with those of λ-GSD in [7].
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4-QAM for m = 1, 2, 3, 4. ML performance obtained through λ-GSD in
[7] and ML lower bound in [11] are also shown.

In Fig. 3, we present the BER of i) proposed ERTS algorithm,

ii) restart RTS algorithm in [12], iii) λ-GSD in [7], and iv)
proposed lower bound in a 16 × 8 V-BLAST UD-MIMO

system with 4-QAM. It is observed that ERTS algorithm

performs better than the algorithm in [12] by about 1 dB

at a BER of 10−2. Also, ERTS performs almost the same

as λ-GSD (within 0.2 dB) at 10−2 BER. It is interesting to

note that the performance of both ERTS and λ-GSD are close

to the ML lower bound to within about 0.6 dB, illustrating

the near-optimality of the proposed ERTS algorithm. Impor-

tantly, the ERTS achieves this near-ML performance at a

significantly lesser complexity than λ-GSD. This complexity

advantage of ERTS over λ-GSD is illustrated in Figs. 4(a)

and 4(b), where the BER and complexity (in number of real

operations) of ERTS and λ-GSD are compared for V-BLAST

UD-MIMO with nt = 16, 4-QAM, SNR = 14 dB, and nr

varied from 8 to 14 (i.e., α varied from 2 to 1.14).
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In Fig. 4(a), we see that the performance of ERTS and λ-
GSD are almost the same. However, in Fig. 4(b), we see that
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the complexity of λ-GSD is about an order higher than that

of ERTS, particularly for large values of α. For example, in

16× 8 system, the complexity of ERTS is 3× 106, whereas

the complexity of λ-GSD is more than 6× 107.

The complexity attributes of ERTS and λ-GSD are further

highlighted in Fig. 5, where the variation of complexity as

a function of nt for a fixed overload factor of α = 2
�
i.e.,

nr = nt

2

�
and 4-QAM is plotted for different algorithms.

O(n2

t ), O(n3

t ), O(2nt) curves are also plotted for compar-

ison. It is seen that the order of complexity is polynomial

in nt for ERTS and the algorithm in [12]. Whereas, the λ-
GSD complexity is exponential in nt. This makes λ-GSD
prohibitive for large nt. In Fig. 6, the performance of ERTS

in 32×16 V-BLAST UD-MIMO with 4-QAM is shown along

with the performance of the algorithm in [12]. From Figs. 5

and 6, we see that while the complexities of ERTS and the

algorithm in [12] are roughly the same for 32 × 16 UD-

MIMO, the performance of ERTS is better by about 1.5 dB

at 10−2 BER. In addition, the ERTS is found to perform

close to the ML lower bound (within 1.5 dB at 10−2 BER).



10 11 12 13 14 15 16 17 18 19 20
10

−4

10
−3

10
−2

10
−1

10
0

Average received SNR (dB)

B
it
 E

rr
o
r 

R
a
te

Algo. in [12]
ERTS (prop.)
ML Lower Bound (prop)

Underdetermined
V−BLAST UD−MIMO
nt=32, nr=16, 4−QAM

Fig. 6. Performance of ERTS, algorithm in [12], and proposed ML lower
bound in 32×16 V-BLAST UD-MIMO with 4-QAM. λ-GSD performance
is not shown because of its prohibitive complexity for 32× 16 UD-MIMO.

In Fig. 7, we illustrate the BER of ERTS in 16×12, and 32×
24 UD MIMO systems (α = 1.33) with 4-QAM. For 16×12,
we compare ERTS performance with λ-GSD performance;

both ERTS and λ-GSD perform very close to the ML lower

bound. Exhaustive ML search and λ-GSD simulations for

nt = 32 are prohibitively complex. So we do not give λ-
GSD performance for comparison in 32 × 24 UD-MIMO.

Instead, we show the comparison with the ML lower bound.

It is seen that ERTS performs close to ML performance/lower

bound (close to within 0.25 dB at 10−2 BER).

In Fig. 8, the ERTS performance for 16-QAM in 16× 12 V-

BLAST UD-MIMO is shown. The λ-GSD performance and

the ML lower bound are also shown. The point to note here

again is that the SNR gap between ERTS and λ-GSD is only

0.2 dB at 10−2 BER (in favor of λ-GSD), but the complexity

gap is about two orders (in favor of the proposed ERTS).
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VI. CONCLUSIONS

We presented a tabu search based detection algorithm which

achieved improved performance in underdetermined MIMO

systems by exploiting multiple random restarts and a thresh-
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old based stopping criterion. Unlike the generalized sphere

decoder, the proposed algorithm scaled well for large number

of antennas. In addition, it exhibits near-optimal performance

with large number of antennas; e.g., near-ML BER perfor-

mance was shown for 16×12, 16×8, 32×24, 32×16 UD-

MIMO with 4-QAM/16-QAM. A proposed low-complexity

ML lower bound aided the assessment of the nearness of the

proposed algorithm performance to ML performance.
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