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Abstract—In this paper, we consider the problem of delay-
Doppler (DD) channel estimation in orthogonal time frequency
space (OTFS) modulation with fractional delays and Dopplers.
Exclusive use of DD bins in a frame for pilot symbols causes
rate loss. Superimposing pilot symbols over data symbols avoids
this rate loss. Our contributions in this paper are two-fold. 1)
We propose a sparse superimposed pilot (SSP) scheme where
pilot and data symbols are superimposed in a few bins and
the remaining bins carry data symbols only. This scheme offers
the benefit of better inter-symbol leakage profile in a frame,
while retaining full rate. 2) For the SSP scheme, we propose a
recurrent neural network based learning architecture (referred
to as SSPNet) trained to provide accurate channel estimates
overcoming the leakage effects in channels with fractional DD.
Simulation results show that the proposed SSP scheme along
with fractional DD channel estimation using the proposed SSPNet
performs better than a fully superimposed pilot scheme.

Index Terms—OTFS, fractional DD channel estimation, super-
imposed pilots, deep learning, recurrent neural networks.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is
known to offer robust performance in high-Doppler channels
[1], [2]. OTFS multiplexes information symbols in the delay-
Doppler (DD) domain. Also, time-varying channels when
viewed in the DD domain are almost time-invariant and sparse.
Pilot symbols are sent in OTFS frames for the purpose of
channel estimation in the DD domain at the receiver [3] -
[7]. The number of pilot symbols in an OTFS frame and
where they are placed in the frame influence the rate and
performance. Placement of pilot and data symbols in an
OTFS frame can be done in different ways. Three widely
considered pilot placement schemes in the OTFS literature
include exclusive pilot scheme [3], embedded pilot scheme
[4], and superimposed pilot scheme [5]. In the exclusive pilot
scheme, a frame is used exclusively for pilot without any data.
This scheme is simple, but it suffers rate loss because the
full frame goes as overhead. In the embedded pilot scheme,
each OTFS frame consists of a pilot symbol surrounded by
guard bins, and the remaining bins carry data symbols. The
guard bins are introduced to avoid pilot leakage into data
bins and vice versa. The number of guard bins is chosen to
accommodate the maximum delay and Doppler spreads of the
channel, and these guard bins contribute to some rate loss. In
superimposed pilot scheme, all bins carry data symbols and
pilot symbols are superimposed on all these data symbols,
i.e., there is no rate loss in this scheme and all frames are
full rate frames. Since pilots are superimposed in all the
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bins, we refer to this scheme in [5] as fully superimposed
pilot (FSP) scheme. A drawback with this scheme, however,
is the inter-symbol leakage/interference, which compromises
performance. Iterative cancellation based techniques have been
employed to alleviate this issue [5]. Another scheme in [6] uses
one pilot symbol superimposed at the beginning of the frame
for channel estimation. However the authors consider an ideal
pulse at the transmitter, which is not realizable.

In this paper, we consider an alternate full rate achieving
OTFS frame structure and devise a learning based channel
estimation scheme for the same. Further, we consider the
channel to have fractional DD which is practical. Our new
contributions in this paper are two-fold. First, we propose a
sparse superimposed pilot (SSP) scheme, where all the bins in
a frame carry data symbols, and, in addition, pilot symbols are
superimposed in some of these bins. This is in contrast with
the FSP scheme in [5], where all bins carry both pilot and data
symbols. The proposed scheme is motivated by the possibility
of achieving a better inter-symbol leakage/interference profile
while retaining full rate. Towards this, a lattice-type pilot
placement pattern is adopted. Also, since the pilot symbols
per frame are fewer in the proposed scheme, the energy per
pilot symbol is high for the same total pilot energy per frame.
Still, the leakage between the pilot and data symbols needs
to be handled. Towards this, we propose a recurrent neural
network (RNN) [8] based learning architecture trained to
provide accurate fractional DD channel estimates overcoming
the leakage effects. This forms the second contribution in
the paper. We use long short term memory (LSTM) [9], a
variant of RNN suited for learning dependencies in sequences.
We obtain optimum number of pilot symbols and power
allocation among pilot and data symbols through simulations.
Our results show that the proposed SSP scheme along with
channel estimation using the proposed SSPNet performs better
than the FSP scheme in [5]. This is significant given that
the FSP scheme in [5] assumes knowledge of the delay and
Doppler taps and estimates only the channel gains, whereas the
proposed SSPNet estimates all the delay taps, Doppler taps,
and channel gains.

II. SYSTEM MODEL
The OTFS system model with fractional DD and rectangular

transmit and receive pulses is derived as follows. Informa-
tion symbols, ADD[n,m]s, each drawn from a modulation
alphabet A are placed in an M × N DD grid given by{(

l
M∆f ,

k
NT

)
, l = 0, · · · ,M − 1, k = 0, · · · , N − 1

}
, where

M is the number of delay bins, N is the number of Doppler
bins, ∆f is the subcarrier spacing, and T = 1/∆f . Bin
sizes in the delay and Doppler domains are given by 1/M∆f



and 1/NT , respectively. The ADD[n,m]s are converted to TF
domain symbols ATF[k, l]s using the ISFFT operation, as

ATF[k, l] =
1√
MN

N−1∑
n=0

M−1∑
m=0

ADD[n,m]ej2π(
nk
N −ml

M ), (1)

for l = 0, · · · , N − 1 and k = 0, · · · ,M − 1. The TF
frame has duration NT and bandwidth M∆f , where T and
∆f are the sampling intervals along time and frequency,
respectively, satisfying T∆f = 1. Equation (1) can be
written in matrix form as ATF= FMADDFH

N ∈ CM×N ,
where FM [m,n] = (1/

√
M) exp(−j2πmn/M), FN [m,n] =

(1/
√
N) exp(−j2πmn/N), and (·)H represents the Hermi-

tian operation. The TF domain samples, ATF[k, l]s, are pulse
shaped using transmit pulse ptx(t) to generate a time domain
signal a(t). a(t) sampled at rate fs = M∆f can be expressed
in matrix form as At= PtxF

H
MATF= PtxA

DDFH
N , where At

contains MN samples of a(t). The sampling interval is set to
Ts = 1/M∆f = T/M as per symbol spaced sampling [4],
which results in M length samples of the transmit and receive
pulses. Ptx∈ CM×M is a diagonal matrix, whose diagonal
entries are obtained by uniformly sampling the transmit pulse
ptx(t) at time instants mT/M,m = 0, 1, · · · ,M − 1. We
consider the transmit pulse ptx(t) and the receive pulse at the
receiver prx(t) to be a rectangular pulse (i.e., Ptx = Prx =
IM , where IM is M ×M identity matrix).

Using the relation vec(XYZ) = (ZT ⊗ X)vec(Y), where
⊗ is the Kronecker product, the time domain vector at =
vec(At) can be written as

at = vec(At) = vec(PtxA
DDFH

N ) = (FH
N ⊗Ptx)a

DD, (2)

where aDD= vec(ADD) and the operation vec(Z) vectorizes
matrix Z. Let g(τ, ν) denote the complex baseband channel
response in the DD domain. Then,

g(τ, ν) =

L−1∑
i=0

giδ(τ − τi)δ(ν − νi), (3)

where L is the number of channel paths in the DD domain, δ
is the Kronecker delta function, and gi, τi, and νi denote the
complex channel gain, delay, and Doppler, respectively, corre-
sponding to the ith path. For fractional delays and Dopplers,
τi = αi+ai

M∆f and νi = βi+bi
NT , where αi = [τiM∆f ]⊙,

βi = [νiNT ]⊙, and [·]⊙ denotes the nearest integer rounding
operator with − 1

2 < ai, bi < 1
2 . At the OTFS receiver, the

time domain signal, b(t), is given by

b(t) =

∫
ν

∫
τ

g(τ, ν)a(t− τ)ej2πν(t−τ)dτdν + w(t), (4)

where w(t) represents the additive noise. A forward cyclic
shift matrix defined as

Π =


0 · · · 0 1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 ∈ RMN×MN , (5)

and ∆i = diag
{
exp

(
− j2π(αi+ai)(βi+bi)

MN

)
,

exp
(

j2π(1−(αi+ai))(βi+bi)
MN

)
, · · · ,

exp
(

j2π(MN−1−(αi+ai))(βi+bi)
MN

)}
model the delays

and Dopplers, respectively, so that the channel matrix
G ∈ CMN×MN can be obtained as

G =

L−1∑
i=0

gi∆iΠ
⌈αi+ai⌉. (6)

The proof of the above equation is relegated to Appendix
A. The discrete baseband vector bt ∈ CMN×1 of b(t) can be
represented as bt = Gat +w. The TF matrix BTF∈ CM×N is
derived from bt using Wigner transform, i.e., BTF= FMPrxBt,
where Bt = vec−1(bt) ∈ CM×N , and Prx = IM for the
considered rectangular receive pulse prx(t). The DD signal
matrix, BDD, is obtained from BTFas

BDD = FH
MBTFFN = PrxBtFN . (7)

This can be vectorized to obtain

bDD = (FN ⊗Prx)bt = (FN ⊗Prx)(Gat + w). (8)

Substituting (2) in (8), we get

bDD = (FN ⊗Prx)G(FH
N ⊗Ptx)a

DD + w′

= Geffa
DD + w′, (9)

where w′ = (FN⊗Prx)w and Geff ∈ CMN×MN = (FN ⊗
Prx)G(FH

N ⊗Ptx) is the effective channel matrix.

A. Proposed sparse superimposed pilot (SSP) scheme
The receiver needs the knowledge of the channel for data

detection. Pilot symbols are sent in OTFS frames for the
purpose of estimating the channel at the receiver. Pilot and
data symbols can be placed in a frame in different ways.
As mentioned in Sec. I, there is rate loss in exclusive pilot
scheme (where a frame consists of only a pilot symbol and
no data symbols [3]) and embedded pilot scheme (where a
frame consists of a pilot symbol surrounded by some guard
bins and the remaining bins are occupied by data symbols
[4]). Superimposed pilot schemes, where all bins are occupied
by data symbols and pilot symbols are superimposed on data
symbols, offer full rate frames. We consider two superimposed
pilot schemes that achieve full rate. The first scheme is the full
superimposed pilot (FSP) scheme proposed in [5], where all
bins carry both pilot as well as data symbols as shown in
Fig. 1(a). The second scheme is the one we consider in this
paper, which we call sparse superimposed pilot (SSP) scheme.
In the proposed SSP scheme, all bins carry data symbols and
pilot symbols are superimposed on only a few bins as shown
in Fig. 1(b). We sparsely place the pilots in a lattice-type
arrangement where pilot symbols are spaced Sτ bins apart
in the delay axis and Sν bins apart in the Doppler axis. The
advantages of doing this are that 1) by careful choice of Sτ and
Sν inter-symbol leakage/interference among the pilot symbols
can be alleviated, and 2) this allows for higher energy per pilot
symbol which helps to improve channel estimation accuracy,
as will be seen in Sec. IV.



Fig. 1: Pilot and data symbols placement in the proposed SSP
scheme and the FSP scheme in [5].

III. SSPNET - PROPOSED DD CHANNEL ESTIMATOR

In this section, we present the proposed SSPNet, an RNN
based DD channel estimator network for the proposed SSP
frame, its architecture, and training methodology. The mo-
tivation behind using RNN for channel estimation is that
the symbols received corresponding to each pilot symbol
transmitted can be viewed as a time sequence and RNNs are
typically chosen for learning dependency in time sequences.
Given a received SSP frame, the task is to obtain estimates of
the channel parameters (gi, τi, νi), i = 0, · · · , L − 1. Figure
2 shows the architecture of the proposed SSPNet for channel
estimation. The vector of received symbols in the DD domain,
bDD (see (9)), is used to generate the input vector to the
SSPNet, b′DD, as outlined below. Let npi

and mpi
denote the

Doppler and delay indices for the ith pilot symbol, respectively
(see Fig. 1b), where i = 1, · · · , Np, and Np is the number of
pilot symbols superimposed in the SSP frame. The channel
spreads the pilot symbols into their nearby DD bins. For the
ith pilot, the spread is contained within the indices npi

−nν to
npi

+nν on the Doppler axis, and mpi
to mpi

+mτ on the de-
lay axis. Here, mτ = ⌈τmaxM∆f⌉ and nν = ⌈νmaxNT ⌉ are
integers corresponding to maximum delay and Doppler spread,
respectively. The received symbols in the bins of the ith pilot’s
spread area in the frame are extracted and vectorized to obtain
the vector b′DD

i ∈ C(2nν+1)(mτ+1)×1. This is done for each
pilot. The concatenated vector b′DD ∈ CNp(2nν+1)(mτ+1)×1,
given by

b′DD = [b′DD
1 b′DD

2 · · · b′DD
Np

]T , (10)

is fed as the input to the SSPNet. The architecture of the
SSPNet is designed and trained such that the same network,
such that once trained, works for different Np values, SNRs,
and DD profiles. The SSPNet obtains an estimate of the
channel gain vector ĝ ∈ C(2nν+1)(mτ+1)×1. Among the
(2nν + 1)(mτ + 1) entries in this vector, only those channel
gain estimates whose absolute values are greater than a small
threshold ϵ are picked as valid paths, i.e.,

ĝi =

{
0, if |ĝi| ≤ ϵ

ĝi, otherwise.
(11)

This is required as the output of SSPNet for an invalid path
is close to but not equal to zero. The locations of the valid

Fig. 2: Proposed RNN based channel estimation scheme.

Parameter Value
Number of LSTM layers (P ) 3
LSTM hidden size (h) 50
LSTM input dimensions (c, s, 2)
LSTM output dimensions (c, s, 50)
FCNN input neurons 50
FCNN output neurons 2(2nν + 1)(mτ + 1)

TABLE I: Parameters of the SSPNet architecture.

paths are then used to obtain the estimates for delay (τ̂is) and
Doppler spreads (ν̂is) in the DD grid. Using the estimated
vectors ĝ, τ̂ , and ν̂, the estimated DD domain channel matrix
Ĝ is obtained, which is used for detection of data symbols.

Iterative scheme (SSP-I): To further improve the accuracy
of the channel estimates, the output of the detector, a′DD, is fed
back to the SSPNet for iteratively cancelling the effect of data
symbols in channel estimation as follows. A new DD frame
is constructed as

b′′DD = bDD − Ĝa′DD. (12)

The vector b′DD is computed again using (10) with b′′DD in
(12) as the received frame. This updated b′DD vector is given
as input to the SSPNet and another set of refined channel
estimates is obtained. This iterative procedure is repeated
Niter times or until a convergence criterion is met. The
procedure is stopped at ith iteration if ∥ĝ(i) − ĝ(i−1)∥2 < ζ,
i.e., the squared norm of the difference between the channel
estimate vector at the ith iteration and the (i − 1)th iteration
is less than ζ. The output of the detector at the end of the
iterations, denoted by âDD, is taken as the final detected output.

A. Architecture

The SSPNet architecture (see Fig. 2) consists of P layers
of long short-term memory (LSTM) [9], a variant of RNN.
The output of the LSTM layers is passed through a rectified
linear unit (ReLU) activation function, given by ReLU(x) =
max (0, x) , ∀x ∈ (−∞,∞), followed by a fully connected
neural network (FCNN) layer. The FCNN is employed to
reduce the dimension of the output of the LSTM network to
the required dimension. A linear activation function with range
(−∞,∞) is used at the output of the FCNN. Using (11), valid
paths are picked at the output of FCNN and ĝ thus obtained is
the estimated channel gain vector. The other parameters of the
SSPNet architecture are presented in Table I. The variable c is
the batch size and s = Np(2nν + 1)(mτ + 1) is the sequence
length. The output of the FCNN is a vector of dimension
2(2nν + 1)(mτ + 1), where the the first (2nν + 1)(mτ + 1)
dimensions are treated as real and the remaining as imaginary
parts of the channel gain estimates.



Parameter Value
Epochs 20000
Optimizer Adam
Learning rate 0.001, divide by 2 every 4000 epochs
Batch size 1000
Mini-batch size 64
Refresh training data Every epoch

TABLE II: Hyper-parameters used for training the SSPNet.

B. Training methodology

Data for training the SSPNet is obtained by synthetically
generating multiple SSP OTFS frames with varying Np. These
frames are converted to time domain and sent through a time-
varying fading channel. The received signal is converted back
to DD domain. Np(2nν+1)(mτ+1) symbols corresponding to
the Np transmitted pilots are extracted from the received frame
as per (10) to obtain the vector b′ whose real and imaginary
parts are concatenated. The ground truth data for training the
SSPNet is obtained by generating a (2nν +1)(mτ +1) length
true channel gain vector, g. This vector is constructed such
that the entries are channel gains only where there are valid
paths and zeros elsewhere. During training, the weights of
SSPNet are updated such that the L1 loss between the output
of SSPNet, ĝ, and ground truth g, given by L(gi, ĝi) = |gi −
ĝi, |, is minimized. The other hyper-parameters used in the
training of the SSPNet are listed in Table II. Once the training
is completed offline, the network weights are frozen. The same
trained network can provide channel estimates for different
SNRs, Np values, and DD profiles in the testing phase.

IV. RESULTS AND DISCUSSIONS

In this section, we present the mean square error (MSE) and
bit error rate (BER) performance of the proposed SSPNet for
DD channel estimation. A carrier frequency of fc = 4 GHz
and a subcarrier spacing of ∆f = 15 kHz are considered.
Vehicular A (VehA) channel model [11] with L = 6 paths and
a maximum speed of 220 km/h, i.e., a maximum Doppler νmax

of 815 Hz, is considered. Each path has a Doppler generated
using νi = νmax cos θi, where θi is uniformly distributed
between [−π, π]. This implies that each path can have random
Dopplers between −νmax and νmax. We present results for
the cases of integer DDs as well as fractional DDs. In the
integer DDs case, the delay and Doppler taps are rounded
off to the nearest integers. In the fractional DDs case, the
fractional DD values are retained as such without rounding.
The number of Doppler bins (N ) and delay bins (M ) are taken
to be 12 and 64, respectively. Data symbols are chosen from
BPSK alphabet and +1 is chosen as the pilot symbol. To train
the network, the batch size (c) is chosen to be 1100 of which
1000 OTFS frames are used for training and 100 frames are
used for validating the training. Each data symbol and pilot
symbol has energy denoted by σ2

d and σ2
p, respectively, with

σ2
d + σ2

p = 1. This ensures that the average energy per frame
is set to 1 for fair comparison with the FSP scheme in [5].
Data symbol detection is carried out using message passing
(MP) detector in [4]. Maximum number of iterations (Niter)
in SSP-I scheme is 10, Sτ = 2mτ + 1 = 5, Sν = 4nν + 1 = 5,
ϵ= 10−10, ζ = 10−6.

(a) FSP Tx frame, Np=MN=768 (b) SSP Tx frame, Np = 12

(c) FSP Rx frame, Np=MN=768 (d) SSP Rx frame, Np = 12

Fig. 3: Energy distribution in FSP and SSP frames at the
transmitter and receiver for integer DD.

(a) BER vs Np (b) BER vs σ2
d

Fig. 4: BER performance of the proposed SSPNet as a function
of Np and σ2

d for integer DD.

A. Pilot energy spread in FSP and SSP frames
Figure 3 shows an example distribution of energy in various

bins in FSP and SSP frames at the OTFS transmitter and
receiver for integer DD. At the transmitter (Figs. 3a and 3b),
there is no discernible difference between the pilot and data
symbols in the FSP scheme, whereas, in the proposed SSP
scheme, the pilot symbols have significantly higher energy
(MNσ2

p/Np) than data symbols. This is because of fewer
pilots in the SSP scheme for the same total pilot energy per
frame. A similar trend is observed at the receiver as well (Figs.
3c and 3d), where the pilots and data symbols in the FSP
scheme have leaked into one another, while the interference
among the pilots is alleviated in the SSP scheme. Due to higher
energy per pilot symbol in the SSP scheme, the corresponding
received frame also contains high energy DD bins that help to
achieve improved channel estimation accuracy.
B. Choosing optimal Np and σ2

d

Figure 4a shows the BER performance of using the pro-
posed SSPNet for channel estimation as a function of number
of pilots, Np, in a frame (see Fig. 1b). When Np is small,
the SSPNet has very few observations (s) to work with and
the MSE and consequently the BER performance is poor.
The BER performance improves as Np is increased. For



Fig. 5: MSE vs SNR of the proposed SSPNet compared with
the FSP scheme in [5] for integer DD.
Np > 20, the energy per pilot symbol gets reduced and
becomes comparable to the data symbol energy. This degrades
the MSE of the channel estimates and therefore the BER
increases. The BER attains its minimum value when Np = 12.
We choose this value of Np = 12 in all the simulations that
follow. Figure 4b shows the BER performance as a function
of the data energy, σ2

d. It is seen that the BER performance
improves as the data energy σ2

d increases. Minimum BER
is attained at σ2

d = 0.84, beyond which the BER increases.
This is because σ2

p < 0.16 in this regime and the energy per
pilot symbol reduces, resulting in poor accuracy of channel
estimates. We fix σ2

d = 0.84 for the rest of the simulations.
We note that the optimal energy allocation for the FSP scheme
in [5] is σ2

popt
= 0.3322 and σ2

dopt
= 0.6678. This choice works

well for both integer as well as fractional DDs.
C. MSE and BER comparison between SSP and FSP schemes
for integer DD

The MSE performance of the proposed SSPNet without
iterative cancellation (SSP-NI) and with iterative cancellation
(SSP-I) with integer DD are presented in Fig. 5. The per-
formance of the FSP-NI and FSP-I scheme in [5] are also
plotted for comparison. It is seen that the MSE performance
of the SSP-NI scheme is better than both the FSP-NI and FSP-
I schemes. This is because, the proposed approach is able to
cancel the interference between pilot and data symbols better
through learning. Also, the SSP-I scheme achieves even better
MSE performance. Figure 6 shows the BER performance of
the proposed SSPNet as a function of SNR for integer DD.
The performance of FSP-NI, FSP-I, and perfect CSI schemes
are also plotted in an integer DD channel for comparison. It
can be observed that the performance of the SSP-NI scheme
is better than the FSP-NI scheme, with a performance gain of
about 4 dB. For example, a BER of 4 × 10−2 is attained at
8 dB with SSP-NI, while it is attained at 12 dB with FSP-
NI scheme. It can also be observed that the SSP-I scheme
performs better than the FSP-I scheme.
D. MSE and BER comparison between SSP and FSP schemes
for fractional DD

The MSE performance of the proposed SSPNet without
iterative cancellation (SSP-NI) and with iterative cancellation
(SSP-I) with fractional DD are presented in Fig. 7. The per-
formance of FSP-NI and FSP-I schemes in [5] with fractional

Fig. 6: BER vs SNR of the proposed SSPNet compared with
the FSP scheme in [5] for integer DD.
DD are also plotted for comparison. It is seen that the MSE
performance of the SSP-NI scheme is superior compared to
that of the FSP-NI scheme and FSP-I scheme in low and mid
SNR regime, while the SSP-I scheme performs even better.
Figure 8 shows the BER performance of the proposed SSPNet
as a function of SNR with fractional DD. The performance
of FSP-NI, FSP-I, and perfect CSI schemes with fractional
DD are also plotted for comparison. The proposed SSP-NI
scheme performs much better than the FSP-NI counterpart.
For example, a BER of 6 × 10−2 is attained at 8 dB with
SSP-NI, while it is attained at 16 dB with FSP-NI scheme. It
can also be observed that the SSP-I scheme performs better
than the FSP-I scheme. These performance improvements are
significant given that the FSP schemes in [5] assume that the
estimates of τis and νis are perfectly known and only the
gis are estimated, whereas the proposed SSPNet estimated
all the three tuples (τi, νi, gi). This shows that superimposing
the pilots sparsely as in the proposed SSP frame, and using
a learning based SSPNet for channel estimation can achieve
better MSE and BER performance.

Complexity: The proposed SSPNet contains 52518 parame-
ters that need to trained offline, only once. Once trained, the
SSP-NI scheme requires only 1018 floating point operations
(FLOPs). This is in contrast to FSP-NI scheme in [5] which
requires about 6.6×106 FLOPs. The high complexity of FSP-
NI scheme is due to the computation of multiplications and
inverses of matrices of size MN×MN to obtain the estimates.
The low complexity of the SSPNet is due to processing only
a few bins around the pilot locations in the frame.

V. CONCLUSIONS

We proposed a new frame structure for OTFS having full
rate with sparsely superimposed pilots for the purpose of
channel estimation. For a given total pilot energy per OTFS
frame, this scheme allowed higher pilot energy and reduced
interference among the pilot symbols compared to fully super-
imposed pilot scheme. To handle the leakage between pilot and
data symbols, we proposed an LSTM based network called
SSPNet. The proposed SSPNet was trained to provide the
channel gain, delay, and Doppler estimates for each OTFS SSP
frame. The proposed SSPNet was able to provide the channel
estimates with good accuracy in integer as well as fractional
DD channels. Performance results showed that the proposed



Fig. 7: MSE vs SNR of the proposed SSPNet compared with
the FSP scheme in [5] for fractional DD.

Fig. 8: BER vs SNR of the proposed SSPNet compared with
the FSP scheme in [5] for fractional DD.

SSP frame along with the proposed SSPNet is an effective
approach for fractional DD channel estimation.

APPENDIX A
DERIVATION OF CHANNEL MATRIX WITH FRACTIONAL DD

AND RECTANGULAR PULSE

At the transmitter, the discrete signal is given by at =
(FH

N ⊗ Ptx)a
DD from (2). This is converted to continuous

time domain signal as

at(t) =

MN−1∑
n=0

at[n]ptx(t− nTs), (13)

where Ts is the sampling instant with MTs = T = 1
∆f .

For a rectangular pulse, ptx(t − nTs) = 1{nTs≤t<(n+1)Ts},
where 1{·} is the indicator function. Equation (13) can then
be simplified as

at(t) =

MN−1∑
n=0

at[n]1{nTs≤t<(n+1)Ts} = at
[⌊

t

Ts

⌋]
MN

,

(14)

where ⌊·⌋ denotes that flooring operation and [·]MN denotes
the mod MN operation. At the receiver, the received signal,
bt(t), is obtained as

bt(t) =

L−1∑
i=0

gia
t(t− τi)e

j2πνi(t−τi), (15)

where L is the number of paths in the channel and gi, τi =
(αi + ai)Ts, and νi =

βi+bi
NT are the channel gains, delay, and

Doppler spread of the ith path, respectively. Substituting in
the above equation, we get

bt(t) =

L−1∑
i=0

gia
t

[⌊
t− (αi + ai)Ts

Ts

⌋]
MN

× e
j2π(βi+bi)

NT (t−(αi+ai)Ts). (16)

Sampling the continuous signal at t = nTs, n = 0, 1, · · · , and
simplifying, we get

bt[n] =

L−1∑
i=0

gia
t[n− ⌈αi + ai⌉]MNe

j2π(βi+bi)

MN (n−(αi+ai)).

(17)

This can be vectorized to obtain

bt =

L−1∑
i=0

gi∆iΠ
⌈αi+ai⌉at = Gat, (18)

where G =
∑L−1

i=0 gi∆iΠ
⌈αi+ai⌉, Π is as given in (5), and

∆i is as defined in Sec. II. ■
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