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Abstract—Traditional orthogonal time frequency space (OTFS)
channel estimation schemes dedicate an entire frame or a part of
the frame for accommodating pilot and guard symbols to avoid
pilot-data interference, which compromises spectral efficiency.
This spectral efficiency loss can be avoided using superimposed
pilots, where delay-Doppler (DD) bins in the OTFS frame carries
both data and pilot symbols. In this paper, we propose a sparse
superimposed pilot scheme for channel estimation, where all the
DD bins in a frame carry data symbols and pilot symbols are
superimposed over some of them, sparsely. The proposed scheme
does not suffer spectral efficiency loss due to pilot/guard symbols.
It also has the advantage of more localized pilot-data interference
profile that leads to better performance. We derive the minimum
mean square error (MMSE) channel estimator for the proposed
scheme. We obtain optimum number of pilot symbols per frame
and power distribution among data and pilot symbols through
simulations. Simulation results show that the proposed scheme
achieves better performance at a lesser complexity compared
to existing superimposed pilot scheme. An iterative scheme that
further improves performance is also proposed.

Index Terms—OTFS modulation, delay-Doppler channel esti-
mation, superimposed pilots, pilot arrangement, MMSE estimate.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is a
robust modulation scheme for achieving reliable communica-
tion in doubly-selective channels [1]-[6]. Two key features of
OTFS modulation are: 1) multiplexing of information symbols
in the delay-Doppler (DD) domain, and 2) representing the
doubly-selective channel in the DD domain. The advantage of
representing the time-varying channel in the DD domain is
that the channel response is sparse in the DD domain and it
remains time invariant for long observation times. Thus, only
a few parameters are required to model the channel in the DD
domain, making channel estimation less complex [5]-[10].

In order to facilitate channel estimation at the receiver, pilot
symbols are transmitted along with data symbols. The number
of pilot symbols and their placement in an OTFS frame can
impact performance and spectral efficiency. Several existing
OTFS channel estimation schemes exploit the DD channel
sparsity and time-invariance, and use various pilot placement
schemes. The exclusive pilot scheme in [7] dedicates an entire
frame for pilot, where a single pilot symbol is placed at the
middle of the frame and the rest of the frame are filled with
zeros. In the embedded pilot scheme in [8], a pilot symbol
is placed at the middle of the frame, which is surrounded by
guard symbols (zeros), which are surrounded by data symbols.
While pilot-data interference is avoided in both these schemes,
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spectral efficiency is compromised. This drawback can be
alleviated using superimposed pilots [9],[10].

In superimposed pilot schemes, data symbols are placed
in all the bins with pilots superimposed on few or all data
symbols, thus acquiring full rate. However, this introduces
interference/leakage between pilot and data symbols. In the
superimposed pilot scheme in [9], all data symbols are su-
perimposed with pilot symbols. We call this scheme as SP-
Full scheme. For this scheme, a minimum mean square error
(MMSE) channel estimator followed by an iterative scheme
to improve estimation accuracy is presented in [9]. In the
superimposed pilot scheme in [10], only the data symbol
in the middle of the frame is superimposed with a pilot
symbol. We call this scheme as SP-One scheme. For this
scheme, a threshold based estimator followed by an iterative
interference cancellation scheme is presented in [10]. We
note that these two schemes represent two ends of a pilot
placement numerology that achieves full rate, i.e., while a pilot
is superimposed in only one bin in SP-One scheme, pilots
are superimposed in all the bins in SP-Full scheme. While
both schemes are attractive for their full rate and simplicity in
pilot placement, they are not optimum. For example, while
the SP-Full scheme has the advantage of having multiple
measurements due to multiple pilots in a frame, it suffers from
significant pilot-data interference over the entire frame and a
weak per pilot symbol energy for a given total pilot energy per
frame. On the other hand, the SP-One scheme has the benefit
of a more localized pilot-data interference and a strong pilot
symbol. But it suffers from lack of inadequate measurements
due to only one pilot. This observation indicates the possibility
of better pilot placement numerology in between the two end
cases, and this motivates the new contribution in this paper.
Specifically, we propose a full-rate superimposed pilot scheme
where pilots are superimposed on few data symbols in a
sparse manner, striking a balance between adequate number
of measurements and localized pilot-data interference, leading
to better performance compared to existing superimposed
pilot schemes. The new contributions in this paper can be
summarized as follows.

• We propose a full rate sparse superimposed pilot scheme
for DD channel estimation in OTFS, where all the bins
in a frame carry data symbols and pilot symbols are
superimposed over some of them, sparsely. The proposed
scheme strikes a good balance between pilot-data inter-
ference and adequate number of measurements. We call
the proposed scheme as SP-Sparse scheme.

• We derive the MMSE channel estimator for the proposed



scheme. We obtain optimum number of pilot symbols per
frame and power distribution among the data and pilot
symbols through simulations.

• Simulation results show that the proposed scheme
achieves better performance at a lesser complexity com-
pared to the scheme in [9]. While the better performance
is due to the better pilot-data interference profile in the
proposed scheme, the lesser complexity of the estimator
is because of the need to process only a smaller number
of bins in the frame in the proposed scheme.

• An iterative scheme that further improves the perfor-
mance is also proposed.

The rest of the paper is organized as follows. The OTFS
system model is presented in Sec. II. The proposed SP-Sparse
scheme, its MMSE estimator derivation, and the iterative
scheme are presented in Sec. III. Results and discussions are
presented in Sec. IV. Conclusions are presented in Sec. V.

II. OTFS SYSTEM MODEL

The block diagram of OTFS modulation scheme is shown in
Fig. 1. At the transmitter, information symbols are multiplexed
in the DD domain. This is transformed to the time-frequency
(TF) domain using the inverse symplectic finite Fourier trans-
form (ISFFT), followed by Heisenberg transform to convert
to time domain for transmission. At the receiver, the time
domain signal is converted back to TF domain using Wigner
transform and subsequently transformed to DD domain using
the symplectic finite Fourier transform (SFFT) where data
detection is done.

Information symbols, Xdd[k, l]s, drawn from a modulation
alphabet A are multiplexed in the DD grid, given by{(

k
NT ,

l
M∆f

)
, k = 0, · · · , N − 1, l = 0, · · · ,M − 1

}
,

where M and N denote the number of delay and Doppler
bins, respectively, ∆f is the subcarrier spacing, and
Xdd ∈ AM×N denotes the information symbol matrix. The
DD domain symbols are mapped to TF domain symbols
using ISFFT operation as

Xtf[n,m] =
1√
MN

N−1∑
k=0

M−1∑
l=0

Xdd[k, l]ej2π(
nk
N −ml

M ), (1)

where n = 0, · · · , N − 1 and m = 0, · · · ,M − 1. The
TF frame has duration NT and bandwidth M∆f , where
T and ∆f are the sampling intervals along time and fre-
quency axis, respectively, satisfying T∆f = 1. These TF
domain symbols arranged in matrix form is denoted by
Xtf ∈ CM×N , and (1) can alternatively be expressed in
matrix form as Xtf= FMXddFH

N , where FM ∈ CM×M and
FN ∈ CN×N are the normalized discrete Fourier transform
(DFT) matrices with FM [a, b] = (1/

√
M) exp(−j2πab/M),

FN [a, b] = (1/
√
N) exp(−j2πab/N), and (·)H denotes the

Hermitian operation. The TF domain samples, Xtf[n,m]s,
are pulse shaped using transmit pulse gt(t) to generate the
time domain signal x(t), which can be expressed in matrix
form as Xt= GtF

H
MXtf= GtX

ddFH
N , where Xt ∈ CM×N

contains MN samples of x(t), obtained using the sampling

Fig. 1: OTFS modulation scheme.
rate fs = M∆f . Further, for the transmit and receive pulses,
the sampling interval is set to Ts = 1/M∆f = T/M as
per symbol spaced sampling approach, which results in M -
length samples of the transmit and receive pulses. Gt∈ CM×M

is a diagonal matrix, whose diagonal entries are obtained
by uniformly sampling the transmit pulse gt(t) at time in-
stants mT/M,m = 0, 1, · · · ,M − 1. Using the relation
vec(XYZ) = (ZT ⊗ X)vec(Y), where ⊗ denotes Kronecker
product, the time domain vector can be written as

xt = vec(Xt) = vec(GtX
ddFH

N ) = (FH
N ⊗Gt)x, (2)

where x= vec(Xdd) and the operation vec(Z) vectorizes matrix
Z. Let h(τ, ν) denote the complex baseband channel impulse
response of the time-varying channel in the DD domain,
where τ and ν represent the delay and Doppler variables,
respectively. Then,

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

where P is the number of channel paths in the DD domain,
δ is the Kronecker delta function, and hi, τi, and νi denote
the complex channel gain, delay, and Doppler, respectively,
corresponding to the ith path. For integer delays and Dopplers,
τi =

li
M∆f and νi =

ki

NT , where li and ki denote the corre-
sponding delay and Doppler taps, respectively. The received
time domain signal, y(t), is given by

y(t) =

∫
ν

∫
τ

h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν + w(t), (4)

where w(t) is the additive noise. A forward cyclic shift matrix
defined as

Π =


0 · · · 0 1
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 ∈ {0, 1}MN×MN , (5)

and ∆ = diag{s0, s1, · · · , sMN−1} with s = exp(2πj/MN)
model the delays and Dopplers, respectively, so that the
channel matrix H ∈ CMN×MN can be defined as H =∑P

i=1 hiΠ
li∆ki [11]. The received signal vector can be

written as yt = Hxt + n ∈ CMN×1, where yt ∈ CMN×1

is obtained by sampling y(t). The TF matrix Ytf∈ CM×N

is derived from yt using the Wigner transform, i.e., Ytf =
FMGrYt, where Yt = vec−1(yt) ∈ CM×N , and Gr is a



Fig. 2: Pilot and data symbol placements in the SP-Full scheme
in [9] and the proposed SP-Sparse scheme.
diagonal matrix obtained by sampling the receive pulse gr(t).
The DD signal matrix Ydd ∈ CM×N is obtained from Ytf as

Ydd = FH
MYtfFN = GrYtFN . (6)

This can be vectorized to obtain

y = (FN ⊗Gr)yt = (FN ⊗Gr)(Hxt + n). (7)

Substituting (2) in (7), we get

y = (FN ⊗Gr)H(FH
N ⊗Gt)x+ n′

= Heffx+ n′. (8)

For rectangular pulses at the transmitter and receiver, Gt =
Gr = IM , where IM is M × M identity matrix. Also, n′ =
(FN⊗IM )n, and Heff = (FN⊗IM )H(FH

N⊗IM ) ∈ CMN×MN

is the effective channel matrix.

III. PROPOSED SPARSE SUPERIMPOSED PILOT SCHEME

In this section, we present the proposed sparse superimposed
pilot (SP-Sparse) scheme for DD channel estimation in OTFS.
The scheme aims to alleviate the problem of inter-pilot inter-
ference and combat the effect of pilot-data interference, which
is inevitable for a superimposed pilot scheme. We achieve
this by 1) appropriate pilot placement in an OTFS frame, 2)
optimizing the power distribution between the pilot and data
symbols, 3) optimizing the number of pilot symbols in a frame,
and 4) iterative interference cancellation.

Let xd denote the data symbols with E{|xd[k, l]|2} =
σ2
d,∀ k, l. Let xp denote the pilot symbols and Np denote

the number of pilot symbols in a frame. We fix the average
symbol energy per bin (and, therefore, the average energy of
the frame) to be one as in [9]. Let σ2

p = 1 − σ2
d. Then the

total energy in the pilot symbols in a frame is MNσ2
p, which

is distributed uniformly among the Np pilot symbols.
A. Pilot placement

Accurate channel estimation is a requisite for reliable data
detection. Pilot symbols are transmitted along with data to
obtain an estimate of the DD channel matrix Heff (see (8)).
Depending on the channel characteristics, the transmitted
symbols spread into the adjacent bins. The extent of spread
is determined by delay and Doppler spreads of the channel.
The pilot arrangement in a frame has to be suitably chosen
taking into account 1) the spread due to the channel which

causes interference that influences performance, and 2) the
spectral efficiency. The popular pilot placement schemes like
exclusive pilot [7] and embedded pilot [8] schemes take a
toll on spectral efficiency, in spite of having better bit error
performance by virtue of their pilot arrangement that avoids
pilot-data interference. Use of superimposed pilots, on the
other hand, does not cause spectral efficiency loss at the cost
of interference between symbols.

Figure 2 shows two frame structures that achieve full rate
by superimposing pilot symbols over data symbols. Figure 2a
shows the full superimposed pilot (SP-Full) frame proposed in
[9], where pilot symbols are superimposed on data symbols in
all the bins. In contrast, in the proposed sparse superimposed
pilot (SP-Sparse) frame shown in Fig. 2b, the pilot symbols
are interleaved in the DD grid with a separation of Sl and
Sk bins along the delay and Doppler axis, respectively, in
a lattice-type arrangement. Sl and Sk are chosen so as to
accommodate the optimal number of pilots and to minimize
the inter-pilot interference. As mentioned earlier, the proposed
scheme has the benefit of higher energy per pilot symbol which
is favourable for channel estimation (as will be shown later).

B. MMSE channel estimator for the proposed scheme

In this subsection, we derive the MMSE channel estimate
for the proposed SP-Sparse scheme. As the MMSE estimator
is optimal in the MSE sense and a closed-form expression can
be derived for the proposed setting, we choose this estimator
for its simplicity. For estimating the channel coefficients, Np

pilot symbols are superimposed on the data symbols at the
transmitter. At the receiver, the knowledge of these pilot
symbols are used for deriving an MMSE channel estimator,
as detailed below.

Let (kpi
, lpi

), i = 1, · · · , Np denote the pilot symbol
locations in the DD grid, with the separations Sl and Sk,
in a lattice-type arrangement. For the ith pilot, the received
symbols Ydd[k, l], with kpi − kmax ≤ k ≤ kpi + kmax,
lpi ≤ l ≤ lpi + lmax, are obtained. These can be expressed in
terms of the DD domain transmitted symbols as [6]

Ydd[k, l] =

P∑
j=1

hjβ
(i)
j Xdd[k − kj , l − lj ] + N[k, l], (9)

where β
(i)
j = exp

(
j2π

lpikj

MN

)
, for i = 1, · · · , Np, and

N[k, l] ∼ CN (0, σ2) is the additive noise sample. We note
that the effect of each transmitted symbol is seen in P received
symbols at the receiver. For the DD bin containing the ith pilot
symbol, let y(i)j with j = 1, · · · , P , denote the corresponding
P received symbols. Each y

(i)
j is due to a combination of the

effect of the channel on P transmit DD symbols, denoted by
{x(i,j)

q , q = 1, · · · , P}. Among the P transmit symbols x(i,j)
q s,

one of them, say x
(i,j)
j , contains both pilot and data symbols

(x(i,j)
dq

s). Then,

x(i,j)
q =

{
xp + x

(i,j)
dq

, for q = j

x
(i,j)
dq

, for q ̸= j.



Using (9), each y
(i)
j can be expressed as

y
(i)
j = hjβ

(i)
j (xp + x

(i,j)
dj

) +

P∑
q=1,q ̸=j

hqβ
(i)
q x

(i,j)
dq

+ n
(i)
j , (10)

for j = 1, · · · , P and i = 1, · · · , Np. (10) can be vectorized
to obtain the received vector corresponding to ith pilot as

y(i) = X(i)β(i)h+ n(i), (11)

where y(i) ∈ CP×1, n(i) ∈ CP×1, h = [h1, · · · , hP ]
T ∈

CP×1 is the DD domain channel vector, β(i) =
diag(β(i)

1 , · · · , β(i)
P ) ∈ CP×P , and

X(i) =


xp + x

(i,1)
d1

x
(i,1)
d2

· · · x
(i,1)
dP

x
(i,2)
d1

xp + x
(i,2)
d2

· · · x
(i,2)
dP

...
...

. . .
...

x
(i,P )
d1

x
(i,P )
d2

· · · xp + x
(i,P )
dP

 ∈ CP×P .

(12)

For Np pilot symbols, (11) can be written as

yobs = Xβh+ nobs, (13)

where yobs = [y(1), · · · ,y(Np)]T ∈ CPNp×1, nobs =
[n(1), · · · ,n(Np)]T ∈ CPNp×1, β = [β(1), · · · ,β(Np)]T ∈
CPNp×P , and X = diag(X(1), · · · ,X(Np)) ∈ CPNp×PNp is
a block diagonal matrix. Further, X can be expressed as

X = diag
(
xpIP +X

(1)
d , · · · , xpIP +X

(Np)
d

)
= xpIPNp +Xd, (14)

where Xd = diag
(
X

(1)
d , · · · ,X(Np)

d

)
∈ CPNp×PNp and

X
(i)
d =


x
(i,1)
d1

x
(i,1)
d2

· · · x
(i,1)
dP

x
(i,2)
d1

x
(i,2)
d2

· · · x
(i,2)
dP

...
...

. . .
...

x
(i,P )
d1

x
(i,P )
d2

· · · x
(i,P )
dP

 ∈ CP×P , (15)

for i = 1, · · · , Np. Substituting (14) in (13), we have

yobs = xpβh+Xdβh+ nobs

= βph+ βdh+ nobs, (16)

where βp = xpβ ∈ CPNp×P and βd = Xdβ ∈ CPNp×P .
The simplified expression for the observation vector becomes

yobs = βph+ nd, (17)

where nd = βdh + nobs ∈ CPNp×1 is the noise plus
interference vector, whose mean and covariance matrix are
denoted by µnd

and Cnd
, respectively. Note that noise vec-

tor has mean E[nobs] = 0PNp×1 and covariance matrix
Cnobs = E[nobsn

H
obs] = σ2IPNp . Also, the channel vector

h has zero mean and covariance matrix Ch = E[hhH ] =
diag(σ2

h1
, · · · , σ2

hP
), where σ2

hi
represent the power of ith

channel gain. Since E[βd] = 0PNp×P and E[h] = 0P×1,
µnd

= E[nd] = 0PNp×1, we can write

Cnd
= E{ndn

H
d }

= E{βdhh
HβH

d }+ σ2IPNp

=
Tr(Ch)

P
E{βdβ

H
d }+ σ2IPNp , (18)

where Tr(A) denotes the trace of the matrix A and Tr(Ch) =∑P
i=1 σh2

i
. Further,

E{βdβ
H
d } = E{XdX

H
d } = Pσ2

dIPNp . (19)

Substituting (19) in (18) gives

Cnd
=

( P∑
i=1

σ2
hi
σ2
d + σ2

)
IPNp

. (20)

Using (17), the MMSE estimate, ĥ, of the channel vector h
can be obtained as [12]

ĥ = (βH
p C−1

nd
βp +C−1

h )−1βH
p C−1

nd
yobs. (21)

The MMSE estimate ĥ = {ĥi, i = 1 · · · , P} is used to
construct the channel matrix estimate Ĥ =

∑P
i=1 ĥiΠ

li∆ki

and the effective channel matrix estimate, Ĥeff = (FN ⊗
IM )Ĥ(FH

N ⊗ IM ). This channel matrix estimate is used for
cancelling the effect of sparsely placed pilots in the as

yd = y − Ĥeffxp, (22)

where

xp[kM + l] =

{
xp, if (k, l) ∈ {(kp1

, lp1
), · · · , (kpNp

, lpNp
)}

0, else,

and y = Heffx+n′ = Heff(xp+xd)+n′ (see (8)). The message
passing (MP) detection algorithm in [6] is employed on this
vector for data detection to obtain x̂d, the estimate of the
transmitted data symbols, xd. The estimate for the channel
coefficients obtained in (21) is in the presence of interference
from data symbols. To further improve the accuracy of the
estimates, we follow an iterative scheme as outlined below.
C. Iterative scheme for improving performance

Using the initial data estimates, x̂d, a new frame is con-
structed by removing the effect of data symbols as

ye = y − Ĥeffx̂d = Heffxp + (Heffxd − Ĥeffx̂d) + n′. (23)

Assuming that cancellation is perfect, the second term on the
right hand side of (23) can be omitted to obtain

ye
′ = Heffxp + n′. (24)

Following the same procedure as before, we pick P symbols
corresponding to each pilot location using ye

′ as the received
vector. For ye

′, (16) can be approximated as

y′
obs = βph+ nobs. (25)

The MMSE estimate now becomes

ĥ′ = (βH
p C′−1

nd
βp +C−1

h )−1βH
p C′−1

nd
y′

obs, (26)

where C′
nd

= σ2IPNp
. Using the estimate ĥ′, the effective

channel matrix is computed again. This is used for data de-
tection using (22). This completes one iteration of the scheme
employed for combating interference between pilot and data
symbols. The iterations are carried out for a maximum of Niter

iterations or until a convergence criterion is met. The iterations
are stopped at the Lth iteration if ∥ĥ′(L) − ĥ′(L−1)∥2 < ϵ,



Fig. 3: BER as function of the data energy, σ2
d.

i.e., the squared norm of the difference between the channel
estimate vector for the Lth iteration and (L−1)th is less than a
small value ϵ. The estimate of the data symbols obtained after
the iterations is used for evaluating the bit error performance
for the iterative scheme.

IV. RESULTS AND DISCUSSIONS

In this section, we present the performance of the proposed
SP-Sparse scheme. We also present the performance of the
SP-Full scheme in [9] for comparison. For all the simulation
results presented below, we consider an OTFS system with
delay bins M = 24, Doppler bins N = 16, carrier frequency
fc = 4 GHz, and subcarrier spacing ∆f = 15 kHz. We
consider a channel having 5 taps with power delay profile as in
[9]. The Doppler spreads are generated using Jakes’ formula,
νi = νmax cos θi where νmax = 1851 Hz corresponding to a
maximum speed of vmax = 500 kmph, and θi is uniformly
distributed in [−π, π]. Data symbols are drawn from BPSK
alphabet and a constant +1 is chosen as the pilot symbol.
For the iterative scheme, the maximum number of iterations,
Niter, is chosen to be 10, and ϵ = 10−6. Similar to the SP-Full
scheme in [9], the total energy per bin is fixed to be one, i.e, for
each bin σ2

d+σ2
p = 1, for fair comparison. The optimal power

allocation for the SP-Full scheme in [9] is σ2
dopt

= 0.6678. For
each SNR, 104 different channel realizations are considered.

A. Choosing the optimal energy distribution
The BER performance of the proposed SP-Sparse scheme

as a function of data energy (σ2
d) at an SNR of 15 dB is

shown in Fig. 3. For the performance, number of pilots, Np,
is assumed to be 9, which is the maximum number of pilots
that can be accommodated in the frame without inter-pilot
interference. At low σ2

d values, data symbols have low energy
and the pilot energy is high. Even though this results in good
accuracy of the channel estimates (due to high pilot energy),
the data detection has high error rate (due to low energy in data
symbols). As σ2

d increases, the BER performance improves due
to increase in the data symbol energy. In the high data energy
regime, the accuracy of the channel estimates is poor due to
weak pilot symbols, resulting in subpar BER performance.
The BER performance is found to be minimum at σ2

d = 0.71,
which gives σ2

dopt
= 0.71. For the rest of the simulations, we

fix the data symbol energy to be 0.71.

Fig. 4: BER as a function of number of pilots, Np.

B. Choosing the optimal number of pilots
The BER performance of the SP-Sparse scheme as a func-

tion of number of pilots, Np, at an SNR of 15 dB is shown
in Fig. 4. At low Np values, the number of observations
that are available is less (see (21)), which results in poor
accuracy of channel estimates. This is reflected in the BER
performance in this regime. As Np is increased, the accuracy
of the estimates improves, and consequently the BER perfor-
mance also improves. When Np is increased beyond 20, the
pilot energy per pilot symbol (MNσ2

p/Np) reduces. This, in
addition to the reduced separation between the pilot symbols,
negatively affects the channel estimate performance and the
BER shoots up. We note that increasing Np also increases
the complexity of the MMSE estimate. As a good balance
between the BER performance and the estimation complexity,
we choose Np = 12, with Sl = 7 and Sk = 2, in the
simulations presented below.

C. MSE performance
The MSE performance of the proposed scheme, with and

without iterations, as a function of SNR is shown in Fig.
5. The MSE performance for the non-iterative (SP-Full-NI)
and iterative (SP-Full-I) schemes in [9] are also plotted for
comparison. In addition, the performance of the iterative SP-
One (SP-One-I) scheme in [10] is also shown. The proposed
non-iterative scheme (SP-Sparse-NI) outperforms the corre-
sponding SP-Full-NI scheme by a good margin. For example,
at 10 dB SNR, the proposed SP-Sparse-NI scheme achieves an
MSE of about 3.5× 10−2 while the SP-Full-NI scheme in [9]
achieves an MSE of about 2×10−1, which is roughly an order
of difference. Next, the proposed iterative scheme (SP-Sparse-
I) performs similarly to that of the SP-Full-I scheme for SNRs
between 0 and 10 dB. The performance of the SP-Sparse-I
scheme is better than that of the SP-Full-I scheme at 15 dB
SNR. Also, the performance of the SP-Sparse-NI scheme is
similar to that of the SP-One-I scheme, while the performance
of the proposed SP-Sparse-I scheme is much better.

D. BER performance
The BER performance of the proposed scheme as a function

of SNR is shown in Fig. 6. Performance of the SP-Full-NI
and SP-Full-I schemes, SP-One-I scheme, and performance



Fig. 5: MSE performance as a function of SNR.

with perfect channel knowledge are also plotted for compar-
ison. It can be seen that the proposed SP-Sparse-NI scheme
outperforms the SP-Full-NI scheme. For example, a BER of
6×10−2 is achieved at 5 dB with SP-Sparse-NI scheme, while
SP-Full-NI scheme achieves the same BER at around 9 dB,
i.e., a performance advantage of 4 dB is observed in favor
of the proposed scheme. The SP-Sparse-I scheme performs
closely to that of the SP-Full-I scheme till 5 dB, after which the
performance is observed to be better than that of the SP-Full-
I scheme. This performance is also close to the performance
obtained using perfect channel knowledge. This performance
advantage can be attributed to the sparse pilot placements in
the DD grid as opposed to pilots placed in every bin in [9].
It is also seen that the performance of SP-One-I scheme is
worse compared to the proposed SP-Sparse-NI and SP-Sparse-
I schemes, with the performance gap being larger in the latter
case. It is observed in Fig. 5 that MSE performance of SP-
Full-I is better compared to SP-Sparse-NI. This is owing to the
iterative interference cancellation in the former case. However,
there is no significant BER improvement in Fig. 6, which is
due to increased pilot-data interference resulting due to pilot
placement in the SP-Full-I scheme.

E. Complexity
Here, we present the run time complexity of the proposed

scheme for generating the initial channel estimate and compare
it with that of the SP-Full scheme, where both the schemes
use MMSE channel estimator. For the SP-Full scheme, the
average run time required to compute an estimate is about
3.56× 10−3 s, whereas for the proposed SP-Sparse scheme is
only about 7.74×10−5 s. This is also reflected in the number
of floating point operations (FLOPs), where the SP-Full-NI
requires 3×106 whereas SP-Sparse-NI requires only 7.6×104

FLOPs. This complexity advantage is because the proposed
scheme needs to process only a part of the frame to obtain
an estimate, whereas the SP-Full scheme processes the entire
frame to obtain an estimate.

V. CONCLUSIONS

We proposed a full rate sparse superimposed pilot scheme
for DD channel estimation in OTFS systems. The sparsity
allowed for reduced interference among pilot symbols and

Fig. 6: BER performance as a function of SNR.

higher energy per pilot symbol. To obtain the channel esti-
mates in the presence of interference from data symbols, we
derived MMSE channel estimator for the proposed scheme.
We obtained the optimum number of pilot symbols and energy
distribution between pilot and data symbols through simula-
tions. The proposed scheme along with the proposed MMSE
estimator showed better MSE and BER performance compared
to superimposed pilot scheme in the literature. This was
achieved at a lower complexity because of the fewer number
of symbols involved in computing the proposed estimate. The
performance was further improved using iterative interference
cancellation. Analytical solutions for obtaining the optimum
number and location of pilot symbols, and optimal power
allocation between data and pilot symbols can be considered
for future research.
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