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Abstract— We consider the MIMO X channel (XC), a system
consisting of two transmit-receive pairs, where each transmitter
communicates with both the receivers. Both the transmitters
and receivers are equipped with multiple antennas. First, we
derive an upper bound on the sum-rate capacity of the MIMO
XC under individual power constraint at each transmitter.
The sum-rate capacity of the two-user multiple access channel
(MAC) that results when receiver cooperation is assumed forms
an upper bound on the sum-rate capacity of the MIMO XC.
We tighten this bound by considering noise correlation between
the receivers and deriving the worst noise covariance matrix.
It is shown that the worst noise covariance matrix is a saddle-
point of a zero-sum, two-player convex-concave game, which is
solved through a primal-dual interior point method that solves
the maximization and the minimization parts of the problem
simultaneously. Next, we propose an achievable scheme which
employs dirty paper coding at the transmitters and successive
decoding at the receivers. We show that the derived upper
bound is close to the achievable region of the proposed scheme
at low to medium SNRs.

keywords: MIMO X channel, interference channel, convex-concave

game, primal-dual interior point method, dirty paper coding.

I. INTRODUCTION

The capacity of wireless multiple-input multiple-output

(MIMO) channels has attracted a lot of interest. The capacity

region of point-to-point MIMO channel, MIMO multiple

access channel (MAC), and that of the MIMO broadcast

channel (BC) are characterized in [1]–[7]. In the two-user

interference channel (IC), there are two transmitter–receiver

pairs, where each transmitter intends to communicate with

its corresponding receiver. Recently, in [8], the capacity of

the Gaussian interference channel is characterized to within

one bit.

The MIMO X channel (XC) is a generalization of the

interference channel; there are two transmitter–receiver pairs,

and each transmitter intends to communicate with both the

receivers. Both the transmitters are equipped with multiple

antennas. It is interesting to note that the MAC, BC and IC

are contained within the MIMO XC and can be obtained as

special cases of the XC.

Recently, the X channel has attracted considerable research

interest [10,12]–[19]. The degrees of freedom of the MIMO

X channel is found in [10], and it is shown to be 4M
3

, with

M > 1 antennas at each node. It is shown that the concept

of interference alignment (IA) coupled with zero forcing

achieves the highest number of degrees of freedom. For the

case of M = 1 antennas at the transmitters/receivers, the

degrees of freedom is shown to be bounded above by 4/3

and bounded below by 1. It was later shown in [11] that 4/3
is indeed the degrees of freedom for the M = 1 case and

introduced the novel idea of asymmetric complex signaling

to achieve the outer bound. In [12], the authors combine

dirty paper coding (DPC), zero forcing (ZF) and successive

decoding methods to obtain signaling schemes which achieve

the highest multiplexing gain or the degrees of freedom. They

eventually transform the XC into four parallel channels. We

refer to this scheme as the (MMK) (Maddah-Ali-Motahari-

Khandani) scheme. A gradient projection based IA for the

MIMO XC is developed in [14]. Algebraic expressions

are derived to obtain a locally optimum IA solution with

the objective of maximizing a utility of transmit rates. In

[15], MMSE precoding algorithm to maximize the weighted

sum-rate of the MIMO XC is designed through alternating

optimization. Fixed-rate transmission schemes are developed

in [16] using a combination of Alamouti codes and IA. In

[17], linear IA transmit filters and ZF receive filters are

designed for the XC, based on generalized singular value

decomposition. In [18], the authors propose a perfect IA

scheme for the K-user MIMO X network, a system consisting

of K transmitters and K receivers, where all transmitters send

independent messages to all receivers. Finally, space-time

precoders with full diversity and low decoding complexity

for XC is investigated in [19].

In this work, in the first part of the paper, we derive

an upper bound on the sum-rate capacity of the Gaussian

MIMO XC. Consider a Gaussian MIMO XC with separate

power constraint at each transmitter. By assuming coopera-

tion among the receivers, we get a Gaussian MIMO MAC

channel with individual power constraint at each transmitter

whose capacity region is characterized in [6,22]. Since

the MIMO MAC channel is a MIMO XC with receiver

cooperation, the capacity of the MIMO MAC channel is

an upper bound on the capacity of the MIMO XC. This

upper bound can be further tightened by considering noise

correlation among the two receivers. This amounts to finding

the worst noise covariance matrix for the MAC which gives

a much stronger bound. However, finding the least favorable

noise covariance matrix is a non-trivial problem as it involves

both a maximization over the input covariance matrices and a

minimization over the noise covariance matrices. It is shown

that the worst noise covariance matrix is a saddle-point of a

zero-sum, two-player convex-concave game, which is solved

through a primal-dual interior point method that solves the

maximization and the minimization parts of the problem
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Fig. 1. MIMO X channel system model.

simultaneously. We argue that although the form of the MAC

upper bound with worst noise correlation problem is similar

to the sum capacity BC problem, unlike the latter case, the

former problem presents significant difficulties in converting

it to a single convex minimization problem, thus justifying

the use of primal-dual interior point method to directly solve

the former minimax problem.

In the second part of the paper, we propose an MMK like

scheme which uses a combination of DPC and successive

decoding and optimize over the encoding and decoding

orders at the transmitters and receivers with the objective

of maximizing the sum-rate capacity of the MIMO XC. We

term this the modified MMK (m-MMK) scheme. Finally, we

compare the upper bound with the achievable region of the

proposed m-MMK scheme, and show that the upper bound

is close to the achievable region of the m-MMK scheme for

low to medium SNRs.

The rest of this paper is organized as follows. The system

model is presented in Section II. The MAC upper bound

problem is formulated and solved in Section III. The m-

MMK scheme is presented in Section IV. Simulation results

are discussed in Section V. Conclusions are presented in

Section VI.

II. SYSTEM MODEL

In this section, we describe the model to be used in the

rest of the paper. We consider a MIMO system with two

transmitters and two receivers as shown in Fig. 1. Transmitter

t is equipped with Mt antennas, t = 1, 2, and receiver r, is

equipped with Nr antennas, r = 1, 2. We assume a flat-

fading environment. Let Hrt = [hij ] denote1 the Nr × Mt

channel gain matrix from transmitter t to receiver r, where

hij is the channel gain from the jth transmit antenna, j =
1, 2, · · · ,Mt, to the ith receive antenna, i = 1, 2, · · · , Nr.

The channel gains are assumed to be independent circularly

symmetric complex Gaussian (CSCG) random variables with

unit variance, i.e., CN (0, 1). The received vectors yr ∈

1We use the following notation: Vectors are denoted by boldface low-
ercase letters, and matrices are denoted by boldface uppercase letters. [·]T

denotes the transpose operation, [·]H denotes the Hermitian operation, Tr(·)
denotes the trace operation, and E{·} denotes the expectation operation.
In denotes n × n identity matrix. A ≥ B implies A − B is positive
semidefinite.

C
Nr×1 at receiver r, r = 1, 2 are given by

y1 = H11 s1 +H12 s2 + n1, (1)

y2 = H21 s1 +H22 s2 + n2, (2)

where st ∈ C
Mt×1 is the transmitted vector by transmitter

t and St = E[st s
H
t ], t = 1, 2. The vector nr ∈ C

Nr×1 is a

CSCG random vector with zero mean and identity covariance

matrix. Transmitter t is subject to a separate power constraint

Pt: Tr(St) ≤ Pt. The total power transmitted by both the

transmitters is PT , i.e., PT = P1 + P2.

We assume perfect knowledge of all the channel matrices

Hrt, r, t = 1, 2, at both transmitters and at both receivers.

The two transmitters do not cooperate, which implies that

non-causal knowledge of the other transmitter’s data is not

available. Similarly, the receivers do not cooperate.

Notation Here, we review some notation which will be

needed in section III. The vec(·) operator stacks the columns

of the input matrix sequentially into one column-vector. The

Kronecker product between two matrices A and B is denoted

by A⊗B. Let A ∈ C
N×Q. The commutation matrix KN,Q

is a permutation matrix of size NQ×NQ, and it gives the

connection between vec(A) and vec(AT ): KN,Q vec(A) =
vec(AT ).

III. MIMO MAC SUM-RATE UPPER BOUND

Let CX denote the sum-rate capacity of the MIMO X

channel. Consider a system where both the receivers coop-

erate to form a corresponding MIMO MAC channel with

the same individual power constraint at the transmitters.

Let CMAC be the sum-rate capacity of this MIMO MAC

channel. It is clear that CX ≤ CMAC . The above outer bound

is in general loose. It can be further tightened by assuming

noise correlation at both the receivers.

Note that the capacity region of the X channel de-

pends only on the marginal transition probabilities of the

channel (i.e., p(yi| si)) and not on the joint distribution

p(y1,y2| (s1, s2)). Hence, correlation between the noise

vectors at both the receivers of the MIMO XC does not

affect the MIMO XC capacity region. However, it does affect

the sum-rate capacity of the MIMO MAC system, which

continues to be an upper bound on the sum-rate capacity of

the MIMO XC. Thus, we have E[nin
H
i ] = I, i = 1, 2, (i.e., at

a single receiver, the noise components at different antennas

are uncorrelated). Let E[n1n
H
2 ] , X̃≺ I. Noise correlation

between the multiple antennas within a single receiver affects

the capacity of the MIMO XC, and hence is not considered.

Let z = [nT
1 n

T
2 ]

T be the noise vector in the MAC and let

Z = E[zzH ] denote the noise covariance matrix. Define S to

denote the set of all positive semidefinite noise covariance

matrices satisfying the MAC upper bound conditions

S =

{
Z : Z ≥ 0,Z =

[
IN1

X̃

X̃H IN2

]}
. (3)

Thus, for any Z ∈ S, the MIMO MAC system sum

capacity CMAC is still an upper bound to CX . An upper

bound on CX can be obtained by

CX ≤ inf
Z∈S

CMAC . (4)



Let HT
1 = [HT

11H
T
21] denote the channel from trans-

mitter 1 to the receiver in the MAC. Similarly, HT
2 =

[HT
12H

T
22]. Let C1 = diag(IN1

,0N2×N2
) and C2 =

diag(0N1×N1
, IN2

). The constraint that Z ∈ S can be

expressed as
∑2

i=1
CiZCi = IN with Z ≥ 0. The MAC

upper bound (4) can be written as a min-max problem

Cup−bnd
MAC = min

Z

max
S1,S2

log
|H1S1H

H
1 +H2S2H

H
2 + Z|

|Z|

s.t Si ≥ 0, Tr(Si) ≤ Pi, i = 1, 2

Z ≥ 0

C1ZC1 +C2ZC2 = IN , (5)

where the maximization is over the set of input covariance

matrices Si at transmitter i, and the minimization is over all

possible noise correlations. The computation of Z above is

not necessarily easy, even though the objective function in (5)

is convex in Z. Observe that (5) is similar in form to the sum-

rate capacity problem of the broadcast channel which can

be written as a minimax problem [4,5]. To our knowledge,

we show below that the solution approaches in [4,5,20] for

the sum capacity problem of BC cannot be used here, thus

justifying the use of primal-dual interior point method to

solve (5).

In [4], the sum capacity BC minimax problem is trans-

formed into a single convex minimization problem, which in

turn can be solved by standard tools. See also [9] for ex-

amples of this conversion for several multiuser and multiple

antenna channels. We now attempt to apply this technique

to (5). To this end, we rewrite the inner maximization of (5)

w.r.t S1,S2 as

min
X,S1,S2

− log |X|

s.t X = Z−1/2(H1S1H
H
1 +H2S2H

H
2 )Z−1/2 + I,

Si ≥ 0, Tr(Si) ≤ Pi, i = 1, 2. (6)

Using the dual variables T, λ1, λ2, the Lagrangian for this

problem can be written as

L(X,S1,S2,T, λ1, λ2) = − log |X|+
2∑

i=1

λi(Tr(Si)− Pi)

+Tr(T(X−
2∑

i=1

Z−1/2HiSiH
H
i Z−1/2−I))+

2∑

i=1

Tr(ViSi))

We differentiate the Lagrangian w.r.t the primal variables

X,Si to write the optimality conditions as

X−1 = T, (7)

λi I+Vi = HH
i Z−1/2 TZ−1/2 Hi, i = 1, 2. (8)

Substituting (7) and (8) in the Lagrangian above, and max-

imizing it w.r.t the dual variables, the dual problem to (6)

can be written as

max
T,λ1,λ2

log |T| − Tr(T)− λ1P1 − λ2P2 +N

s.t T ≥ 0, λi ≥ 0, i = 1, 2,

HH
i Z−1/2 TZ−1/2 Hi ≥ λiI, i = 1, 2. (9)

Using (9) in place of the inner maximization in (5), we get

min
Z

min
T,λ1,λ2

− log |T|+ Tr(T) + λ1P1 + λ2P2 −N

s.t T ≥ 0, Z ∈ S, λi ≥ 0, i = 1, 2,

HH
i Z−1/2 TZ−1/2 Hi ≥ λi I, i = 1, 2. (10)

Observe that (10) is a non-convex problem. The non-

convexity is a result of the coupling of the optimization

variables Z and T in the second constraint in (10). The non-

convexity of the dual problem for the sum capacity of the

BC has been tackled in [4] by using uplink-downlink duality.

Uplink-downlink duality refers to the fact that under the

same sum power constraint, the sum capacity of a MAC and

BC are the same [4,5] For point-to-point channels, uplink-

downlink duality reduces to the fact that the capacity remains

same when the roles of the transmitter and the receiver are

reversed under the same power constraint, a fact observed in

[1]. Thus, in [4], first the inner maximization of the downlink

primal problem is converted into an equivalent uplink prob-

lem under the same power constraint. Next, the dual problem

to this equivalent uplink problem is derived. This results in a

convex constraint of the form HH
i THi ≥ Z̃, instead of the

non-convex constraint HH
i Z−1/2 TZ−1/2 Hi ≥ λI, where

Z̃ = λZ.

We could possibly circumvent the non-convexity of (10)

by using this approach. We show below that this does not

lead to a single convex minimization problem. To this end,

consider the inner maximization of (5) w.r.t S1,S2. For

a fixed Z, this represents the sum capacity of a MAC

channel with individual power constraints P1, P2, and chan-

nel matrices Hi replaced by Z−1/2Hi. In order to use

uplink-downlink duality, we need to consider the downlink

BC corresponding to this MAC channel. However, uplink-

downlink duality refers to the fact that under the same sum

power constraint, the sum capacity of a MAC and BC are the

same [4,5]. Thus, there is no equivalent downlink BC with

the same sum capacity as the above MAC channel with indi-

vidual power constraints. To utilize uplink-downlink duality,

we first relax the individual power constraints on Tr(Si) to

a sum power constraint Tr(S1 + S1) ≤ PT . Notice that this

leads to a bound which is loose compared to the solution to

(5), since a sum power constraint results in a higher capacity.

Let H̃ = [H1H2]. Using uplink-downlink duality, the MAC

sum capacity with channel matrices Z−1/2Hi and a sum

power constraint can be written in terms of sum capacity of

the BC with the channel matrix H̃HZ−1/2 as

min
B

max
W

log |B−1/2H̃HZ−1/2WZ−1/2H̃B−1/2 + I|

s.t W ≥ 0, Tr(W) ≤ PT , B ∈ S
1. (11)

where B,W are the noise and input covariances in the

corresponding BC and the set S1 is similar to S, except that

the diagonal identity matrices are IMi
. It can be observed

that whereas the original sum power MAC problem was

a single convex maximization problem, (11) is a minimax

problem. Using steps similar to (6)-(10), the dual problem



to (5) utilizing the uplink-downlink duality can be written as

min
Z̃

min
B

min
U,λ

− log |U|+ Tr(U) + λPT −M

s.t U ≥ 0, λ ≥ 0, Z ∈ S, B ∈ S
1,

H̃B−1/2 UB−1/2 H̃H ≥ Z̃, (12)

where U, λ are dual variables and Z̃ = λZ. Alternatively,

if we consider the conjugate transpose channel in (11), then

the second constraint in (12) is replaced by the constraint

H̃H Z−1/2 UZ−1/2 H̃ ≥ B̃ and B̃ = λB. Thus, in both

the formulations of the dual problem (12), either B and U

are coupled as in (12), or Z and U are coupled ultimately re-

sulting in the non-convex optimization problem (12). Hence

the use of uplink-downlink duality has not eliminated the

non-convexity of the dual problem to (5) as was expected.

Thus, we have shown that techniques similar to [4] cannot

be applied to (5).

In [5], a different approach to duality is taken, where

it is proved that the worst noise matrix for the BC sum

capacity problem corresponds to an input cost constraint

in the equivalent uplink channel. It is then established that

the worst noise matrix for the BC leads to an input cost

constraint which decouples the inputs of the equivalent point-

to-point uplink channel resulting in a sum power constrained

MAC, which proves the duality between the BC and the

MAC under a sum power constraint. Interestingly, this result

is generalized in [20, Theorem 3], where it is shown that a

noise covariance constraint in the MAC can be transformed

into an input cost constraint in the BC. Using this idea does

not help to simplify (5) as we show below. Consider (11) and

write C = Z−1/2WZ−1/2. The constraint Tr(W) ≤ PT is

replaced by the input cost constraint Tr(CZ) ≤ PT . Thus,

(11) can be rewritten as

min
B

max
C

log |B−1/2 H̃H CH̃B−1/2 + I|

s.t W ≥ 0, Tr(CZ) ≤ PT , B ∈ S
1. (13)

Notice that the above problem is an application of [20,

Theorem 3] to (5) for a fixed noise covariance Z. Writing

the dual of (13), and minimizing over Z, leads precisely to

the non-convex formulation (12).

Finally, in [20], Lagrangian duality theory is utilized to

transform the minimax problem to a single maximization

problem corresponding to the sum power MAC problem. The

technique used in [20] cannot be applied here as the minimax

problem (5) cannot be transformed to a single maximization

problem as we show below. Using a set of steps similar to

that in [20, Sec. III-B], it can be shown that the application

of Lagrangian minimax duality to the minimax problem (5)

results in the following dual minimax problem

min
Θ

max
Ψ1,Ψ2

log
|G1Ψ1G

H
1 +G2Ψ2G

H
2 +Θ|

|Θ|

s.t Ψ1 ≥ 0, Ψ2 ≥ 0, Tr(Ψ1 +Ψ2) ≤ 1,

Θ ∈ S
2, (14)

where GH
1 = [H11H12] and GH

2 = [H21H22]. Ψi, Θ are

Ni×Ni and M ×M matrices of dual variables respectively

and the set S2 denotes the following

S
2 =

{
Θ :Θ≥0,Θ=

[
λ1IM1

X̂

X̂H λ2IM2

]
, λi≥0,

2∑

i=1

λiPi ≤ 1

}
.

Quite interestingly, (14) can be recognized as the sum

power constrained MAC channel obtained by reversing the

role of transmitters and receivers in the MIMO X channel

and assuming cooperation among the new receivers resulting

in a M antenna receiver. Also note that the noise covariances

at the new receiver i is scaled by λi. However, in contrast

to [20], the form of the problem (14) does not allow any

more simplifications and any attempt to simplify (14) either

results in yet another minimax problem with comparable

complexity or a non-convex problem. Thus we have shown

that the solution approaches in [4,5,20] cannot be used to

solve (5). We instead formulate it as a convex-concave game

and solve it directly without further transformations using

interior point methods.

A. Convex-concave game interpretation

The minimax problem in (5) can be interpreted as a

zero-sum, two-player convex-concave game. Let the objec-

tive function in (5) be denoted by f(Z,S), where S =
diag(S1,S2). f(Z,S) is called the payoff function in game

theory literature [23]. Player 1 chooses a noise matrix Z and

and player 2 chooses an input covariance matrix S. Based

on these choices, player 1 makes a payment to player 2, in

the amount f(Z,S). The goal of player 1 is to minimize this

payment, whereas the goal of player 2 is to maximize it. Note

that the game is convex-concave, since for each S, f(Z,S) is

a convex function of Z and for each Z, f(Z,S) is a concave

function of S. Since the payoff function is convex-concave

and the constraints in (5) are convex, a saddle point exists.

This follows from a minimax theorem in game theory [27].

We say that Z∗, S∗ is a solution of the game, or a saddle-

point (Nash-equilibrium), if for all Z, S,

f(Z∗, S) ≤ f(Z∗, S∗) ≤ f(Z, S∗).

Further, the distributions of both Z∗, S∗ are Gaussian [25].

For a general function g(x, y), it always holds that

min
x

max
y

g(x, y) ≥ max
y

min
x

g(x, y). (15)

However, when the saddle point exists, max-min equals min-

max, and the MAC upper bound can be formulated as in (5).

Note that, for Z = Z∗, S∗ maximizes f(Z∗, S), and

for S = S∗, Z∗ minimizes f(Z, S∗). Thus, at the saddle

point, neither player can do better by changing his strategy.

When f is differentiable and convex-concave, the Karush-

Kuhn-Tucker (KKT) conditions are a sufficient and necessary

condition for the optimality of the saddle point. This can be

proved as follows: since f is a convex function of Z, the

optimality condition for Z∗ to be a minimum for f(Z, S∗)
is ∇Zf(Z

∗, S∗) = 0, which is the KKT condition w.r.t Z.

Similar argument applies to S.

For a game with a twice-differentiable payoff function,

with inequality constraints on Z, S, the solution of the

game (5) can be computed using a primal-dual interior point



method which simultaneously solves the minimization and

maximization parts of (5).

We observe that strong duality holds in case of (5).

This follows from Slater’s theorem, which states that strong

duality holds if Slater’s constraint qualifications hold and

the problem is convex [23,24]. A generalized version of

Slater’s condition for the problem (5) is that, there exist Z,

Si satisfying the following conditions [23]

Si > 0, Tr(Si) ≤ Pi, i = 1, 2

Z > 0, C1ZC1 +C2ZC2 = IN . (16)

Since Z, Si exist satisfying (16), this implies strong duality

and also that the dual optimum is attained.

B. Derivation of Primal-Dual Interior Point Method

Primal-dual interior point methods are a class of interior

point methods which simultaneously solve both the primal

and dual problem. They solve an optimization problem with

linear equality and inequality constraints by reducing it to

a sequence of linear equality constrained problems. In the

following, we derive the interior point method for (5).

First, we write the objective function in (5) as

f0(Z, S1, S2). Forming the Lagrangian for (5), we have

f0(Z,S1,S2) +
2∑

i=1

λi(Tr(Si)− Pi) +
2∑

i=1

Tr(Φi(−Si))

+Tr(Σ(C1ZC1 +C2ZC2 − IN )) + Tr(Γ(−Z)),

where λi is the dual variable associated with the power

constraint Pi, i = 1, 2. Φi, Γ are matrices of dual variables

associated with the semidefinite constraint on Si, Z, respec-

tively, and Σ is a block diagonal matrix of dual variables

associated with the equality constraint on Z. The starting

point for the derivation of the interior point method is the

modified KKT conditions for (5). For i = 1, 2, we have

Z∗ ≥ 0, S∗

i ≥ 0, (17)

C1Z
∗C1 +C2Z

∗C2 = IN , (18)

λ∗

i ≥ 0, Γ∗ ≥ 0, Φ∗

i ≥ 0, (19)

Z∗Γ∗ = Γ∗Z∗ = 0, (20)

S∗

iΦ
∗

i = Φ∗

iS
∗

i = 0, (21)

−λ∗

i (Tr(S∗

i )− Pi) = 1/a, (22)

C1Σ
∗C2 +C2Σ

∗C1 = 0, (23)

−∇Si
f0(Z

∗,S∗

1,S
∗

2) + λ∗

i I−Φi
∗T = 0, (24)

∇Zf0(Z
∗,S∗

1,S
∗

2) +

2∑

i=1

CiΣ
∗TCi − Γ∗T = 0, (25)

where a > 0 and (·)∗ indicates the optimal value of the

variable at the saddle point. Since strong duality holds in

case of (5), (20)-(22) represent the modified complementary

slackness conditions. (23) is a result of the block diagonal

constraint on Σ. To find the saddle point, we need to

simultaneously solve the system of equations (17)-(25). For

i = 1, 2, let

Z∗ = Z+∆Z, S∗

i = Si +∆Si, λ∗

i = λi +∆λi, (26)

Γ∗ = Γ+∆Γ, Φ∗

i = Φi +∆Φi, Σ∗ = Σ+∆Σ, (27)

where ∆Si,∆Z are the primal search directions, and ∆λi,

∆Φi, ∆Γ and ∆Σ are the dual search directions. In (19),

we add both Z∗Γ∗ = Γ∗Z∗ = 0 so that the primal and

dual search directions ∆Z, ∆Γ are Hermitian matrices.

Otherwise, though Z∗, Γ∗ satisfy equations (17)–(25), they

might not be feasible (Hermitian). A similar argument applies

to (20).

Using (26) and (27) in (17)–(25), and the first order

Taylor’s approximation for the gradient of f0 w.r.t the primal

variables Z, S1 and S2 (See Appendix) and the vec operator,

(17)–(25) can be rewritten as the following system of matrix

equations:

ASi
∆xSi

= bSi
, i = 1, 2 (28)

AZ∆xZ = bZ, (29)

where

ASi
=




−∇2
Si
f0 −KMi×Mi

vec(IMi
)

−λi vec(IMi
)T 0 Pi − Tr(Si)

IMi
⊗Φi ST

i ⊗ IMi
0

ΦT
i ⊗ IMi

IMi
⊗ Si 0


 ,

bSi
= −




vec(∇Si
f0 − λiIMi

+ΦT
i )

λi(Pi − Tr(Si))− 1/t
vec(ΦiSi)
vec(SiΦi)


 ,

AZ =




∇2
Z
f0 −KN×N KN×N

D1 0 0

0 0 D2

IN ⊗ Γ ZT ⊗ IN 0

ΓT ⊗ IN IN ⊗ Z 0



,

bZ = −




vec(∇Zf0 + (Σ− Γ)T )
D1 vec(Z)− vec(IN )

D2 vec(Σ)
vec(ΓZ)
vec(ZΓ)



,

and

∆xSi
=



vec(∆Si)
vec(∆Φi)

∆λi


 , ∆xZ =



vec(∆Z)
vec(∆Γ)
vec(∆Σ)


 ,

where D1 = C1⊗C1+C2⊗C2, D2 = C2⊗C1+C1⊗C2,

and for brevity, we write f0 to denote f0(Z,S1,S2). We use

∇Si
f0, ∇Zf0 to denote the first-order derivative of f0 w.r.t

Si, Z respectively and ∇2
Si
f0, ∇2

Z
f0 to denote the Hessian or

the second-order derivative of f0 w.r.t Si, Z respectively. In

the Appendix, we give expressions for the first and second-

order derivatives of f0 w.r.t the primal variables.

C. Primal-dual interior point algorithm

In this subsection, we describe the algorithm used to

solve (5) in Algorithm 1. Let xZ = vec([Z Γ Σ]) and

xSi
= vec([Si Φi λi]), i = 1, 2. µ, ǫ are parameters

of the algorithm and m denotes the number of modified

complementary slackness conditions, where m = 2 from

(22). The updated primal and dual variables in the kth

iteration of the algorithm do not satisfy the KKT conditions

(17)–(25), except in the limit as the algorithm converges.



Algorithm 1. Primal-dual interior point method

1) Initialize Z > 0, Γ > 0, Σ = 0, Si > 0, Φi > 0,

λi > 0, i = 1, 2, µ > 1, ǫ > 0.

2) Evaluate a = µm/η̂.

3) Compute primal-dual search directions, ∆xZ, ∆xSi
,

i = 1, 2, using (28)-(29).

4) Line search and update: Determine step length v > 0,

ui > 0 and set xZ = xZ+v∆xZ, xSi
= xSi

+ui∆xSi
.

5) Compute primal and dual residuals: Rdual
Si

, R
pri
Z

,

Rdual
Z

and surrogate duality gap η̂.

6) If ‖Rdual
Si

‖F ≤ ǫ, ‖Rpri
Z

‖F ≤ ǫ, ‖Rdual
Z

‖F ≤ ǫ and

η̂ ≤ ǫ, stop. Otherwise goto step 2.

Hence, we define the primal and dual residuals w.r.t Z and

Si, i = 1, 2 at the kth iteration as:

Rdual
Si

= ∇Si
f0 − λiIMi

+ΦT
i , i = 1, 2,

Rdual
Z = ∇Zf0 + (Σ− Γ)T , (30)

R
pri
Z

= C1ZC1 +C2ZC2 − IN .

The parameter η̂ is called surrogate duality gap. This would

be the duality gap if the primal and dual residuals in (30)

were equal to zero. It is given by

η̂ =

2∑

i=1

(
λi(Pi−Tr(Si)+Tr(ΦiSiS

T
i Φ

T
i )

)
+Tr(ΓZZTΓT ).

It is not hard to see that the value of a that corresponds to the

surrogate duality gap η̂ is m/η̂. The line search in Algorithm

1 is a standard backtracking line search, based on the norm of

the primal and dual residuals, modified to ensure that Z > 0,

Si > 0, Φi > 0, Γ > 0 and λi > 0 for i = 1, 2 [23]. The

convergence of Algorithm 1 follows from the convergence

of the primal-dual interior point method [23].

IV. MODIFIED MMK SCHEME

In this section, we propose a scheme similar to the MMK

scheme [12], with the objective of maximizing the sum-rate

of the MIMO XC, which employs DPC at the transmitters

and successive decoding at the receivers. Further, we opti-

mize over the encoding and decoding order at the transmitters

and receivers. In the MMK scheme, the authors employ zero

forcing DPC (ZF-DPC), at the transmitters and successive

decoding along with whitening filters at the receivers to

decompose the system into four parallel channels. The filters

are designed to exploit the structure of the channel matrices

to achieve the highest multiplexing gain.

We describe the proposed modified MMK (m-MMK)

scheme below. Since the DPC at the transmitter results

in independent streams for both the receivers, we write

s1 = s11 + s21, and s2 = s12 + s22, where srt indicates

a transmission of stream from transmitter t to receiver r. Let

the encoding order at transmitter i be πti, i = 1, 2, and the

decoding order at receiver j be πrj , j = 1, 2.

Instead of explaining the general case, we discuss an

illustrative example. Let πti = (1, 2) at transmitter i = 1, 2
and πrj = (1, 2) at receiver j = 1, 2. This means that

s11 is encoded first at transmitter 1 and s21 is encoded

with full non-causal knowledge of s11. Thus, at receiver

2, s11 does not cause interference while decoding s21.

Similarly, s12 does not interfere with s22. However, s21
and s22 interfere with decoding of s11 and s12 at receiver

1. Successive decoding is employed at both receivers to

decode the intended signals. The decoding order at receiver

1, πr1 = (1, 2) means that s11 is decoded and canceled

out before decoding s12. Similarly, πr2 = (1, 2) indicates

that s21 is decoded first and canceled before proceeding to

decode s22. We use Ni to denote the noise plus interference

from unintended signals at receiver i. For the encoding order

above, N1=H11S21H
H
11+H12S22H

H
12+IN1

and N2 = IN2
.

Let Rrt denote the rate of stream srt, (r, t) = (1, 2). Thus,

for the above ordering, the following rate vector is achievable

Rrt ≤ log
|HrtSrtH

H
rt +Nrt|

|Nrt|
, (r, t) = 1, 2, (31)

where Nrt is the effective noise for stream srt and for the

above encode and decode ordering, N11 = H12S12H
H
12 +

N1, N12 = N1, N21 = H22S22H
H
22 +N2 and N22 = N2.

Observe that effective noise Nrt, (r, t) = 1, 2, is both

a function of the ordering at the transmitters/receivers and

the input covariance matrices. The apriori knowledge of the

effective noise and the decoding order used at the both the re-

ceivers is needed at the transmitter to allocate the rates to the

two streams appropriately. Since they are apriori not known,

we adopt the following iterative algorithm. The achievable

sum-rate capacity depends on the ordering used at the

transmitters/receivers. Hence, we calculate the sum-rate for

all the 16 combinations of ordering and take the maximum.

Algorithm 2. Proposed modified MMK scheme

1) Assume ordering πti at transmitter i = 1, 2 and

ordering πrj at receiver j = 1, 2 and set Ni = I,

i = 1, 2.

2) Compute DPC matrices Srt at transmitter t, (t, r) =
(1, 2).

3) Recompute Ni, i = 1, 2.

4) Repeat steps 2–3, till the DPC matrices Srt, (t, r) =
(1, 2) converge to within ǫ ≥ 0.

5) Evaluate the sum-rate R =
∑2

r=1

∑2

t=1
Rrt.

6) Repeat steps 1–5 for all 16 combinations of ordering,

πti, πrj (i, j) = 1, 2 and take the maximum over all

the sum-rates.

We use the efficient algorithm in [21] to compute the DPC

matrices. For a given ordering at the transmitters/receivers,

simulation results show that the algorithm converges fast.

V. SIMULATION RESULTS

We consider a MIMO X channel with M1 = M2 = 3
antennas at the transmitters and N1 = N2 = 3 antennas

at the receivers. The maximum multiplexing gain of the

MIMO XC, for this configuration of antennas is 4 [10]. The

total power is divided equally between the two transmitters,

P1 = P2 = PT /2. The signal-to-noise ratio (SNR) is defined

as PT /σ
2
n, where σ2

n is the variance of the CSCG noise



Capacity: bits/s/Hz
SNR MAC Upper MAC Upper Bound:
(dB) Bound with least favorable noise

0 5.8196 5.3213

5 10.4725 9.9879

10 16.7783 16.4142

15 24.4791 24.2603

20 33.1513 33.0465

25 42.4444 42.4035

30 52.0951 52.0810

35 61.9262 61.9216

40 71.8384 71.8371

TABLE I

PERFORMANCE OF MAC UPPER BOUND WITH LEAST FAVORABLE NOISE

at a receive antenna. We use 5000 realizations of CSCG

channels and regard the average sum-rates to evaluate the

bounds discussed in Sec. III and IV.

In Table I, we give the average sum-rate of MAC with-

out noise correlation and MAC with least favorable noise

correlation. We choose the following values for Algorithm

1: µ = 10 and set the accuracy level ǫ = 10−6. First, it

can be observed that the outer bound derived in Sec. III is

tighter than the MAC upper bound without noise correlation.

However, the difference vanishes in the high SNR regime.

This can be attributed to the fact that, at the MAC receiver,

in the high SNR region, interference from other transmitters

limits capacity and thermal noise plays a much smaller role.

In Fig. 2, we plot the outer bound in Sec. III and the inner

bound derived in Sec. IV. We also give two closely related

schemes, MMK scheme in [12] and the coding schemes in

[13] called MMK Joint Design (MMK-JD) for reference. It

is seen that the outer bound is quite close to the achievable

region of the proposed m-MMK scheme at low SNRs, and is

moderately close in the medium SNR regime. However, the

difference between the bounds increases rapidly, once we

approach higher SNRs. This can be explained as follows.

Consider the outer bound in Sec. III. There are two streams

in the MAC as opposed to four in the proposed m-MMK

scheme. Notice that all the N1 + N2 antennas are used to

decode both the streams. What is seen as interference in the

m-MMK scheme is actually used by the MAC to decode the

received streams using all the antennas. Additionally, after

one of the streams is decoded and canceled out, it enables

the allocation of a much higher rate to the other stream. In

contrast, in the m-MMK scheme, once we enter the high

SNR region, high interference from unintended signals at

the receivers causes severe capacity degradation. Also note

that the proposed m-MMK scheme outperforms both MMK

and MMK Joint design. This is primarily due to optimization

over the transmit/receiver ordering and to a lesser extent on

the use of optimal DPC as opposed to ZF-DPC in MMK. In

MMK Joint Design, ZF-DPC transmit matrices are used and

receive whitening filters are used and successive decoding is

not employed. Thus, the almost constant difference between

the two MMK schemes can be attributed solely to the use

of successive decoding in MMK.

VI. CONCLUSIONS

We investigated the sum-rate capacity of the MIMO X

channel. We derived an upper bound on the sum-rate capacity
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Fig. 2. Comparison of MAC upper bound with least favorable noise
correlation and achievable region of the proposed m-MMK scheme.

of the MIMO XC under individual power constraint at each

transmitter. We first obtained an upper bound through the

MAC sum-rate capacity, assuming receiver cooperation. We

then tightened this bound by considering noise correlation

between the receivers and derived the worst noise covariance

matrix. We formulated this problem as a convex-concave

minimax problem and solved it using a primal-dual interior

point method which simultaneously solved both the maxi-

mization and minimization parts of the problem. We also

proposed a scheme similar to that in [12], which employed

dirty paper coding at the transmitters and successive decod-

ing at the receivers. We showed that the derived upper bound

is close to the achievable region of the proposed scheme at

low to medium SNRs.

APPENDIX

The first order Taylor’s approximation for ∇Zf0(Z +
∆Z,S1,S2), when S1, S2 are held constant is

∇Zf0(Z+∆Z,S1,S2) = ∇Zf0(Z,S1,S2) +∑

k

∑

l

(
∇∆zkl

(∇Zf0)
)
∆zkl.

Using the vec(·) operator, we write the above equation as

vec(∇Zf0(Z+∆Z,S1,S2)) = vec(∇Zf0) +∇2

Zf0 vec(Z),

where for brevity, we write f0 to denote f0(Z,S1,S2) and

∇2
Z
f0 is the second-order derivative or Hessian of f0 w.r.t

Z and is defined below. Similar expressions hold for ∇Si
f0

when Si alone is varied. Below, we give expressions for the

first and second-order derivatives of f0: ∇Zf0, ∇Si
f0, ∇2

Z
f0

and ∇2
Si
f0, for i = 1, 2:

Ri = HH
i (H1S1H

H
1 +H2S2H

H
2 + Z)−1Hi, (32)

∇Si
f0 = RT

i , (33)

E = (Z)−1, (34)

F = (H1S1H
H
1 +H2S2H

H
2 + Z)−1, (35)



∇Zf0 = ET − FT , (36)

∇2

Si
f0 = −KMi×Mi

(RT
i ⊗Ri), (37)

∇2

Zf0 = −KN×N (ET ⊗E− FT ⊗ F). (38)

(33) and (36) follow from Lemma 1, while (37) and (38)

follow from Lemma 2.

Lemma 1. Let H, S and Z ∈ C
N×N and let y =

log |HSHH + Z|. Then ∇Sy =
(
HH(HSHH + Z)−1H

)T
.

Proof. The above result can be proved by repeatedly apply-

ing chain rule for matrix differentials [26]. In Table II, we

list some differentials of functions of a complex matrix X

used in the proof [26]. The differential of y, dy is given by

dy = Tr
(
(HSHH + Z)−1d(HSHH + Z)

)
(39)

= Tr
(
(HSHH + Z)−1H(dS)HH

)

= Tr
(
HH(HSHH + Z)−1HdS

)
.

The final result follows from the relation between the deriva-

tive and the differential of a scalar function g of a complex

matrix X [26]: if dg = Tr
(
ATdX), then ∇Xg = A.

Lemma 2. Let H, S, Z and y be as in Lemma 1. Then

∇2
S
y = −KN,N

(
∇Sy ⊗ (∇Sy)

T )

Proof. The second differential d2y is given by d2y =
d(dy) = d(dy)T . The first differential dy in (39) can be

alternately written as dy = vecT (∇Sy) dvec(S) [26]. Thus,

d2y = d(dvecT (S) vec(∇Sy)),

= dvecT (S) dvec(∇Sy). (40)

Let W =
(
∇Sy

)T
= HHX−1H, where X = (HSHH +Z).

Then,

dW = HH
(
dX−1

)
H,

= −HHX−1
(
dX

)
X−1H,

= −HHX−1H
(
dS

)
HHX−1H,

= −W
(
dS

)
W. (41)

Using the following result in matrix theory, vec(ACB) =
(BT ⊗A) vec(C), (41) can be written as

dvec(W) = −
(
WT ⊗W

)
dvec(S),

and

dvec(∇Sy) = −KN,N

(
∇Sy ⊗ (∇Sy)

T ) dvec(S). (42)

Using (42) in (40), we get

d2y = −dvecT (S)KN,N

(
∇Sy ⊗ (∇Sy)

T ) dvec(S). (43)

The Hessian of y w.r.t S can be identified from (43) as [26]

∇2

S
y = −KN,N

(
∇Sy ⊗ (∇Sy)

T ). (44)
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