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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is emerging as a promising alternative to currently deployed
multicarrier modulation schemes, particularly in high-Doppler
wireless channels. The multicarrier (MC) version of OTFS (MC-
OTFS) has dominated the OTFS research literature so far
due to its compatibility with the prevailing MC modulation
schemes. Recently, Zak transform based OTFS (Zak-OTFS) has
gained prominence on account of its superior performance and
low complexity. However, unlike in its MC counterpart, the
transceiver signal processing aspects like equalization/detection
and channel estimation in Zak-OTFS remain vastly unexplored.
In this paper, we present an early investigation of low-complexity
detection algorithms for Zak-OTFS that can scale efficiently
for large frame sizes and achieve near-optimal performance.
For this, we resort to efficient local search algorithms, namely,
likelihood ascent search (LAS) and reactive tabu search (RTS)
algorithms, that scale well for large dimensions. To assess the
closeness of the performance of these algorithms to the optimum
maximum likelihood (ML) performance, we obtain a lower bound
on ML performance via RTS simulation using the transmit
vector as the initial vector and defining a suitable neighborhood.
Our simulation results indicate that while the performance of
the popularly known minimum mean square error (MMSE)
and message passing (MP) algorithms are far from the ML
performance bound, LAS and RTS algorithms initialized with
MMSE solution achieve close to ML performance bound within
about 1 dB at a bit error rate of 10−5.

Index Terms—OTFS modulation, delay-Doppler domain, Zak-
OTFS, MC-OTFS, MMSE detection, MP detection, likelihood
ascent search, reactive tabu search, ML lower bound.

I. INTRODUCTION

The emergence of high mobility and high carrier fre-
quency use cases in wireless communication systems leads to
high-Doppler scenarios, adding time-selectivity to frequency-
selective channels. The popular orthogonal frequency division
multiplexing (OFDM) fails in these doubly-selective channels,
prompting the exploration of alternative waveforms that are
robust to rapid time variations in the channel. Orthogonal
time frequency space (OTFS) modulation proposed in [1]
is a promising modulation scheme for achieving reliable
communication in high-Doppler channels. In OTFS, infor-
mation symbols are multiplexed in the delay-Doppler (DD)
domain. Moreover, the doubly-selective wireless channel is
parameterized in the DD domain which renders a sparse and
largely time-invariant representation, and this contributes to
complexity and performance advantages.

Central to OTFS modulation is the conversion of DD
domain symbols to time domain (TD) at the transmitter and
vice versa at the receiver. This is carried out differently by
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different variants of OTFS. One popularly studied variant is the
multicarrier OTFS (MC-OTFS), where the DD domain to TD
conversion is carried out in two steps, viz., DD domain to time-
frequency (TF) domain via inverse symplectic finite Fourier
transform (ISFFT) followed by TF domain to TD conversion
using Heisenberg transform [1]-[3]. This two-step approach
has been at the forefront of OTFS research owing to its
compatibility with existing multicarrier modulation schemes
like OFDM [4]. Lately, Zak-OTFS, which offers a one-step
conversion from DD domain to TD using inverse time Zak
transform [5], has garnered research attention as it is more
robust to a larger range of delay and Doppler spreads of the
channel compared to that with MC-OTFS [6]-[10].

A comprehensive treatment of Zak-OTFS and its attributes
is presented in [6],[7]. These recent works emphasize the
attributes of Zak-OTFS, such as non-fading and predictability
of the input-output (I/O) relation, and notes that these attributes
allow the DD channel to be efficiently acquired and equalized,
resulting in better robustness. Zak-OTFS waveform is a quasi-
periodic DD domain pulse, localized within the fundamental
period, which when converted to TD using inverse time
Zak transform is a pulse train modulated by a frequency
tone (referred to as pulsone). Aliasing in the DD domain is
avoided by an appropriate choice of pulsone periods (ensuring
operation in the crystalline regime where the crystallization
condition is satisfied) and pulse shaping filters (DD localized
pulses). The crystallization condition is said to be satisfied
when the DD periods of the pulsone are chosen to be large
compared to the DD channel spreads.

In [7], MC-OTFS is interpreted as a multicarrier approxima-
tion to Zak-OTFS, and a detailed comparison of I/O relation
and bit error performance between Zak-OTFS and MC-OTFS
is carried out. The bit error performance comparison is made
considering minimum mean square error (MMSE) detection.
MMSE detection, though attractive for its cubic complexity
in the OTFS frame size, is not optimal. Optimum detection,
on the other hand, is exponentially complex in the frame size
and hence prohibitive. While several detection algorithms for
MC-OTFS have been investigated in the literature [11]-[16],
algorithms for Zak-OTFS signal detection remain unexplored.
Specifically, performance of detection algorithms for Zak-
OTFS other than MMSE detection has not been reported. The
new contributions in this paper can be summarized as follows.

• Our work in this paper presents an early investigation of
low-complexity detection algorithms for Zak-OTFS that
can scale efficiently for large frame sizes and achieve
near-optimal performance. For this, we resort to efficient
local search algorithms that scale well for large dimen-



Fig. 1: Transceiver signal processing in Zak-OTFS.

sions [17]. These algorithms include likelihood ascent
search (LAS) and reactive tabu search (RTS) algorithms.

• Our simulation results show that the LAS and RTS
algorithms outperform the minimum mean square error
(MMSE) and message passing (MP) algorithms popularly
known in the OTFS literature.

• A key question we address in this paper is how close the
considered search algorithms perform compared to the
optimal detection performance. Towards this, we obtain
a lower bound on ML performance via RTS simulation
using the transmit vector as the initial vector and defining
a suitable neighborhood and error counting. Simulation
results indicate that while MMSE and MP detection
performance are far from the ML performance bound, the
LAS and RTS algorithms initialized with MMSE solution
achieve close to ML performance bound within about 1
dB at a bit error rate (BER) of 10−5.

The rest of the paper is organized as follows. Section II
presents the Zak-OTFS system model. The considered algo-
rithms for Zak-OTFS signal detection are presented in Sec.
III. Performance results and discussions are presented in Sec.
IV. Conclusions are presented in Sec. V.

II. ZAK-OTFS SYSTEM MODEL

The block diagram in Fig. 1 illustrates the transceiver signal
processing in Zak-OTFS. At the transmitter, the continuous
DD domain signal, which is time- and bandwidth-limited,
is converted into a TD signal for transmission via inverse-
time-Zak transform. At the receiver, the received TD signal
is converted back to the DD domain using Zak transform,
followed by match-filtering and sampling for detection.

Zak-OTFS modulation is parameterized by τp and νp,
which denote the delay and Doppler periods of the pulsone,
respectively, related as τpνp = 1. The DD plane is partitioned
into boxes/rectangles of length τp along the delay axis and νp
along the Doppler axis, and the fundamental period in the DD
domain is defined as

D0
∆
= {(τ, ν) : 0 ≤ τ < τp, 0 ≤ ν < νp}, (1)

where τ and ν represent the delay and Doppler variables,
respectively. This is discretized to get the DD domain infor-
mation grid as

Λdd
∆
=

{(
k
τp
M

, l
νp
N

)
| k = 0, · · · ,M − 1, l = 0, · · · , N − 1

}
,

(2)

where the integers M ≈ Bτp and N ≈ Tνp are the number
of delay and Doppler bins, respectively, and T , B denote the
time duration and bandwidth of the pulsone, respectively [7].

The information symbols, x[k, l], k = 0, · · · ,M−1 and l =
0, · · · , N − 1, drawn from a modulation alphabet A, are
multiplexed on the DD information grid. The quasi-periodic
discrete DD domain information signal, with delay period M
and Doppler period N , is given by

xdd[k + nM, l +mN ] = x[k, l]ej2πn
l
N , m, n ∈ Z. (3)

The continuous DD domain information signal is given by

xdd(τ, ν) =
∑
k,l∈Z

xdd[k, l]δ
(
τ − k

τp
M

)
δ
(
ν − l

νp
N

)
,

where δ(·) denotes the Dirac-delta impulse function. Twisted
convolution of the signal with DD domain transmit pulse
wtx(τ, ν) results in time- and bandwidth-limited DD domain
transmit signal, given by [7]

xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν),

where ∗σ denotes the twisted convolution operation1. The TD
transmit signal is realized by applying the inverse-time-Zak
transform2, given by

std(t) = Z−1
t (xwtx

dd (τ, ν)) . (4)

The DD domain channel representation is specified by the DD
spreading function h(τ, ν), given by

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (5)

where P denotes the number of DD channel paths, and hi, τi,
and νi denote the complex channel gain, delay, and Doppler,
respectively, associated with the ith path. The received TD
signal at the receiver is then given by

rtd(t) =

∫∫
h(τ, ν)std(t− τ)ej2πν(t−τ)dτ dν+ntd(t), (6)

where ntd(t) is the AWGN. The received TD signal is
converted to DD domain signal ydd(τ, ν) via Zak transform3

as
ydd(τ, ν) = Zt (rtd(t)) . (7)

1x(τ, ν)∗σ y(τ, ν)
∆
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∆
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√
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3Zt (z(t))
∆
=
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k∈Z z(τ + kτp)e−j2πνkτp



The action of the channel on the DD domain transmit signal
is given by twisted convolution operation as

ydd(τ, ν) = h(τ, ν) ∗σ xwtx

dd (τ, ν) + ndd(τ, ν), (8)

where ndd(τ, ν) = Zt (ntd(t)). The DD signal in (8) is
match-filtered with the DD domain receive pulse shaping filter
wrx(τ, ν), i.e., ywrx

dd (τ, ν) = wrx(τ, ν) ∗σ ydd(τ, ν), which can
be derived as [7]

ywrx

dd (τ, ν) = hdd(τ, ν) ∗σ xdd(τ, ν) + nwrx

dd (τ, ν), (9)

where nwrx

dd (τ, ν) = wrx(τ, ν) ∗σ ndd(τ, ν) and hdd(τ, ν) is
the effective continuous DD channel filter, defined as

hdd(τ, ν)
∆
= wrx(τ, ν) ∗σ h(τ, ν) ∗σ wtx(τ, ν). (10)

The match-filtered received signal is then sampled on the
DD domain information grid to get the discrete DD domain
received signal

ydd[k, l] = ywrx

dd

(
τ = k

τp
M

,ν = l
νp
N

)
, k, l ∈ Z. (11)

The input-output relation is given by a discrete twisted con-
volution operation as

ydd[k, l] = hdd[k, l] ∗σ xdd[k, l] + ndd[k, l], (12)

where ndd[k, l] is the noise sample and hdd[k, l] denotes the
effective discrete DD channel filter output which is obtained
by sampling the effective continuous DD channel filter output,
i.e.,

hdd[k, l] = hdd

(
τ = k

τp
M

,ν = l
νp
N

)
, k, l ∈ Z. (13)

Substituting the definition of twisted convolution in (12), we
have the complete input-output relation as

ydd[k, l] =
∑

k′,l′∈Z
hdd[k−k′, l−l′]xdd[k

′, l′]ej2π
(l−l′)k′

MN +ndd[k, l].

(14)

A. Vectorized formulation of input-output relation

Owing to the quasi-periodicity in the DD domain, it is suffi-
cient to consider the received samples within the fundamental
period. Then, the expression in (14) for the MN samples can
be vectorized to get

y = Hx + n, (15)

where x, y,n ∈ CMN×1, such that their (kN + l+1)th entries
are given by xkN+l+1 = xdd[k, l], ykN+l+1 = ydd[k, l],
nkN+l+1 = ndd[k, l], and H ∈ CMN×MN such that

H[k′N + l′ + 1, kN + l + 1] =
∑

m,n∈Z
hdd[k

′ − k − nM, l′ − l −mN ]

ej2πnl/Nej2π
(l′−l−mN)(k+nM)

MN , (16)

where k′, k = 0, · · · ,M − 1, l′, l = 0, · · · , N − 1, and the
entries of n are distributed as CN (0, σ2).

III. ALGORITHMS FOR ZAK-OTFS SIGNAL DETECTION

Zak-OTFS signal detection algorithms investigated in this
paper are described in the following subsections.

A. LMMSE detection

Linear detectors perform data detection using a linear trans-
formation matrix (say, G) and a mapping function (say, f ) as

x̂ = f(Gy). (17)

The function f(.) maps each entry of the transformed received
vector Gy to a symbol in the modulation alphabet A based on
minimum Euclidean distance. For the I/O relation in (15), the
transformation matrix for LMMSE detection is

G = (HHH + σ2I)−1HH . (18)

Since the computation of G necessitates the inversion of
MN ×MN matrices, it leads to a computational complexity
of O(M3N3), which is for a total of MN symbols. Hence,
the complexity per symbol is O(M2N2). The BER results of
Zak-OTFS reported in [6],[7] use this detection.

B. Message passing (MP) detection

The message passing (MP) algorithm used for MC-OTFS
signal detection in [11] is an approximate maximum a pos-
teriori (MAP) detector based on low-complexity message
passing on graphical models. It uses a bipartite graph with
variable nodes (x) and observation nodes (y) and iteratively
passes messages between them. It involves the computation
of approximate a posteriori probabilities of the modulation
symbols by passing messages on the graph. This algorithm
was inspired by the large MIMO detection algorithm in [18],
which approximates the interference from multiple antennas as
Gaussian, and this reduced the complexity of the computation
of messages. While the graph in [18] is a fully connected
graph (because the MIMO channel matrix is such that every
observation node is influenced by all the variable nodes), the
graph in [11] is sparsely connected (because of the sparse
nature of the effective channel matrix in MC-OTFS). MC-
OTFS detection leverages this intrinsic sparsity to further
reduce the message computation complexity. On the other
hand, the effective channel matrix in Zak-OTFS, i.e., matrix H
in (15), is not sparse, resulting in a fully connected graph. Still,
the Gaussian approximation of interference in the algorithm
results in cubic complexity in the frame size, which (like
MMSE detection) is affordable. To enhance the convergence of
the iterative algorithm, we employ damping where messages
are computed as a convex combination of the current and
previous messages, with the damping factor serving as the
weight for the current message.

C. LAS algorithm

Likelihood ascent search (LAS) detector is a low-
complexity local search based detector [17]. The algorithm
starts with an initial solution vector and searches for better
solution vectors (in terms of ML cost ∥y − Hx∥2) in the
neighborhood till a local minima is reached. It starts by
declaring the initial solution vector as the current solution
vector and checks if the best among the neighbors of the
current solution vector is better (in terms of ML cost) than the
current solution vector. If yes, the best neighbor is declared



Fig. 2: Flowchart of the LAS algorithm.

as the current solution vector and the algorithm proceeds to
the next iteration. In the next iteration, the neighborhood of
the new current solution vector is tested for a better solution
vector. This process continues till the current solution vector
is the best in its neighborhood, i.e., the algorithm has reached
a local minima, and the algorithm stops. The current solution
vector in the last iteration is declared as the detected vector.
The flow chart of the LAS algorithm is shown in Fig. 2.

Neighborhood definition: The search complexity of the
algorithm depends on the definition and size of the neighbor-
hood. For example, consider a 1-symbol away neighborhood,
where the neighborhood consists of all the vectors which
differ from the current solution vector in only one coordinate.
The size of this neighborhood grows only linearly in the
frame size, and this reduces the search complexity. A k-
symbol away neighborhood, k > 1, where the neighbors differ
from the current solution vector in up to k coordinates has a
larger neighborhood size. The quality of the detected vector
can be better because of the larger search space, but at the
cost of increased search complexity. In problems with large
dimensions, LAS algorithm with a simple 1-symbol away
neighborhood gives good solution vectors. Also, the quality
of the solution depends on the initial solution with which the
algorithm starts. A better initial vector leads to a better solution
vector. For the Zak-OTFS detection in this paper, we use
the 1-symbol away neighborhood definition and use MMSE
solution vector as the initial solution vector. Consequently, the
algorithm is called the MMSE-LAS algorithm.

Complexity: The initial solution computation and the search
operation contribute to the computational complexity of LAS.
Since the search part is random, the average complexity of
the search operation is obtained through simulations, which is
O(MN) per symbol [17]. The complexity of the MMSE solu-
tion is O(M2N2) per symbol, as a total of MN symbols are
involved. Clearly, for large dimensions, the overall complexity
is dominated by the initial solution computation.

D. RTS algorithm

The RTS algorithm [17] also uses an iterative local neigh-
borhood search based approach, but, unlike LAS, it has a
wider search space as it employs an escape strategy from the
local minima. This feature prevents the algorithm from being
trapped in the first encountered local minima, enabling explo-
ration beyond the neighborhood of the initial solution vector.
RTS traces through different neighborhoods until it satisfies
the specified stopping criterion. To enhance search efficiency,
revisits to the solutions are allowed only in a controlled manner
by using a tabu period. Tabu period is the number of iterations
for which the revisit to a particular solution is prohibited
(hence the name ‘tabu’), which is dynamically changed based
on the frequency of revisits (fixed tabu search is a variant
that keeps the tabu period constant). The tabu solutions are
tracked using a tabu matrix. The complexity analysis in [17]
through simulations illustrates a higher complexity for RTS
search operation than its LAS counterpart, which is intuitive
since the former has a broader search space. This makes RTS
to achieve better performance compared to LAS at the cost of
some complexity increase. However, the overall complexity,
primarily dominated by the computation of the initial solution,
does not exhibit a significant difference for higher dimensions.
In the RTS also, we employ 1-symbol away neighborhood and
use MMSE solution vector as the initial vector. Consequently,
the algorithm is called MMSE-RTS algorithm.

1) Lower bound on ML performance: In the next section
on results and discussions, we will present the simulated
BER performance of the detectors presented above. It is of
interest, however, to know how far are these detectors from
the optimum ML detector in terms of bit error performance.
Simulation of ML performance for frame sizes considered
in the results and discussions section is prohibitive. Hence,
we compute a lower bound on the ML performance via
RTS simulations as outlined in [19], which is complexity-
wise feasible. To obtain the ML lower bound through RTS
simulation, the RTS algorithm starts with the transmitted
vector as the initial solution. The n-symbol neighborhood of
a vector is defined as the set of all vectors differing from it
in i coordinates, 1 ≤ i ≤ n. Depending on the location of the
final solution vector relative to the bound specified by the n-
symbol neighborhood definition, a lower bound for the number
of symbol errors in the ML solution vector, eML, is computed
as

eML =

{
eRTS , if eRTS ≤ n

n+ 1, otherwise,

where eRTS denotes the number of symbol errors in the final
solution vector compared to the initial vector (which is taken
to be the transmit vector). The tightness of the bound can be
improved using larger values of n, i.e., a larger neighborhood
size, at the cost of higher complexity.

An approximate ML performance: Motivated by the high
complexity needed to obtain a tighter bound (using larger
n values), a low complexity approximation to the true ML
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Fig. 3: BER performance of MP detection of Zak-OTFS as a
function of damping factor.

performance can be obtained using the RTS algorithm [19].
This is obtained by running the RTS algorithm using the
transmitted vector as the initial vector. The idea is that the
eRTS is an upper bound to the lower bound of ML symbol
error count (eML). But it need not be a bound for the true ML
performance. Hence, it is only an approximation. However, it
is shown to be closer to the true ML at low SNR values.

IV. RESULTS AND DISCUSSIONS

In this section, we illustrate the BER performance of the
aforementioned detectors and demonstrate their performance
proximity to ML detection performance. In all the simulations,
we consider a Zak-OTFS system whose frame duration is
fixed at T = 0.8 ms and bandwidth at B = 480 kHz. The
Doppler period of the pulsone is set at νp = 15 kHz, resulting
in a corresponding delay period τp = 1/νp = 66.6 µs.
Consequently, the system is characterized by M = Bτp = 32
delay bins and N = Tνp = 12 Doppler bins.

We consider the Vehicular-A channel model having six
paths with a maximum Doppler shift νmax = 815 Hz and
power delay profile as given in [7]. We assume perfect
knowledge of the I/O relation. Here, it can be easily verified
that we are operating in deep crystalline regime (the delay
period τp = 66.6 µs is far greater than the channel delay
spread τmax = 2.51 µs and the Doppler period νp = 15 kHz
significantly exceeds the channel Doppler spread of 1.63 kHz).
The Doppler shift of the ith path is generated using Jakes’
formula, νi = νmax cos θi, where θi values are independent
and uniformly distributed in the interval [0, 2π). Data symbols
are drawn from BPSK modulation alphabet. The transmit and
receive pulse shaping filters used are sinc filters, given by

wtx(τ, ν) = wrx(τ, ν) =
√
BTsinc(Bτ)sinc(Tν).

In order to identify the optimal value of damping factor
in the MP algorithm, we examine the BER performance as a
function of the damping factor at an SNR value fixed at 15 dB.
A maximum of 20 iterations of message passing is used. The
results are shown in Fig. 3. It is observed that the algorithm
performs poorly at the extreme values of the damping factor.

max
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p
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p
=66.6667 s

Veh-A channel model

Perfect knowledge of I/O relation

M=32, N=12

SNR = 18 dB, BPSK

Fig. 4: Convergence behaviour of MP detection of Zak-OTFS.

When the damping factor equals 1, it corresponds to no
damping, wherein all weight is assigned to the current message
while disregarding the preceding one. At the opposite extreme
corresponding to a damping value of 0, the current solution
is entirely dismissed which also leads to inferior performance.
From the plot, we obtain the optimal value to be 0.3, which is
adopted for subsequent simulations. In Fig. 4, the convergence
behaviour of the MP detection algorithm is studied by plotting
the BER performance as a function of the maximum number of
iterations, at 18 dB SNR. It can be observed that convergence
occurs in as few as 10 iterations.

Figure 5 compares the BER performance of the various de-
tectors, alongside the ML performance lower bounds obtained
for n = 1 and 2. Although n = 1 gives the bound with a
lower complexity, n = 2 gives a tighter bound at the cost of
complexity, making it a better reference to compare the near-
optimal performance of the various detectors. It can be seen
that the MMSE detection yields subpar BER performance.
MP detection outperforms MMSE detection at low to medium
SNRs (by about 1.5 dB at 10−3 BER). But the MP detection
performance is found to floor at high SNRs (beyond 15 dB),
even performing poorer than MMSE detection. Regardless,
both MP and MMSE performances are far from the ML
performance bound. However, it can be observed that the
MMSE-LAS and MMSE-RTS algorithms achieve close to ML
performance bound (n = 2) within about 1 dB at 10−5 BER,
in the high SNR regime. It is noteworthy that this performance
improvement comes with a little additional search complexity
compared to the MMSE complexity. In Fig. 6, it is seen that
while the BER performance of MMSE-LAS and MMSE-RTS
detectors are close to the ML lower bound at high SNRs, they
are also close to the approximate ML performance at lower
SNRs, highlighting their closeness to ML performance even
at lower SNR values.

V. CONCLUSIONS

Our work in this paper demonstrated near-optimal perfor-
mance of Zak-OTFS signal detection at low complexities that
scale well for large frame sizes. Our results showed that the
MMSE and MP detectors, though popular in the MC-OTFS
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Fig. 6: BER performance of MMSE-LAS, MMSE-RTS de-
tection of Zak-OTFS, ML performance lower bound, and
approximate ML performance for n = 1.

literature, perform far from the optimum ML performance.
On the other hand, simple local search based detectors such
as LAS and RTS detectors were found to achieve near-
ML performance with some additional search complexity.
We demonstrated this by obtaining a lower bound for the
ML performance via RTS simulation with a suitable choice
of initial vector, neighborhood definition, and symbol error
counting. We note that DD domain signal processing for Zak-
OTFS is wide open for research, and the results reported in
this work could trigger a broader research interest in DD signal
processing for Zak-OTFS in general, and devising efficient
detection and channel estimation algorithms for Zak-OTFS in
particular.
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