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Abstract—Zak-OTFS is a promising modulation scheme for 6G
and beyond due to its enhanced resilience to high Dopplers and
its structured input-output relation through twisted convolution
operation. In this paper, we analyze the diversity performance
of Zak-OTFS under maximum-likelihood (ML) detection and
perfect delay-Doppler (DD) domain channel state information
(CSI). Our analysis provides a condition in the design of pulse
shaping filters to achieve full DD domain diversity. Our results
show that sinc and Gaussian filters achieve full DD diversity
in Zak-OTFS. This is in contrast with the widely investigated
multicarrier (MC) version of OTFS (MC-OTFS), whose diversity
order is one and requires phase rotation operation on the
transmit vector to achieve full DD diversity. Further, we analyze
the bit error performance of Zak-OTFS under imperfect CSI.
We carry out the analysis for 1) the mismatched ML detector,
where the channel matrix in the conventional ML decision rule
is replaced with the estimated channel matrix, and 2) the true
ML detector which takes into account the CSI error statistics in
the ML decision rule, and quantify the performance gap between
the two detectors.

Index Terms—Zak-OTFS modulation, delay-Doppler domain,
doubly-selective channels, diversity analysis, imperfect CSI.

I. INTRODUCTION

The advent of 6G heralds a transformative era in wireless
communication, promising advanced applications and ultra-
reliable, low-latency connectivity. This paradigm shift faces
challenges posed by complex channel conditions arising from
high mobility, high carrier frequencies, and dense urban envi-
ronments. These conditions lead to significant time selectivity
in the channel, necessitating the exploration of advanced
technologies, including novel modulation schemes, for robust
communication. Orthogonal time frequency space (OTFS)
modulation introduced in [1] and extensively researched later
[2] offers a potential solution to effectively mitigate rapid
time variations in the channel. Its superior performance is
attributed to two key features: multiplexing of information
symbols in the delay-Doppler (DD) domain and DD channel
parameterization, which render a sparse and predominantly
time-invariant representation. These features facilitate reduced
complexity and pilot overhead in DD channel estimation, and
better equalization.

The initial focus of OTFS research was on multicarrier
OTFS (MC-OTFS), which employs a two-step conversion
between DD domain and time domain (TD) via time-frequency
(TF) domain [1],[2]. The popularity of the MC-OTFS stems
from its easy integration into existing MC schemes, with
pre- and post-processing operations. Recently, a single-step
conversion approach based on Zak transform theory [3], named
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Zak-OTFS, is gaining prominence due to its strong mathe-
matical foundation, structured input-output relation (through
twisted convolution operation), and augmented resilience to
high Doppler [4]-[10]. These advantages position Zak-OTFS
as an attractive candidate to meet the modulation requirements
of 6G and beyond.

Recent references [5], [6] highlight the salient features of
Zak-OTFS, especially its non-fading channel interaction and
predictability of the input-output relation, and offer guidance
on their practical implications. These attributes are attributed
to the better localization of the Zak-OTFS waveform, which
is a quasi-periodic pulse in the DD domain confined within its
fundamental DD period (pulsone in time domain). The concept
of the crystalline regime has also been introduced, wherein the
DD periods of the waveform exceed the effective DD channel
spreads caused by the physical doubly-spread channel and the
pulse shaping filters. Operating in this regime alleviates the
issue of DD domain aliasing, yielding robust performance.

In this paper, we focus on the DD diversity performance of
Zak-OTFS, which has not yet been addressed in the literature.
In this regard, we note that diversity analysis for MC-OTFS
in [11] showed that the DD diversity order achieved in MC-
OTFS is one and that phase rotation on the transmit vector is
required to achieve full DD diversity. In contrast, our analysis
and results in this paper show that Zak-OTFS achieves full DD
diversity. We also analyze the performance of Zak-OTFS with
imperfect channel state information (CSI). Our contributions
in this paper can be summarized as follows.

• First, we analyze the diversity performance of Zak-OTFS
under maximum-likelihood (ML) detection and perfect
CSI. We obtain a condition on the design of transmit and
receive pulse shaping filters for achieving the full DD
domain diversity. Our simulation results show that sinc
and Gaussian filters achieve full DD diversity.

• Second, we analyze the bit error performance of Zak-
OTFS under imperfect CSI. We carry out the analysis for
1) the mismatched ML detector, where the channel matrix
in the conventional ML decision rule is replaced with the
estimated channel matrix, and 2) the true ML detector
which takes into account the CSI error statistics, and
quantify the performance gap between the two detectors.

II. ZAK-OTFS SYSTEM MODEL

Figure 1 presents block diagram of the transceiver signal
processing in Zak-OTFS. Zak transform operation is central
to Zak-OTFS, converting a time-domain (TD) signal into
a DD signal with quasi-periodic structure. This transform
is parameterized by delay period (τp) and Doppler period



Fig. 1: Transceiver signal processing in Zak-OTFS.

(νp) which are inversely related (τpνp = 1). Zak-OTFS
waveform is a quasi-periodic pulse in the DD domain, lo-
calized within fundamental DD period defined as D0

∆
=

{(τ, ν) : 0 ≤ τ < τp, 0 ≤ ν < νp}, where τ and ν denote the
delay and Doppler variables, respectively. Conversion to TD
using the inverse time-Zak transform yields a pulse train
modulated by a frequency tone, referred to as a pulsone. These
DD pulses are located on the information lattice defined as

Λdd
∆
=
{(
k
τp
M

, l
νp
N

)
: k, l ∈ Z

}
. (1)

Here M = Bτp and N = Tνp are the number of delay
and Doppler bins, respectively, in the fundamental DD period,
where B and T denote the bandwidth and time duration of
the pulsone, respectively.

We define K = {0, · · · ,M − 1} and L = {0, · · · , N − 1}.
Information symbols x[k, l], k ∈ K, l ∈ L, drawn from a mod-
ulation alphabet A, are multiplexed onto the DD information
lattice Λdd. The resulting discrete information signal in the DD
domain is quasi-periodic with delay period M and Doppler
period N , represented as

xdd[k + nM, l +mN ] = x[k, l]ej2πn
l
N , m, n ∈ Z. (2)

This is lifted to a continuous signal using DD impulses
as xdd(τ, ν) =

∑
k,l∈Z xdd[k, l]δ

(
τ − k

τp
M

)
δ
(
ν − l

νp

N

)
. To

produce a time- and bandwidth-limited transmit signal, pulse
shaping is performed employing twisted convolution operation
(denoted by ∗σ)1 with the DD domain transmit pulse shaping
filter wtx(τ, ν), i.e., xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν), The
TD transmit signal is realized by applying the inverse time-
Zak transform2, given by std(t) = Z−1

t (xwtx

dd (τ, ν)).
The spreading function represents the doubly dispersive

channel in DD domain as

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

where P denotes the number of paths, and hi, τi, and νi
denote the complex channel gain, delay shift, and Doppler shift
associated with the ith path, respectively. Assuming uniform
scattering profile, hi is assumed to be i.i.d CN (0, 1/P ).

Due to the time and frequency dispersion introduced by the
channel, the TD received signal at the receiver is expressed as
rtd(t) =

∫∫
h(τ, ν)std(t− τ)ej2πν(t−τ)dτ dν+ntd(t), where

ntd(t) is AWGN. To facilitate signal processing and detection

1x(τ, ν)∗σ y(τ, ν)
∆
=

∫∫
x(τ ′, ν′)y(τ−τ ′, ν−ν′)ej2πν′(τ−τ ′)dτ ′ dν′.

2Z−1
t (x(τ, ν))

∆
=

√
τp

∫ νp
0 x(t, ν)dν.

in the DD domain, the received TD signal is transformed
using the Zak transform3 as ydd(τ, ν) = Zt (rtd(t)). The
DD received signal is match-filtered with the DD domain
receive pulse shaping filter wrx(τ, ν), yielding ywrx

dd (τ, ν) =
wrx(τ, ν)∗σ ydd(τ, ν). This is then sampled on Λdd to get the
discrete DD received signal as

ydd[k, l] = ywrx

dd

(
τ = k

τp
M

,ν = l
νp
N

)
, k, l ∈ Z. (4)

Then the input-output relation is given by a discrete twisted
convolution operation as

ydd[k, l] = hdd[k, l] ∗σ xdd[k, l] + ndd[k, l], (5)

where ndd[k, l] is the noise sample and hdd[k, l] denotes the
effective channel filter obtained by sampling

hdd(τ, ν)
∆
= wrx(τ, ν) ∗σ h(τ, ν) ∗σ wtx(τ, ν) (6)

on Λdd. Substituting the definition of twisted convolution in
(5), we have the complete input-output relation as

ydd[k, l]=
∑

k′,l′∈Z

hdd[k−k′, l−l′]xdd[k
′, l′]ej2π

(l−l′)k′
MN +ndd[k, l]. (7)

Due to the quasi-periodicity in the DD domain, it suffices to
consider received samples within the fundamental period. This
allows for a vectorized representation of the MN samples

y = Hx+ n, (8)

where x,y,n ∈ CMN×1, such that their (kN+ l+1)th entries
are given by xkN+l+1 = xdd[k, l], ykN+l+1 = ydd[k, l],
nkN+l+1 = ndd[k, l], and the effective channel matrix H ∈
CMN×MN whose entries are given as

H[kN + l + 1, k′N + l′ + 1] =
∑

m,n∈Z

hdd[k − k′ − nM,

l − l′ −mN ]ej2π
(l−l′−mN)(k′+nM)

MN ej2πnl′/N , (9)

where k, k′ ∈ K, l, l′ ∈ L.

III. DIVERSITY ANALYSIS OF ZAK-OTFS

In this section, we present the diversity analysis of Zak-
OTFS. For this, we introduce an equivalent form of (8) as

y = Xh+ n, (10)

where h ∈ CP×1 contains the complex channel gains and
X ∈ CMN×P is the transmit symbol matrix corresponding to
the transmit symbol vector x, given by

X =
[
G1 G2 · · · GP

]︸ ︷︷ ︸
G

(
IP ⊗ x

)︸ ︷︷ ︸
X̃

. (11)

The matrix Gi ∈ CMN×MN , i = 1, · · · , P corresponding
to the ith path depends on the ith path’s delay and Doppler
shifts, and the transmit and receive pulse shaping filters. It is
constructed using the following equations:

Gi[kN + l + 1, k′N + l′ + 1] =
∑

m,n∈Z

gi[k − k′ − nM,

l − l′ −mN ]ej2π
(l−l′−mN)(k′+nM)

MN ej2πnl′/N , (12)

3Zt (z(t))
∆
=

√
τp

∑
k∈Z z(τ + kτp)e−j2πνkτp .



where k, k′ ∈ K, l, l′ ∈ L, and

gi(τ, ν) = e−j2πνiτi

∫∫
wrx(τ

′ − τi, ν
′ − νi)

wtx(τ − τ ′, ν − ν′)ej2πν
′(τ−τ ′+τi)dτ ′ dν′, (13)

gi[k, l] = gi

(
τ = k

τp
M

,ν = l
νp
N

)
, k, l ∈ Z. (14)

Assuming normalized transmit symbols such that the SNR
γ = 1/σ2, and perfect DD channel knowledge and ML
detection at the receiver, the probability that a transmit symbol
vector xi be wrongly decoded as xj is the pairwise error
probability (PEP) between xi and xj , given by4

P (xi → xj | h) = Q

√γ ∥(Xi −Xj)h∥2

2

 , (15)

where i, j = 1, · · · , Qs, where Qs = |A|MN and i ̸= j. Since
h ∼ CN (0, IP /P ), an upper bound for the average PEP can
be obtained using the Chernoff bound as

P (xi → xj) ≤
r∏

l=1

1

1 +
γλ

(ij)
l

4P

, (16)

where r is the rank of difference matrix ∆ij = (Xi−Xj) and
λ
(ij)
l , l = 1, · · · , r are the non-zero eigenvalues of ∆ij∆

H
ij .

At high SNRs, the equation can be further simplified as

P (xi → xj) ≤
γ−r(4P )r∏r

l=1 λ
(ij)
l

. (17)

The union bound-based upper bound on the bit error proba-
bility can be written as

Pe ≤ 1

QsMN log2 |A|

Qs∑
i=1

Qs∑
j=1,j ̸=i

d (xi,xj) P (xi → xj) . (18)

where d (xi,xj) denotes the Hamming distance between xi

and xj . From (17) and (18), it can be observed that the
diversity order is given by

ρ = min
i̸=j

rank(∆ij). (19)

Now, use (11) to express the difference matrix ∆ij as

∆ij = G
(
X̃i − X̃j

)︸ ︷︷ ︸
X̃ij

. (20)

Using the rank of product of matrices in [17], we can write

rank
(
∆ij

)
= rank

(
X̃ij

)
− dim

(
N(G) ∩R

(
X̃ij

))
, (21)

where N(·) and R(·) denote the null space and range space
of a matrix, respectively, and dim(·) denote the dimension of
a vector space. From (20) and (11), we have

X̃ij =
(
IP ⊗ (xi − xj)

)
. (22)

4We note that (15) assumes that the filtered noise samples in the DD domain
are i.i.d Gaussian. For Gaussian filter, the noise samples are correlated, and
therefore the assumption underlying (15) does not hold. In Fig. 3, this is
reflected in the gap between the simulated BER and the analytical upper
bound for Gaussian filter derived using this assumption.

It is readily apparent that rank(X̃ij) = P,∀i ̸= j. Thus, (21)
implies that full rank of difference matrix is obtained when

N(G) ∩R
(
X̃ij

)
= ϕ, (23)

which provides the condition for achieving full diversity.
Recall that the matrix G is populated based on the transmit and
receive pulse shaping filters (follows from (12)-(14)). Hence,
by appropriate design of the filters that satisfy condition (23)
for all i ̸= j and thereby ensure full rank for all difference
matrices, full DD domain diversity can be extracted. In the
results and discussions section (Sec. V), we demonstrate the
fulfillment of this condition for sinc and Gaussian filters for
various system parameters.

IV. BER ANALYSIS WITH IMPERFECT CSI
In this section, we analyze the bit error performance of

Zak-OTFS with imperfect CSI caused due to errors in the
estimation of the DD channel coefficients. We derive a closed-
form expression for the exact PEP, to establish an upper bound
on the BER. Also, we derive the optimum ML rule in case of
imperfect CSI. The estimated channel gain ĥi obtained using
pilot based estimation techniques can be written as

ĥi = hi + ei, (24)
where ei is the channel estimation error associated with the
true channel gain hi. Consider e = [e1 e2 · · · eP ]

T ∼
CN

(
0, σ2

eIP
)

independent of h and n, where σ2
e is the

variance of the channel estimation error, which depends on
the estimation technique used. Then, we have

Ĥ = H+E, (25)
where Ĥ and E denote the estimated channel matrix and the
estimation error matrix, respectively. In the absence of the
perfect knowledge of H, using the estimated Ĥ in place of
H in the conventional ML decision rule gives the following
mismatched ML rule:

x̂ = argmin
x∈AMN×1

∥y − Ĥx∥2, (26)

Assuming all transmit vectors as equally likely, the PEP
between xi and xj as per the decision rule in (26) is given by

P
(
xi → xj | Ĥ

)
= P

(∥∥∥y − Ĥxj

∥∥∥2 < ∥y − Ĥxi∥2
)
. (27)

Using (8), (27) can be written as

P
(
xi→xj |Ĥ

)
=P
(
∥H (xi−xj)+n−Exj∥2<∥n−Exi∥2

)
. (28)

Let a ∆
= (Xi −Xj)h+n−Xje and b

∆
= n−Xie. Using the

vectorized relation in (10) and defining the decision statistic
D = ∥a∥2 − ∥b∥2, we can get the average PEP as

P (xi → xj) = Eh,e {P (D < 0)} . (29)

D can be further written in Hermitian quadratic form as
D = qHSq, where q =

[
aT bT

]T
and S =

diag (IMN ,−IMN ). q is a zero mean vector, whose covari-
ance matrix is given by

Kq =


σ2
h (Xi −Xj) (Xi −Xj)

H σ2
eXjX

H
i + σ2IMN

+σ2
eXjXj

H + σ2IMN

σ2
eXiXj

H + σ2IMN σ2
eXiXi

H + σ2IMN

. (30)



where σ2
h = E(|hi|2) = 1/P,∀i. Letting A

∆
= KqS, we can

write

A=


σ2
h (Xi −Xj) (Xi −Xj)

H −
[
σ2
eXjX

H
i + σ2IMN

]
+σ2

eXjXj
H + σ2IMN

σ2
eXiXj

H + σ2IMN −
[
σ2
eXiXi

H + σ2IMN

]
. (31)

Let Λ1,Λ2, · · · ,Λ2MN denote the eigenvalues of A. As the
decision statistic D is in a Hermitian quadratic form, its
characteristic function can be written in closed-form as [12]

ΦD(jω) = E
[
ejωD

]
=

1

|I2MN − jωA|

=
1∏2MN

i=1 (1− jωΛi)
, (32)

where j =
√
−1. After changing the variable to z = jω, the

exact PEP expression can be obtained from the characteristic
function using inversion theorem as [13]-[15]

P (xi → xj) =

Kn∑
l=1

(−λl)
2MN−cl∏Kp

k=1 (βk − λl)
dk
∏

p̸=l (λp − λl)
cp

×
∑

(q1,q2,··· ,qcl−1)

cl−1∏
m=1

1

qm!
· 1

m

1+
Kp∑

k=1

dkβ
m
k

(βk − λl)
m

+
∑
p̸=l

cpλ
m
p

(λp − λl)
m

qm

, (33)

where negative eigenvalues of A are denoted by λl hav-
ing multiplicities cl, l = 1, · · · ,Kn and the non-negative
eigenvalues of A are denoted by βk having multiplicities
dk, k = 1, · · · ,Kp, such that

∑
l cl +

∑
k dk = 2MN .

Here, Kn and Kp are the number of negative and non-
negative eigenvalues, respectively. q1, q2, · · · , qcl−1 are such
that 0 ≤ q1, q2, · · · , qcl−1 ≤ cl − 1 and

∑cl−1
n=1 nqn = cl − 1.

For the case of perfect CSI (i.e., σ2
e = 0), we can analyze the

special properties of A which are revealed by its eigenvalues.
If Λ is an eigenvalue of the matrix A, |A− ΛI2MN | = 0. We
can write the determinant of block matrices as∣∣∣∣[ B1 B2

B3 B4

]∣∣∣∣ = |B4|
∣∣B1 −B2B

−1
4 B3

∣∣ , (34)

where B1, B2, B3, and B4 are square matrices of same size
and B4 is invertible. Using this, we get

|A− ΛI2MN | =

∣∣∣∣∣
(
∆ij∆

H
ij

P
+
(
σ2 − Λ

)
IMN − σ4

σ2 + Λ
IMN

)∣∣∣∣∣
×
∣∣− (σ2 + Λ

)
IMN

∣∣ . (35)

Since ∆ij∆
H
ij is a Hermitian matrix, it is unitarily diagonal-

izable as ∆ij∆
H
ij = UVUH , where U is a unitary matrix

and V has the eigenvalues of the matrix in its diagonal.
Also, we can write the identity matrix as IMN = UUH

and
∣∣− (σ2 + Λ

)
IMN

∣∣ =
∣∣− (σ2 + Λ

)∣∣MN . Substituting these
in (35), we get

|A− ΛI2MN |=
(
−
(
σ2 + Λ

))MN
∣∣∣∣ 1P V − Λ2

σ2+Λ
IMN

∣∣∣∣
=

[
P∏

l=1

(
Λ2 − vl

P
Λ− vl

P
σ2
)](

Λ2)MN−P
, (36)

where vl is the lth element of the diagonal matrix V. The
matrix V has only P non-zero diagonal entries because the
∆ij is of size MN×P . From (36), we can see that matrix A
has a zero eigenvalue with multiplicity 2 (MN − P ) and 2P
non-zero eigenvalues. When vls are distinct and ∆ij is full
rank5, i.e., P , we can write the non-zero eigenvalues of A as

λl =

vl
P −

√
v2
l

P 2 + 4vlσ2

P

2
, for l = 1, 2, · · · , P,

βl =

vl
P +

√
v2
l

P 2 + 4vlσ2

P

2
, for l = 1, 2, · · · , P, (37)

where λls and βls are the negative and positive eigenvalues
of A, respectively. Now, by substituting Kn = P , Kp = P +
1, cl = 1 for l = 1, 2, · · · , P , dl = 1 for l = 1, 2, · · · , P ,
dP+1 = 2(MN − P ), and βP+1 = 0 in (33), we get

P (xi → xj) =

P∑
l=1

(−λl)
2P−1

(βl − λl)
∏

k ̸=l (βk − λl) (λk − λl)
. (38)

The above PEP when used in (18) yields the BER upper bound
for perfect CSI.

A. True ML detector

This subsection focuses on deriving the optimum decision
rule, termed the true ML detector, for imperfect CSI. The true
ML detection rule with imperfect CSI is given by

x̂ = argmax
x∈AMN

P(y | Ĥ,x). (39)

The random vector[
h

ĥ

]
=

[
IP 0P×P

IP IP

] [
h
e

]
, (40)

being an affine transformation of
[
hT eT

]T
, is jointly Gaus-

sian. Hence, h given ĥ is a Gaussian random vector, whose
conditional mean is given by µh|ĥ = ρ2ĥ, where ρ2 =

σ2
h/

(
σ2
h + σ2

e

)
[16]. Using (10), the conditional mean of y

given ĥ and X can be obtained as
µy|Ĥ,x = Xµh|ĥ + E [n] = ρ2Xĥ. (41)

The covariance matrix of y given Ĥ and x is given by

Cy|Ĥ,x = E
[(

y − µy|Ĥ,x

)(
y − µy|Ĥ,x

)H
| Ĥ,x

]
= σ2IMN +XE

[(
h− ρ2ĥ

)(
h− ρ2ĥ

)H
| ĥ
]
XH

= σ2IMN + σ2
h

(
1− ρ2

)
XXH , (42)

and the psuedo-covariance matrix of y given Ĥ and x is

Py|Ĥ,x = E
[(

y − µy|Ĥ,x

)(
y − µy|Ĥ,x

)T
| Ĥ,x

]
= E

[
nnT

]
+XE

[(
h− ρ2ĥ

)(
h− ρ2ĥ

)T
| ĥ
]
XT

= 0MN×MN . (43)

5For the system parameters in Table I, we have observed that all the
difference matrices are full rank and also the eigenvalues of the difference
matrices are all distinct. Hence, we can use the simplified expression in (38)
for these system parameters.



TABLE I: Rank profile of the difference matrices for sinc and
Gaussian filters for different system settings/channel profiles.

Profile System Parameters Number of difference matrices with rank
1 2 3 4 5 6 7

A M = 2, N = 2,P = 2
τ = [0, 0]∆τ, ν = [0, 1]∆ν

0 240 − − − − −

B M = 2, N = 2,P = 4
τ = [0, 0, 1, 1]∆τ, ν = [0, 1, 0, 1]∆ν

0 0 0 240 − − −

C
M = 4, N = 2,P = 7
τ = [1, 2, 3, 0, 1, 2, 3]∆τ
ν = [0, 0, 0, 1, 1, 1, 1]∆ν

0 0 0 0 0 0 65280

D
M = 4, N = 2,P = 7

τ = [1.1, 2.9, 3.1, 0.9, 1.1, 2.9, 3.1]∆τ
ν = [0.9, 0.9, 0.9, 1.1, 1.1, 1.1, 1.1]∆ν

0 0 0 0 0 0 65280

E
M = 4, N = 4,P = 5
τ = [0, 1, 1, 2, 3]∆τ
ν = [0, 0, 2, 3, 3]∆ν

0 0 0 0
4.2949
×109

− −

Since h given ĥ is a complex Gaussian random vector, its
pseudo-covariance E

[(
h− ρ2ĥ

)(
h− ρ2ĥ

)T
| ĥ

]
= 0MN×MN ,

and hence the last step of (43) follows. Therefore, y given Ĥ
and x is a complex Gaussian random vector. Now, writing the
system model in real form, (39) becomes

x̂ = argmax
x∈AMN

|Cy|−
1
2 e−

1
2y

T
µCy

−1yµ , (44)

where
yµ =

[
ℜ
{
y − µy|Ĥ,x

}
,ℑ
{
y − µy|Ĥ,x

}]T
,

Cy =
1

2

 ℜ
{
Cy|Ĥ,x

}
−ℑ

{
Cy|Ĥ,x

}
ℑ
{
Cy|Ĥ,x

}
ℜ
{
Cy|Ĥ,x

}  ,

and ℜ(·) and ℑ(·), are the real and imaginary parts, respec-
tively. Equation (44) represents the optimal detection rule
under imperfect CSI by incorporating the CSI error statistics
into the detection process.

V. RESULTS AND DISCUSSIONS

This section presents the results of the diversity and BER
performance of Zak-OTFS obtained through analysis and sim-
ulations. We fix the Doppler period of the pulsone at νp = 3.75
kHz, resulting in a corresponding delay period τp = 1/νp =
0.27 ms. The various system parameters considered are given
in Table I, where ∆τ =

τp
M and ∆ν =

νp

N are the delay
and Doppler resolutions, respectively. Corresponding frame
duration and bandwidth are given by T = Nτp and B = Mνp,
respectively. These system parameters ensure that the system
operates in the crystalline regime i.e., τp and νp values are
greater than the maximum delay (0.209 ms) and maximum
Doppler spread (2.8125 kHz), respectively, in the considered
channel profiles. BPSK modulation is employed. Sinc and
Gaussian pulse shaping filters are used at the transmitter with
identical filtering at the receiver (i.e., wtx(τ, ν) = wrx(τ, ν)).
The sinc filter is given by

wtx(τ, ν) =
√
BT sinc(Bτ) sinc(Tν),

and the Gaussian filter is given by

wtx(τ, ν) =

(
2ατB

2

π

) 1
4

e−ατB
2τ2

(
2ανT

2

π

) 1
4

e−ανT
2ν2

,

where we set ατ = αν = 1.584 to ensure 99% energy
localization without time or bandwidth expansion. Also, we
demonstrate the diversity results for small frame sizes since

Fig. 2: BER performance of Zak-OTFS with perfect CSI for
sinc pulse and different system settings/channel profiles.

Fig. 3: BER performance of Zak-OTFS for Profiles A and B,
sinc and Gaussian filters, and perfect CSI.

simulation of ML detection becomes prohibitively complex for
large frame sizes.

Figure 2 shows the simulated BER as well as the BER upper
bounds for the considered system settings/channel profiles
given in Table I under perfect CSI and sinc pulse. The upper
bounds are tight at high SNRs, validating the performance
analysis. We observe that the diversity slope (i.e., slope of
the BER vs SNR curve in the high SNR regime) increases
with increasing P . We assess the diversity order of the
considered systems through computation of the rank profile
of the difference matrices and the diversity slopes in the BER
vs SNR curves. To obtain the rank profile of the difference
matrices, we exhaustively enumerate X̃ijs and construct the
G matrix for various system parameters given in Table I
with sinc and Gaussian filters. It revealed that, for each case,
condition (23) holds true ∀i ̸= j, resulting in full rank of all the
Qs (Qs − 1) difference matrices, i.e., rank(∆ij) = P,∀i ̸= j,
implying the extraction of full DD diversity. This can be seen



Fig. 4: BER performance of Zak-OTFS with mismatched ML
detector for Profile-A, sinc filter, and imperfect CSI.

from the rank profiles of the difference matrices in Table I.
For example, for Profile-A with M = N = 2 and P = 2,
all the Qs(Qs − 1) = 240 difference matrices are of full rank
two. This is corroborated by the diversity slope of two for
Profile-A in the SNR vs BER curve in Fig. 3 for both sinc
and Gaussian filters. Likewise, for Profile-B with M = N = 2
and P = 4, all the 240 difference matrices have full rank four
(see Table I) and this is corroborated by the corresponding
diversity slope in Fig. 3. Hence, we see that Zak-OTFS with
sinc and Gaussian filters achieves full diversity satisfying the
condition in (23).

Next, in Figs. 4 and 5, we present the BER performance of
Zak-OTFS with imperfect CSI and sinc filter. Figure 4 shows
the simulated BER plots along with the corresponding upper
bounds for Profile-A with different estimation error variances
σ2
e under mismatched ML detection in (26). Here, the BER

performance degrades with an increase in estimation error
variance. We can also observe the bit error performance under
imperfect CSI floors at high SNRs. In Fig. 5, we compare
the BER performance of the true ML detector derived in (44)
with that of the mismatched ML detector in (26). We can see
that the true ML detector outperforms the mismatched ML,
e.g., an improvement of one order of BER when σ2

e = 0.01.
This is because the mismatched ML detection rule does not
consider estimation error statistics for deriving the detection
rule, whereas the true ML detector does.

VI. CONCLUSIONS

In this paper, we analyzed the diversity performance of
Zak-OTFS using rank criterion and established a necessary
condition for the design of pulse shaping filters to achieve
full DD diversity. Our simulation results showed that sinc
and Gaussian filters achieve the full DD diversity for various
channel profiles. Furthermore, we explored the bit error per-
formance of Zak-OTFS under imperfect CSI, analyzing both
the mismatched ML detector and the true ML detector which
incorporates CSI error statistics.

Fig. 5: BER performance comparison between true ML and
mismatched ML detectors for Profile-A with sinc filter and
imperfect CSI.
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