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Abstract—Generalized Spatial modulation (GSM) uses nt an-
tenna elements but fewer radio frequency chains (nrf ) at the
transmitter. Spatial modulation and spatial multiplexing are
special cases of GSM with nrf = 1 and nrf = nt, respectively.
In GSM, apart from conveying information bits through nrf

modulation symbols, information bits are also conveyed through
the indices of the active nrf transmit antennas. In this paper,
we derive analytical bounds on the code-word and bit error
probabilities of maximum likelihood detection in GSM. The
bounds are shown to be tight at medium to high signal-to-
noise ratios (SNR). We also present a low-complexity detection
algorithm based on reactive tabu search (RTS) for GSM in large-
scale MIMO systems. Simulation results show that the proposed
algorithm performs well and scales well in complexity.

Keywords – Large-scale MIMO systems, generalized spatial

modulation, performance analysis, detection, reactive tabu search.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems with a

large number of antennas (tens to hundreds) can provide sev-

eral advantages like increased spectral and power efficiencies,

which are key requirements in next generation of wireless

communication systems. Key technological issues that need

to be addressed in the practical realization of such large-scale

MIMO systems include design and placement of compact

antenna arrays, multiple radio frequency (RF) chains, and

large-dimension transmit/receive signal processing techniques

and algorithms [1],[2]. Spatial modulation [3], a relatively new

modulation scheme for multi-antenna systems, can alleviate

the need to have a large number of RF chains in large-scale

MIMO systems.

In spatial modulation (SM), the transmitter has multiple

transmit antennas but only one transmit RF chain. This means

that only one antenna can be active at a time and the remaining

antennas have to remain silent. The choice of the active

antenna at a given time is made based on information bits.

If nt = 2m is the number of transmit antennas, then the index

of the active antenna is chosen using log2 nt = m information

bits. A conventional modulation (e.g., QAM) symbol is sent

on the chosen antenna. If A is the modulation alphabet used,

then the number of bits conveyed in one channel use in SM is

m+log2 |A|. It has been shown that SM outperforms conven-

tional modulation in multiuser MIMO systems on the uplink

[4],[5],[6]. This is because, for a given spectral efficiency, a

reduced modulation alphabet size can be used in SM compared

to that in conventional modulation.

The advantages of SM can be further enhanced through

generalized spatial modulation (GSM) [1],[7]. In GSM, the

transmitter is allowed to have more than one transmit RF

chain. Let nrf denote the number of RF chains at the trans-

mitter. In GSM, 1 ≤ nrf ≤ nt. Spatial modulation and spatial

multiplexing are special cases of GSM with nrf = 1 and

nrf = nt, respectively. In GSM, in each channel use, nrf

modulation symbols are transmitted from nrf antennas out of

the nt available antennas. The choice of nrf out of nt antennas

conveys ⌊log2
(

nrf

nt

)

⌋ information bits. This is in addition to

the information bits conveyed by the nrf modulation symbols.

It has been shown that for a given modulation alphabet and

nt, there exits an optimum nrf that maximizes the spectral

efficiency, and that this optimum nrf can be less than nt [7].

In this paper, we are interested in the performance analysis

of GSM and detection of GSM signals in large-scale MIMO

systems. Our new contributions in this paper can be summa-

rized as follows.

• We first analytically characterize the code-word error

probability (CEP) and the bit error probability (BEP)

of the GSM system and derive closed-form expressions

for the upper bounds on CEP and BEP for maximum

likelihood (ML) detection. The obtained bounds are tight

in the moderate-to-high SNR regime. The analytical

bounds and simulation results show that, for a given

spectral efficiency, GSM can outperform SM and spatial

multiplexing.

• We then propose a algorithm for the detection of GSM

signals in large-scale MIMO systems. The algorithm is

based on reactive tabu search (RTS). An interesting aspect

here is a neighborhood definition appropriate for GSM

signal set. Simulation results show that the algorithm

performs well in large-scale GSM-MIMO systems.

The rest of the paper is organized as follows. The system

model for GSM-MIMO is presented in Section II. The analysis

of CEP and BEP of GSM-MIMO is presented in Section III. In

Section IV, we present the detection algorithm for large-scale

GSM-MIMO. Section V concludes the paper.

II. GSM-MIMO SYSTEM MODEL

Consider a GSM-MIMO system with nt antennas and nrf

RF chains at the transmitter, and nr antennas at the receiver.

The transmitter uses GSM. The GSM transmitter is shown

in Fig. 1. In each channel use, the transmitter selects nrf

out of nt antennas to transmit nrf modulation symbols from
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Fig. 1. The GSM transmitter.

a modulation alphabet A. This choice of nrf antennas can

be any one of the possible
(

nt

nrf

)

combinations. Thus, the

number of information bits conveyed through indices of the

chosen antennas is ⌊log2
(

nt

nrf

)

⌋. In addition to this, the number

of information bits conveyed through the nrf modulation

symbols is nrf⌊log2 A⌋. Therefore, the total number of bits

conveyed in a channel use in GSM is given by

η =

⌊

log2

(

nt

nrf

)⌋

+ nrf ⌊log2 A⌋ bpcu. (1)

Let S
nrf

nt,A
denote the GSM signal set, which is the set

of all possible GSM signal vectors that can be transmitted.

Out of the
(

nt

nrf

)

possible antenna activation patterns1, only

2
⌊log

2 (
nt
nrf

)⌋
activation patterns are needed for signaling. Let

S denote this set of selected antenna activation patterns, where

|S| = 2
⌊log

2 (
nt
nrf

)⌋
. Then, S

nrf

nt,A
is given by

S
nrf

nt,A
=
{

x : xi ∈ A ∪ {0}, ‖x‖0 = nrf , I(x) ∈ S
}

, (2)

where x is the nt× 1 transmit vector, xi is the ith entry of x,

i = 1, · · · , nt, ‖x‖0 is the l0-norm of the vector x, and I(x)
is a function that gives the activation pattern for x; for e.g.,

I(x = [+1 − 1 − 1 0]T ) = [1 1 1 0]T .

Let us give an example of the GSM signal set.

Let nt = 4, nrf = 2, BPSK modulation, and

S = {[1 1 0 0]T , [1 0 1 0]T , [1 0 0 1]T , [0 1 1 0]T }. The

GSM signal set for this example is given by

S
2

4,BPSK =


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





.

The nr × 1 received signal vector y = [y1 y2 · · · ynr
]T at

the receiver can be written as

y = Hx+w, (3)

where x ∈ S
nrf

nt,A
is the transmit vector, H ∈ Cnr×nt is the

channel gain matrix, whose (i, j)th entry hi,j ∼ CN (0, 1)
denotes the complex channel gain from the jth transmit

1An antenna activation pattern is a nt × 1 vector consisting of 1’s and 0’s,
where a 1 in a coordinate indicates that the antenna corresponding to that
coordinate is active and a 0 indicates that the corresponding antenna is silent.

antenna to the ith receive antenna, and w = [w1 w2 · · · wnr
]T

is the noise vector whose entries are modeled as complex

Gaussian with zero mean and variance σ2. For this system

model, the ML detection rule is given by

x̂ = argmin
x∈S

nrf

nt,A

‖y −Hx‖2, (4)

where ‖y −Hx‖2 is the ML cost.

III. CEP AND BEP ANALYSIS OF GSM-MIMO

In this section, we analyze the CEP and BEP performance

of ML detection in GSM-MIMO. Assume that all the transmit

GSM signal vectors are equally likely. The ML detection rule

in (4) can be written as

x̂ = argmin
x∈S

nrf

nt,A

‖y −
nt
∑

k=1

xkhk‖2, (5)

where xk is the kth element of x, and hk is the kth column of

H. The pairwise error probability (PEP) that x can be decoded

as x̃ ∈ S
nrf

nt,A
can be written as

P (x → x̃|H)=P
(

‖y −

nt
∑

k=1

xkhk‖
2 > ‖y −

nt
∑

k=1

x̃khk‖
2

∣

∣

∣
H
)

= P
(

nr
∑

r=1

|yr −

nt
∑

k=1

xkhr,k|
2 >

nr
∑

r=1

|yr −

nt
∑

k=1

x̃khr,k|
2

∣

∣

∣
H
)

, (6)

where hr,k is the (r, k)th element of H. Let Ar =
∑nt

k=1 xkhr,k

and Ãr =
∑nt

k=1 x̃khr,k. Since x is the transmitted vector,

yr = Ar + wr, r = 1, · · · , nr. Now, we can write

P (x → x̃|H)=P
(

nr
∑

r=1

|yr −Ar|
2
>

nr
∑

r=1

|yr − Ãr|
2

∣

∣

∣H

)

= P
(

nr
∑

r=1

|wr|
2
>

nr
∑

r=1

|Ar + wr − Ãr|
2

∣

∣

∣H

)

= P
(

nr
∑

r=1

2ℜ((Ãr −Ar)w
∗

r ) >

nr
∑

r=1

|Ar − Ãr|
2

∣

∣

∣H

)

, (7)

where
∑nr

r=1 2ℜ((Ãr−Ar)w
∗
r ) is a Gaussian random variable

with mean zero and variance 2σ2
∑nr

r=1 |Ar−Ãr|2. Therefore,

P (x→ x̃|H) = Q

(

√

√

√

√

nr
∑

r=1

|Ar − Ãr|2/2σ2

)

= Q

(

√

√

√

√

∥

∥

∥

nt
∑

k=1

(xk − x̃k)hk

∥

∥

∥

2

/2σ2

)

. (8)

The argument in (8) is a central χ2-distribution with 2nr

degrees of freedom. Computation of the unconditional PEP

requires the expectation of the Q(.) function in (8) w.r.t. H,

which can be obtained as follows [8]:

PEP(x→ x̃)=EH{P (x→ x̃|H)}

= f(γ)nr

nr−1
∑

r=0

(

nr − 1 + r

r

)

(1− f(γ))r, (9)
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where f(γ) , 1
2

(

1 −
√

γ
1+γ

)

, γ , α
4σ2 , α =

nt
∑

k=1

θk, and

θk , |xk − x̃k|2. Now, an upper bound on the average CEP

can be obtained as

PCEP ≤
1

2η

∑

x∈S
nrf

nt,A

∑

x̃∈S
nrf

nt,A
\x

PEP(x→ x̃). (10)

From (10), the average BEP can be upper bounded as

PBEP ≤
1

2η

∑

x∈S
nrf

nt,A

∑

x̃∈S
nrf

nt,A
\x

PEP(x→ x̃)
d(x, x̃)

η
, (11)

where d(x, x̃) is the number of bits in which x differs from

x̃. The total number of PEPs that are to be calculated is

(2η)× (2η−1). Therefore, the complexity of the computation

of the above bounds on CEP and BEP will increase exponen-

tially for large values of nt, nrf . In the following subsection,

we propose a simplification that reduces this computational

complexity.

A. Computation of the upper bounds for large nt, nrf

The CEP expression in (10) can be written in the form:

PCEP ≤
1

2η

|S|
∑

i=1

|S|
∑

j=1

∑

x:I(x)=si∈S

∑

x̃:I(x̃)=sj∈S,
x̃ 6=x

PEP(x→ x̃). (12)

For a given pair of activation patterns si and sj , i, j ∈
{1, · · · , |S|}, the total number of PEPs are |A|2nrf when

i 6= j, and |A|nrf (|A|nrf − 1) when i = j.

Complexity reduction 1: For a pair of activation patterns

si and sj , let Aij denote the set of active antennas that are

common to both si and sj . Define βij = nrf − |Aij |. Note

that βij ∈ {0, 1, · · · ,min(nrf , nt − nrf )}. Also, note that

for any i, j for which βij = q, the value of the summation
∑

x:I(x)=si

∑

x̃:I(x̃)=sj , x̃ 6=x

PEP(x → x̃) in (12) will be the same,

and so it is enough to compute this summation only once for

each q. With this simplification, (12) can be written as

PCEP ≤
1

2η

min(nrf ,nt−nrf )
∑

q=0

φ(q)
∑

x:I(x)=si

∑

x̃:I(x̃)=sj

βij=q

PEP(x→ x̃),

(13)

where φ(q) is the number of (si, sj) pairs for which βij = q,

which can be computed easily.

Complexity reduction 2: For each value of q, we need to

compute |A|2nrf PEPs. We propose to reduce this complexity

as follows. The parameter α in (9) is the summation of nt

terms. Out of these nt terms, nt − (nrf + q) terms will be

zero for a given value of q. Of the (nrf + q) non-zero terms,

2q terms will take values from J , {|c|2 : c ∈ A}, and

nrf − q terms will take values from L , {|c− c̃|2 : c, c̃ ∈ A}.
Let J = {j1, j2, · · · , jm} and L = {l1, l2, · · · , ln}, where

j1 < j2 < · · · < jm, l1 < l2 < · · · < ln, m = |J|, and

n = |L|. We write α as α = α1 +α2, where α1 is the sum of

2q terms from J and α2 is the sum of nrf − q terms from L.

Note that α1 can take values in the range 2qj1 to 2qjm. For a

given value of α1, the following equations must be satisfied:

m
∑

i=1

jivi = α1,
m
∑

i=1

vi = 2q, (14)

where vi is an integer such that vi ∈ {0, 1, · · · , ⌊(α1 −
∑m

k=i+1 jkvk)/ji⌋}. Similarly, α2 can take values in the range

(nrf − q)l1 to (nrf − q)ln, and, for a given value of α2, the

following equations must be satisfied:

n
∑

i=1

liui = α2,

n
∑

i=1

ui = nrf − q, (15)

where ui is an integer such that ui ∈ {0, 1, · · · , ⌊(α2 −
∑n

k=i+1 lkuk)/li⌋}.
Since α = α1 + α2, α lies in the range 2qj1 + (nrf − q)l1

to 2qjm + (nrf − q)ln. The choice of vi’s and ui’s to attain

a particular α is not unique, i.e., there exist multiple pairs of

x and x̃ that correspond to different values of vi’s and ui’s

but the same value of α. Thus, we need to evaluate (9) only

once for a given value of α and count the number of possible

combinations of vi’s and ui’s that correspond to that α.

Remark: The above complexity reduction schemes signifi-

cantly simplify the computation of (12), because without these

simplifications the sum
∑

x:I(x)=si

∑

x̃:I(x̃)=sj , x̃ 6=x

PEP(x → x̃)

needs to be computed for all i, j, which is prohibitive for

large nt, nrf . The following examples illustrate the achieved

complexity reduction.

Example 1: For nt = 22, nrf = 16, we have |S| = 216. A

direct computation of (12) which involves a double summation

from 1 to |S| is prohibitive. Whereas for these parameters,

q ∈ {0, 1, · · · , 6}. Hence (13) can be easily computed in much

fewer computations. This illustrates complexity reduction 1.

Example 2: For nt = 4, nrf = 3, A = {−1−j,−1+j, 1−j, 1+
j}, we have J = {2}, L = {0, 4, 8}. For a particular value

of q, say q = 1, the summation in (13) requires computation

of the PEPs for 64 different pairs of GSM signal vectors. But

since α lies in the range 4 to 20, we need to compute only 17

PEPs. This illustrates complexity reduction 2.

B. Results and discussion

In this subsection, we present numerical results of the

CEP and BEP performance of GSM-MIMO. We compare the

analytical upper bounds with the simulation results. We use the

notation ‘(nt, nrf )-GSM’ to refer to a GSM-MIMO system

with nt transmit antennas and nrf transmit RF chains.

In Fig. 2, we compare the simulated CEP and BEP with the

analytical upper bounds for the (4,3)-GSM system with nr = 4
and 4-QAM, at a spectral efficiency of 8 bits per channel use

(bpcu). From Fig. 2, we see that the analytical upper bound

is quite tight in the medium-to-high SNR regime.

In Figs. 3 and 4, we present a comparison between the

performance of GSM-MIMO with those of SM-MIMO and V-

BLAST (spatial multiplexing) MIMO. Recall that SM-MIMO

and V-BLAST MIMO are special cases of GSM-MIMO with

nrf = 1 and nrf = nt, respectively. Figure 3 shows the CEP
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Fig. 2. BEP and CEP performance of (4,3)-GSM system with nr = 4,
4-QAM, 8 bpcu.
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Fig. 3. CEP comparison between i) (4,2)-GSM system with 4-QAM, ii)
(4,1)-GSM system (i.e., SM-MIMO system) with 16-QAM, and iii) (2,2)-
GSM system (i.e., V-BLAST system) with 8-QAM. nr = 2, 6 bpcu.

comparison’s between i) (4,2)-GSM system with 4-QAM, ii)
(4,1)-GSM system (i.e., SM system) with 16-QAM, and iii)
(2,2)-GSM system (i.e., V-BLAST system) with 8-QAM, with

nr = 2. Note that all the three systems have the same spectral

efficiency of 6 bpcu. Figure 4 shows the corresponding BEP

plots. From Figs. 3 and 4, we can observe that i) the upper

bounds are tight at medium-to-high SNRs, and ii) the GSM-

MIMO system outperforms both SM-MIMO and V-BLAST

MIMO systems.

IV. DETECTION IN LARGE-SCALE GSM-MIMO

The complexity of ML detection in GSM-MIMO increases

exponentially with increase in nt, nrf . In this section, we

propose a low complexity algorithm for GSM-MIMO signal

detection. The algorithm is based on reactive tabu search

with random restarts (R3TS). Details of the R3TS algorithm

for detection in V-BLAST MIMO systems are available in

[9],[10]. For adapting this algorithm for detection of GSM-

MIMO signals, we need to define appropriate neighborhood

for the GSM signal set. We define the neighborhood as follows.

Neighborhood definition for GSM signal set: We define the

neighborhood N (x) for a GSM signal vector x ∈ S
nrf

nt,A
as

the set of all possible signal vectors which differ from x in
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Fig. 4. BEP comparison between i) (4,2)-GSM system with 4-QAM, ii)
(4,1)-GSM system (i.e., SM-MIMO system) with 16-QAM, and iii) (2,2)-
GSM system (i.e., V-BLAST system) with 8-QAM. nr = 2, 6 bpcu.

either one modulation symbol or in one active antenna index.

That is, N (x) = N1(x) ∪ N2(x), where

N1(x) = {z : zk = xk, ∀k except for some k1;

I(z) = I(x), zk1
∈ A \ xk1

}, (16)

N2(x) = {z : βij = 1,where I(x) = si, I(z) = sj ;

zk = xk, ∀k except for some k1, k2

s.t. xk1
= 0, zk1

∈ A, zk2
= 0}. (17)

So, a transmitted vector x will have (|A| − 1)nrf + (nt −
nrf )nrf |A| neighbors. For e.g., for nt = 3, nrf = 2 and BPSK,

N1


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



+1
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0


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=


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


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
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



+1
−1
0











. (18)
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
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
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
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



0
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
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



0
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
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


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0
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

 ,




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0
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









. (19)

Tabu matrix: For the above neighborhood definition, the

tabu matrix T is of size (nt +
(

nt

2

)

)|A| × |A|, where the first

nt|A| rows correspond to N1(x) and the next
(

nt

2

)

|A| rows

correspond to N2(x). For a solution vector x, if z ∈ N1(x)
then it corresponds to ((k1 − 1)|A| + t, t′)th position in the

tabu matrix, where xk1
= at, zk1

= at′ , and at, at′ ∈ A. If

z ∈ N2(x), then it corresponds to
(

nt|A|+ (k̃1−1)(2nt−k̃1)
2 |A|+

(k̃2− k̃1−1)|A|+t, t′
)

th position in the tabu matrix T, where

k̃1 = min(k1, k2), k̃2 = max(k1, k2), xk1
= 0, zk1

= at′ ,
xk2

= at, and at, at′ ∈ A.

R3TS-GSM detection algorithm: The algorithm starts with

an initial solution vector x(0) as the current solution. For

example, x(0) can be the MMSE solution vector xMMSE . All

the entries of the tabu matrix are initially set to zero. Let m
denote the iteration index, P the tabu period, g(m) the vector

with the least ML cost till the mth iteration, lrep the average

number of iterations between two successive occurrences of

the same solution vector. Initialize P = P0, g(0) = x(0), and

lrep = 0. In each iteration (e.g., mth iteration), perform the

following steps.
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Step 1: Find zbest1 = argmin
z∈N (xm)

‖y −Hz‖2. The move from

xm to zbest1 is accepted if any one of the following conditions

is satisfied:

(i) ‖y −Hzbest1‖2 < ‖y −Hxm‖2,

(ii) If zbest1 ∈ N1(x
m), then T((k1 − 1)|A|+ t, t′)) = 0.

If zbest1 ∈ N2(x
m), then T

(

nt|A| + (k̃1−1)(2nt−k̃1)
2 |A| +

(k̃2 − k̃1 − 1)|A| + t, t′
)

= 0. If a move is accepted, then

x(m+1) = zbest1 . If a move is not accepted, then find

zbest2 = argmin
z∈N (xm)\zbest1

‖y −Hz‖2, and check the above

conditions for zbest2 . If this is also not accepted, then repeat

the procedure for zbest3 , and so on. If all the neighbors are

tabu, then all the entries in the T are decremented by the

minimum value in T. Then repeat the procedure from zbest1

to find xm+1.

Step 2: After step 1, the new solution xm+1 is checked

for repetition. Repetition can be checked by comparing ML

costs of all the solutions in the previous iterations. If there is

a repetition, then lrep is updated and P ← P + 1. If ‖y −
Hxm+1‖2 < ‖y −Hxm‖2, then do

• if xm+1 ∈ N1(x
m) then T((k1 − 1)|A|+ t, t′)) = 0,

• if xm+1 ∈ N2(x
m) then T

(

nt|A|+ (k̃1−1)(2nt−k̃1)
2 |A|+

(k̃2 − k̃1 − 1)|A|+ t, t′
)

= 0,

• if I(xm+1) ∈ S , then g(m+1) = xm+1

else

• if xm+1 ∈ N1(x
m), then T((k1−1)|A|+t, t′)) = P +1,

• if xm+1 ∈ N2(x
m), then T

(

nt|A|+ (k̃1−1)(2nt−k̃1)
2 |A|+

(k̃2 − k̃1 − 1)|A|+ t, t′
)

= P + 1,

• g(m+1) = g(m) .

Step 3: Update the entries of the tabu matrix as T(r, s) =
max(T(r, s)− 1, 0).
The algorithm can be stopped after a maximum number of

iterations max iter or when the lrep value exceeds a threshold

max rep. The performance of the algorithm can be improved

by using multiple restarts, where, in each restart, we start with

a different initial solution. The algorithm is stopped after a

particular number of maximum restarts max rest or if the ML

cost of the solution vector obtained so far is below the nrσ
2+√

nrσ4. The best solution with least ML cost is declared as

the final output solution.

A. Results and discussions

In Fig. 5, we show the performance (22,16)-GSM system

with 4-QAM and (16,16)-GSM system (i.e., V-BLAST sys-

tem) with 8-QAM, both at 48 bpcu and nr = 16. For V-

BLAST detection, we used sphere decoding (i.e., ML detec-

tion). For GSM detection, we used the R3TS algorithm with

the following parameters: max iter = 1000, max rep =
300, max rest = 50. We have plotted CEP upper bounds as

well as simulated CEP and BEP. The following observations

can be made from Fig. 5: i) the proposed complexity reduction

techniques allow us to compute the CEP bounds for ML detec-

tion for large nt (=16,22) and nrf (=16), and these bounds are

tight at moderate-to-high SNRs (e.g., for nt = nr = 16), ii) at
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Fig. 5. CEP and BEP of (22,16)-GSM system with 4-QAM and (16,16)-GSM
system (i.e., V-BLAST system) with 8-QAM. nr = 16, 48 bpcu.

high SNRs, the simulated CEP of R3TS detection (which a low

complexity suboptimum detection) is close to the CEP upper

bound of ML detection for (22,16)-GSM system, and iii)
at moderate-to-high SNRs, (22,16)-GSM system with R3TS

detection outperforms V-BLAST system with sphere decoding.

V. CONCLUSIONS

We studied large-scale generalized spatial modulation

MIMO (GSM-MIMO) systems. We first derived analytical

upper bounds on the CEP and BEP performance of GSM-

MIMO and showed that the bounds are tight at medium to

high SNRs. We also proposed complexity reduction schemes

that allowed the computation of the bounds for large nt,

nrf . We then presented a reactive tabu search (RTS) based

algorithm for the detection of large-scale GSM-MIMO signals.

Our analytical and simulation results show that, for a given

spectral efficiency, GSM-MIMO system can achieve better

performance compared to SM-MIMO and V-BLAST systems.
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