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Absfrmf-' I n  this paper, we present a comparative per- 
formance evaluation of adaptive multiuser detectors, including 
stochastic gradient (SG) and recursive least squares (RLS) algo- 
rithms (which require training data), and minimum output en- 
ergy (MOE) and subspace-based MMSE (S-MMSE) algorithms 
(which do not require training data), under near-far conditions 
in  a space-time coded CDMA system. We show that, in a 
near-far multituser scenario, increasing the number of transmit 
antennas degrade the near-far resistance performance of the SG 
and MOE detectors significantly at high near-far ratios, to the 
extent that the diversity benefit of multiple transmit antennas 
is nullified. The RLS and S-MMSE algorithms, on the other 
hand, are shown to maintain their near-far resistance without 
loosing much on the diversity gain, when the number oftransmit 
antennas is increased. 

Keywords: Space-lime codes. CDMA. ildaplive mdtiuser derection. 

I .  INTRODUCTiON 

It has been shown that space-time coded transmission using 
iiiultiple transmit antennas can offer the benefits of transmit 
diversity and high data rate transmission on wireless fading 
channels [1],[2], which has generated lot of interest in using 
this technique in communication systems design (e.g., in 3G). 
Also, multiuser detection schemes for interference rejection, 
which can significantly enhance the receiver performance 
and increase the capacity of code division multiple access 
(CDMA) systems, have been extensively studied the in 
literature, mainly for single transmit antenna systems [3]. 
Investigation of multiuser detection algorithms and their 
performances in space-time coded systems with multiple 
transmit antennas has been gaining impoltance [4],[5]. 

Adaptive detectors are of interest since,non-adaptive detec- 
tors require estimation of various parameters of all the users 
and involve matrix inversion which becomes computationally 
intensive as the number of  users in the system (and the 
number of transmit antennas) increases. Our interest here 
is to develop adaptive receiver structures for space-time 
codcd CDMA and evaluate their performances. We first 
derive a discrete-time vector model for the received signal 
using orthonormal projections in a space-time coded CDMA 
system, wherein we assume that oitly the timing o f  thc 
desired user is known at the receiver. Using the vector model, 
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. . . . . i l l )  1 z , ~ ( & )  ... q b L i , ( & ~ j  0 0 . . .  0 wc use A4 Q for the derivation of the vector 
model. Extending the model for other values of A t ,  Q 5 8 is Si = [ : : 
straightforward. 

receive antenna can be written using (1) as 

. .  . . . .  . . 

For the fif = Q = 2 system, the received signal on a 

( 2 )  

It is noted that Si = 0 i E {l 2 I { }  for synchronous 
CDMA, so that s,(T) ~ ( 0 )  0 , j  E {1,2 ,..., D),  
leading to  L1 = S1 = 0. ?he following matrices wou d ?At)  = m ( t )  + Y.l(t) + 4 t ) ,  

I. A' help us to write (7) in vector notation: 
y l ( t )  = ~A; lh i~(m){b; , (m)s j ; '+b iz(m)s j~ '} ,  (3) Y ' W  = [YP'(.,, ...tYg'(n)] T > (12) 

,,,=-L <=I 

I n  the above, yp(t) ,  p E {l, 2} is the signal component due to 
tlic pti' transmit antenna, Ai, is the transmit amplitude on the 
pt" transmit antenna of the ith user, hip(m.) is the complex 
channel gain for the mth block from the p'" transmit antenna 
of the It* user. and 8::' represents the signature waveform 
of  the it" user for the qt" hit in a block, q E {1,2}, given 
by 

s!'a) 8" = s . , ( t - m ~ ~ - q r - r i ) ,  (5) 

wherc .s;(t) is a unit energy signature wavefomi time limited 
in the interval [O,T], and 7; is the random time delay of 
the i"' user, which we assume to be independent of the 
transmitting antenna and to satisfy 7, 2 TL for j > i. Also, 
z ( t )  is a zero mean complex Gaussian noise process with 
variance W. 

Let {41,&,...,qJD} be a set of D orthonormal signals 
defined on [O,T]. Also define 

$ p ' ( t ) = # j ( t - g 7 ) ,  q = l ,  ..., Q ,  j = I  ..., D. (6) 

( ,>+w?T+7 

# ~ " ' ( $ t )  = #(tld;(l - nQT - ~ ) d t .  q = 1. ..., Q, j = 1. ..., D,  (71 I "9T+, 
wherc T is the timing of the desired user. We define the 
following projections of the R"' user's signature waveform 
on to the j t h  component of the orthonormal basis as 

' k . j < 6 )  = s i < &  +i!Ojitldc.  dl = a k < t  - T f l i m j i O d L .  i l l  

where 15 E [0, TI. Let the k t k  uscr be the desired user (i.e., 
7~ = 7 )  and bj  = Iri - T I ,  i E {1,2, ..., IC}.  Using (0, we 
define the following matnces of ordcr D x IC: 

where the indices n for the elements H,, g = 1 ,2 ,  ..., Q, 
have been omitted for convenience. For values of hf and Q 
other than 8, H(n) is the upper leftmost submatrix of order 
Q K x Q K i n ( 2 1 ) .  F o r t h e c a s e o f M  { 1 , 2 , 4 > 8 } . M  < Q. 
Thus, only the elements H,(n), q = 1,2  ,..., M ,  are non- 
zero, i.e., H,(n) = 0 for A4 < g 5 &. The structure of the 
matrices, X-l ,  Xo, XI, depends on &. We state the result 
for Q = 4 below (the extension for Q = 8 is straightforward): 

,221 

To summarize, (18) gives the discrete-timc vector model for 
the received signal using orthonormal projections. Matrices 
X-1,X0,X1 contain the signature vectors of all the users 
and H ( n )  are the channel matrices. 

111. SPACE-TIME ADAPTIVE MULTIUSER DETECTORS 

In this section, we derive various receiver structures using 
( ' h e  vector model in Section 11. We will assume one receive 

antenna for simplicity. We define the following: 
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(23 )  

(24) 

H 
H(n) = [hrfn),hB(n) ,..., hqH~(n)] 
x. = ($(j) I ? )  ( j l  , ,s2 1 ..., "Qxl, 

where h;(n) is the i'" row of H(n), s p )  is the itA column 
of X I J ) .  Because of the orthogonal nature of the space-time 
block codes used [2], we can show that 

Re[hj(n)hf(n)] = 6~j~ lh i (n . )~~z ,  (25) 

where dij is the Kronecker Delta function. If we extract those 
rows from H(n) which contains the complex channel gains 
of tlle desired user, i.e., the kt" user, we can define a reduced 
channel matrix for the k tk  user, as 

(26 )  
H 

Gf(n) = [hf(n),hi~+n(n) , . . . , h ~ - l ) ~ + l ( n ) ]  . 

mi(ni = m;(n - 1) + pRe[r(n)bT(n)hi(n) - y(niy"(n)mi(n - I)]. (34) 

It is noted that we need training bits of the desired user, 
brr(n), q E {l, 2 ,  ._., Q}, via b(n) for the adaptation process. 
The linear transformation in (30) can be written as 

M k ( n )  = [mk(n) ,  mK+!+(n), ... s m ( Q - l ) K + i . ( " ) l .  (3x1 

B. Recursive least squares (RLS) algorithm 

The optimum weight vectors mi,i = (q  - l)K + k , q  E 
{1,2, ...,Q} which minimizes (31) is given by the solution 
of 

Re[E[y(n)yK(n)l1mf = Re[E[y(n)hr(n)h"(n)]l. 0 6 1  

Replacing expectation in (36) by the time average, 

L P=l J K X K  

Using (23), we can finally rewrite (18) as 
Q K 

y(n) = C [ s - ' ) h i ( n  - l)b(n - 1) +siolhi(n)b(n) 
t=1 

+sj"h,(n+l)b(n+l)]  + z ( n ) .  (20) 

In the derivations of the various adaptive multiuser detectors, 
we assume perfect knowledge of the k th  user's (i.e., desired 
user's) reduced channel matrices, Gk(n),  and signature vec- 

An estmate of the desired user's Q bits is given by 
tors, s(q- l )K+p.  (0) (or training bits, b k q ( n ) ) ,  q E {1,2, ..., Q } .  

&dn) = sgn[Re(G~(nJM,T(n)y(n))(~-l)x+,], 0 0 )  

where q E {l, 2, ..., Q} and MT(n) is a linear transformation 
which is applied to the received signal vector at the nth block. 

The conventional M F  detector correlates the input signal 
vector y(n) ,  with the signature vectors S : : ) ~ ) ~ + ~ , Q  E 
{1,2, ..., Q} and !he transformation MT(n) in (30) is given 

(0) 10) ( 0 )  
by Ma(n) = Isk , S K + ~ , . . . , S  (Q-1)K+J 

A. Stochastic gradient (SG) algorithin 

In the SG algorithm, we adaptively minimize 
MSG, = C, = E[lhi(n)b(n) - mT(n)y(n)12], 

i = 9 -  1IC+k,  q = I,...,&$ 
- 

( 3 1 )  

where mi(n) are the Q real weight vectors at the ntk block 
for the k th  user. The adaptive algorithm is given by 

(32) 

where !I is the step size. An estimate of Vt; is given by 131 

= Re[y(n)y"(n)m;(n) - y(n)b'(n)hi(n)]. (33) 

m,(n) = mi(n - 1) - pV&, 

f'<i = Vms(,,l[lh;(n)b(n) - "(n)r(n)l21 

Substituting the estimate from (33) into (32), we get 

[h;(l)b(l), hi(2)b(2), ..., h;(n)b(n)], (37) can be written as 

R(n)mi(n) = r d n ) ,  (38) 
R(n) = Re[Y(n)YH(n)] ,  ri(n) = Re[Y(n)df(n)]. (391 

Now, 

R(n + 1) = R(n) + Re[y(n + 1)y" (n + l)], (40) 
r ; (n+I)  = r i ( n ) + R e [ y ( n + l ) b T ( n + l ) h ~ ( n + l ) ] .  (41) 

Applying (38) for the (n + l)th block and using (40) and 
(41), it can be shown that 
m ; ( n +  1 )  =mi(%) + R-'(n+ I)Re[y(n + l )bT(n+ l )hF(n+ I )  

- ~ ( n +  I ) Y " [ ~ +  l)m.(n)i. ( 4 2 )  

If we define 
P(" i 1) = lJZe(y(n +. 1)). Imfy(n + I))]. (43) 

pi(n + 1) = [Re(hi(n + l)b(n + 1)),Im(h;(n + l)b(n + I))], (44) 

i = ( q  - l)K + k, q E {I, 2, .._, Q), we rewrite (42) as 
mi," + 1) =.".("I + =-I("  + 1 I W "  + 

The computation of R-'(n + 1) at each block is avoided 
by using the matrix inversion lemma to update the value of 
R-'(n) to get R-'(n + 1). For nonsingular matrices B, D 

(46) 

Rewriting (40) using (43), R ( ~ + I )  = ~ ( n ) + ~ ( n + i ) ~ ~ ( n + i j ,  
and setting A = R(n+ I) .  B = ~ ( ~ 1 .  c = p ( n +  I),  D = rZ, we get 

+ 1) - PTln + I ) m i ( " l l .  (45, 

A = B +  C D C ~ ,  
j A-' = B - I  - B-'c(c~B-'c+ D- ' ) - 'c~B- ' .  

R - ' ( , r + l ) = R - ' ( n ) - R ~ ' ( n ) P ( n + l )  

. (PT(n+1)R-'(n1P(n+ I)  +12)-'PT(n+ l)R"(n). (471 

It is noted that, now we only have to invelt a 2 x 2 matrix 
at each iteration. But, the QD x QD matrix R(n) has 
Rank(R(n)) = min{n,QD}, so the first QD observations 
can be used to form an initial estimate of R-'(n) and hence 
mi,i = (q - l ) K  + k , q  E {1,2, ..., .Q}, whereafter the 
recursive update algorithm given by (49, (47) can be used. 
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C. Miiiimiim output energy (MOEj algorithm 

The MOE detector minimizes the mean output energy [3] 
MOEi = E ;  = E[((syl + ~ , ( n ) ) ~ y ( n ) I * ] ,  

i = x K + k , g E  {1,2 ,..., Q}, (48) 

subject to xT(n)sy) = 0, s y ) s y )  = 1, for some real weight 
vector x;(n). If we replace mi(n) in (31) by sy)  + xi(n) 
and rewrite it in terms of (48), we get 

(49) 

Thus, minimizing the MSE is equivalent to minimizing the 
mean output energy, and the adaptation rule is given by 

(50) 

M S E ,  = MOE,  ~ E[llhi(n)l/ ']. 

Xi(*) = xi(n - 1) - p(v& - .y)~vE,sy)), 

it; = Tx<i,,)l l i=y) + = * l . L l l ~ y ~ " ~ l ~ l  = R d Y l " l ~ ~ i " ) l ~ * j " i  +.i("ll. 

where fi  is the step size. An estimate of Ogi is given by 
( ' 8 ,  

Substituting the estiniate from (51) into (50), we get 
xi in)  = xi(n - 1) + u[sio)sy)T - I ~ R ~ [ u ( ~ ~ ) y " ( " ) J [ . ~ '  + xi(n)]. I521 

The adaptation rule does not require training bits but requires 
the knowledge of the signature vector of the desired user. The 
linear transformation in (30) can be written as 

MI(,&) = l r ~ ' + x i l n l ,  ..... s:: + X ( Q - L ) K + * ( ~ ) ~ .  (53) 

D. Subspnce based MMSE (S-MMSEj 

The real part of the autocorrelation matrix of the received 
signal is given by P K  

R = R l , S l y i " ) I = , n m  = C,(i)~!1'TElIhi(")ll2 S .  +2*2,. IS, 

; = - I  ,=* 

which can be obtained by time averaging sample autocorrela- 
tion functions. By performing an eigendecomposition of the 
matrix R. we Ret 

where U = [U,,U,], A = diag(A,,A,);  As = 
diag(X1, Xp,  _._, XQX+K-~)  contains the (QK + K - 1) 
largest eigenvalues of R and U, = [ul, ..., UQK+K-~] 
contains the corresponding orthonormal eigenvectors; A n  = 
2U21QD--QK-K+l and U, = [UQK+K, ..., u g ~ ]  contains 
the (QD - &IC ~ IC + 1) orthonormal eigenvectors corre- 
sponding to the eigenvalue 2u2. It is noted that the signature 
vectors sy l , i  = (q - l )K + k , q  E {1,2, ..., Q }  lies in the 
r a n g e ( U , ) .  The minimum mean square crror detector can 
be derived by minimizing 

156) 

subject to mTsio1 = 1. where mi, i = (q - 1)K + k,q E t> 2, ...l &} are Q real wei ht vectors for the kth user. By 
t e method of Lagrange mukipliers. we obtain [6] 

<(mi) = EI/h,(n)b(n) - mT~(n)I'l, 

L(In i )  = < ( m i )  - 2FImrsj0) - 1) 

= rnTRm; - 2m~s!n)El(h,(ir)l/Z+E(/hil(Z -2u(mTs?' - 1). 157) 

Setting the gradient of I,(mi) with respect to mi to zero and 
using the fact that Uzsp) = 0 and mTsp) = 1, the optimum 

-..*. -l"-.e, 

Fig. I. 
SNR and NFR. M = 2, ptz  = -0.28. p21 = -0.48. 

BER performance of adaptive detecton for user I as a function of 

weight vectors can be written in terms of the signal subspace 
parameters (As, U#),  as 

IV. RESULTS A N D  DISCUSSION 

We evaluated the convergence and bit error performance 
of the adaptive algorithms discussed in section 111, by using 
Gold codes to generate the signature vectors. In the left figure 
of Fig. 1, we compare the bit error rate (BER) performance 
of the various adaptive algorithms for a two user ( K  = 2) 
asynchronous CDMA system with two transmit antennas 
(M = 2) per user. The signature sequences of the two 
users are chosen such that the cross-correlations between 
them are given by plz = -0.28. p2l = -0.48. In the 
algorithms which require training data, we assume a training 
sequence of 1000 blocks. The near-far ratio' (NFR) assumed 
is 9.54 dB. The single user performance is also plotted for 
comparison. It is observed that the BER performance of the 
SG algorithm, the RLS algorithm and the S-MMSE algorithm 
are almost identical, whereas the MOE algorithm performs 
comparatively poor in the high SNR region. In the right figure 
of Fig. I ,  we illustrate the BER performance of the various 
adaptive algorithms as a function of the near-far ratio. I t  is 
noted that for an SNR of 13 dB, the BER performance of all 
the algorithms are almost independent of NFR, with marginal 
degradation of performance for the SG and MOE algorithms 
in the high NFR region (15.20 dB). However, for an SNR of 
18 dB, only the RLS algorithm and the S-MMSE algorithm 
are near-far resistant. The MOE algorithm performs the worst 
and shows a degradation (almost linear) with increase in the 
NFR. The SG algorithm retains the near-far resistance over 
a larger NFR range compared to MOE, but it also looses its 
near-far resistance in the high NFR region. This is because 
in the high NFR region, the noisy gradient estimate in (33) is  
no longer able to  make the weight vectors in (34) roll down 
the performance surface in (31). 

M 

'NFR is defined as 10logcP,=' *" assuming Elh;,(n)l* = 1. E,=,% 
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i 
Fig. 2. Convergence plots of  adapti\,e algorithms. SNR=13.46 dB. A4 = 
2 ,p12  = -0.28,p21 = -0.42. N F R  increased from 10 to 18 dB at n = 
4oo(aOo) and decreased to I 0  dR. at n = KIO(800) for IcR(right) Figs. 

Fig. 3 .  BER pciibmlaiice of adaptive receiieis as a function of NFR and 
inumber oflraosmit ~ntemms. pi2 = -0.28. p 2 ~  = -0.48, SNR=15.6 dB. 

111 Fig. 2, we compare the convergence behaviour o f  the 
algorithms in a dynamic multiuser environment where users 
may dynamically entcr and exit the system. A dynamic mul- 
tiuser environment is simulated wherein the near-far ratio is 
increased from I O  to 18 dB (i.e.. the power of the interfering 
user is increased by 8 dB, or, equivalently, a new interferer 
with 8 d B  of power enters the system) at the n = 400th 
block, and the near-far ratio is reduccd back to IO dB (i.e., 
the power of the interferer conies down to the original value, 
or, equivalently, the interferer with 8 dB of power leaves 
the system) at thc n = 600th block. From the left figure of 
Fig. 2 ,  it is observed that the RLS algorithm is able to track 
such dynamic power imbalances in the channel at a faster 
speed (and also converge to a smaller MSE) compared to 
the SG algorithm. In the right figure of Fig. 2, we present 
a similar comparison between the MOE and the S-MMSE 
algorithm (no training data algorithms). It is obscrved that 
thc S-MMSE is able to track the dynamic variations in the 
MA1 much better (converge faster and to a smaller MSE) 
than the MOE algorithm. 

In Fig. 3, we illustrate thc near-far rcsistance performance 
of the algorithms as a function of number of transmit 
antennas at an SNR of 15 dB. The transmit power on each 
o f  the transmit antennas is scaled such that the total transmit 
power is the same in all the cases of d P  = 1,2,4.  We see that 
the SG algorithm, while being reasonably near-far resistant 
for the cases of one and two transmit antcnnas ( M  = 1, a), 
drastically looses its near-far resistance for four transmit 
antennas (A4 = 4). For example, at a NFR of 20 dB, the 
performancc with four transmit antennas degrades to that o f  
one transmit antenna, thus nullifying the diversity benefit of 
multiple transmit antennas. A similar performance behaviour 
can be observed for the MOE algorithm. This performance 
degradation at larger number o f  transmit antennas can be 
attributed to the increase i n  the value of Q ( K -  1) (Q 2 M ) ,  
thc number of interfering bits per block. On the other hand, 
the RLS and the S-MMSE algorithms maintain their near- 
far resistance very well even when the number of transmit 
antennas is increased. Hence, clearly, RLS and S-MMSE 
algorithms arc preferred in multituser, multiple transmit 
antenna schemes from a near-far resistance point-of-view. 
However, being less complex than othcr adaptive detectors 
the SG algorithm may still be a preferred. In such a case, 
some transmit power control can be employed to compensate 
for the near-far resistance loss when more number of transmit 
antennas are used. 

V. CONCLUSIONS 
We presented a comparative pcrformance evaluation of 

adaptive multiuser detectors under near-far conditions in a 
space-time coded CDMA system. We showed that increasing 
in number of transmit antennas degraded the near-far resis- 
tance of the stochastic gradient (SG) and the minimum output 
energy (MOE) detectors significantly at high near-far ratios, 
to the extent that the diversity benefit of multiple transmit 
antennas is nullified. The recursive least squares (RLS) and 
the subspace based MMSE (S-MMSE) algorithms, on the 
other hand, were shown to maintain their near-tar resistance 
without loosing much on the diversity gain, whcn the numbct 
of transmit antennas is increased. 
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