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We introduce a new model for a closed loop power con- 
trol system that transforms the standard closed loop miodel 
into an analytically tractable log-linear model. From it,  we 
obtain all first and second order received power statistics. 
The correlation of the received power offers insight into the 
burst error nature of the closed loop power control channel 
and can be used to specify interleaver and coding require- 
ments. The impact of simplification of the model is studied 
by comparing the analytical results with a detailed simula- 
tion of the actual model. We find that the linearized niodel 
is more effective in predicting the shape of thle correlation 
function than in predicting the actual magnitudes. 

In designing coding, interleaving and link-layer proto- 
cols, knowledge of the error characteristics of the power- 
controlled channel is necessary. This information can be 
used to adjust interleaver length, packet length, rlat rans- 
mission strategies, and overall link-level design. 

Traditionally, the bit error rate is used as a measure 
of “chznnel quality”. However, the dynamic behavior of 
packet based communications requires a more thorough 
understanding of the error characteristics. When consid- 
ering the trade-offs involved in wireless link/physical layer 
design, it is important to study more dynamic measures of 
physical layer communications performance such as  burst 
error length and channel error correlation. 

In this paper, we analyze a simplified model of a closed- 
loop power controlled CDMA system. From the analysis, 
we derive system performance measures including the cor- 
relation in the received power. Although this correlation 
does not directly specify channel burst error characterist- 
ics, it provides insight into the bursty nature of a power 
controlled CDMA channel. A detailed sirriulatioii of the 
closed loop power control system is used to validate the 
results of the analysis. 

Consider the log-linear power control model shown in Fig- 
ure 1. All sequences marked represent power in decibels 
at a particular point. The index, n,  in all the expriessions 
indexes bits. The boxes represent linear filters, marked by 
either a fixed delay or ffilter impulse response. This figure 
represents a linear system model for a single mobile/base 
station link The model captures only the instantaneous 
powers at various points in the system, and not actual sig- 
nals. 

The nth bit is transmitted with power Pk Not a.11 energy 
transmitted in bit n is received. Power is lost due to fading 
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Figure 1: Log-Linear Power Control Model 

represented by adding a channel loss A, , which is constant 
over the bit. A, has a value equal to IOlogl , (a~) ,  where 
U, has Rayleigh distribution. Implicit in this description 
is the assumption that the underlying fading process a ( t )  
does not vary rapidly with respect to a single bit time. Ad- 
ditional loss, due to propagation, distance, and shadowing 
are relatively slow compared to the fading process. It is 
assume that they are “tracked out” perfectly by the power 
control algorithm. If more complex models including shad- 
owing, fading and mobility, are desired, additional channel 
loss processes could be added. 

The nth bit is received at the base station with power 
R,. R, represents the actual power in the received signal 
of interest. This is not typically a measurable quantity as 
it does not include error involved in estimating this power. 
Analytically, however, the quantity R, is of primary in- 
terest, since it represents the true power of the desired 
signal. The base station is assumed to measure power by 
examining the square of the test statistic for each bit. Be- 
cause of thermal noise in the receiver and received power 
from other mobiles, the estimate for received power con- 
tains some error. The error (in dB) is modeled by the 
process N,. Because the square of the test statistic is used 
as an estimate for power, the estimate is biased and thus, 
the process N, has a non-zero mean. The sequence N, 
must not be confused with the thermal noise process at 
the receiver. N ,  is strictly a power estimate error. It is 
not immediately evident what the characteristics of such a 
process are. The modeling of the process N,, is presented 
in Section 6. 

The base station averages the received power estimates 
over B bits, as shown by the averaging filter. The base sta- 
tion will use this estimate of the power to enforce power 
level changes at the mobile. The correction applied to 
the mobile’s power is obtained by subtracting this estimate 
from the desired received power. The sampling waveform 
samples this average power correction once every B bits. 
This is the value that is used by the mobile for updating 
its transmit power. 



Due to round-trip propagation, processing, and frame 
delay, it is assumed that this correction can be used by 
the mobile D seconds after it is computed. The mobile, 
using a zero-order hold, reconstructs the desired change 
in power suggested by the base station, and adds it to its 
transmitted power from B bits previous (i.e. adding the 
correction to the old transmit power yields a new transmit 
power PA that, one hopes, is more accurate). 

This model captures the time evolution of the power con- 
trol update process, By constructing suitable input, process 
(i.e., A,,  N, ,  P:), one can determine statistics of the re- 
ceived power level R, . 

3 Assumptions 
0 The closed loop power control algorithm implements 

the perfect inverse. With each update, the base station 
signals the mobile with specific transmit power adjust- 
ment to equalize the mobile’s received power to P”. Rap- 
idly changing channel conditions and power estimate er- 
ror cause the actual received power to vary about P”. 
0 For simplicity of analysis, we focus on a single user 

and assume that the interfering users are seen at the re- 
ceiver with perfect power control, i.e., that their received 
power is fixed at P*. These interfering users still con- 
tribute to the estimate error of the user of interest. 
0 The algorithm is assumed to track distance loss and 

shadowing perfectly, since their effect is typically much 
slower than the update rate. The channel model, there- 
fore, does not include these losses. If these quantities can 
be modeled mathematically, they are easily incorporated 
into the model. 
0 The signal is assumed to undergo flat Rayleigh fading. 

The form of the Doppler spectrum is 

S(f) = 1/ (wid=) 1 (1) 

so that the underlying Gaussian processes have normal- 
ized correlation functions given by J o ( 2 ~ f d ~ ) ,  where Jo is 
the Bessel function of order 0,  fd is the maximum Doppler 
frequency, and T is the time delay between the specified 
correlated samples. 

4 Log-Linear Model Analysis 
The linear system model shown in Figure 1 contains a 
sampling waveform. For simplicity of results, we consider 
a modified linear system model, shown in Figure 2,  that 
captures the essence of this sampled system. Note that the 
sampling has been removed, and consequently, so has the 
zero-order hold. Because the mobile has better knowledge 
of its received power, this approximation is likely to yield 
a system that performs better than the actual sampled sys- 
tem. 

By assuming this simple linear model, we can use su- 
perposition to solve the system. To proceed, we find the 
transfer function for each of the inputs, A,, P,) and N,. 
For example, setting P: and N, to 0,  we can solve for the 
transfer function HRA ( Q ) .  Assuming a deterministic sig- 
nal for A,,  and denoting the discrete Fourier transform of 
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A, and R, by A(R) and R(Q) ,  respectively, we can write 

R(Q) = P t ( Q )  -A(R) 
Pt(R)  = Pt(R)e- jQB - E ( R )  
E(R)  = HJ(R)R(R)e-j”” 

where Hj(R) is the Fourier transfer function of the B-bit 
averaging filter. Solving for R(Q) in terms of A(Q) yields 

where 

(3) 

Similarly, we can find H R N ( ~ )  and HRP* (Q). respectively. 
We are interested in the correlation of R,, the power at 

the output of the system. As a measure of received power 
correlation, we consider the auto-covariance function of the 
sequence R,. 

This system is modeled as linear. We can use super- 
position and represent the sequence R, as a sum of three 
sequences due to the three inputs P,* , A,, and N,, which 
we shall denote as R:, Rt, and R; respectively. The 
sequence P; is a constant, and thus the sequence RP is 
deterministic and independent of RA and RN. If P,* var- 
ies, possibly to control the inter-cellular interference, the 
correlation of P; must be appropriately modeled. The se- 
quences RA and RN are not independent. The power of 
the noise interference term to be presented in Section 6 has 
been shown to depend on the received power of the user of 
interest. This is clearly a function of A, and also, indir- 
ectly a function of N,, i 5 n. A simple approximation that 
removes this correlation is presented in Sec. 6. 

Based on the assumed independence of RA,  RN and R P ,  
the autocovariance of R is the sum of the autocovariances 
of RA,  RN, and RP.  If we can find the correlation func- 
tions, and consequently the power spectra, of the “inputs” 
to the linear system, we can find an expression for the re- 
ceived power correlation at the base station. Since, the 
auto-covariance function of P; is equal to zero, the power 
spectrum of R reduces to 

SR(Q) = I ~ R A ( f i ) l ” A ( f l )  + l ~ R N ( f l ) 1 2 S N ( f l )  (4) 
where  SA(^), SN(R), and Sp(Q2) are the power spectra of 
the sequences A,, N,  , and P,’, respectively. A derivation 
of the auto-covariance functions of A, and N,  will follow 
in the next two sections. 
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5 The Autocorrelation of A, 
We assume, from [SI, that the flat-fading amphtude follows 
a Rayleigh distribution However, we need to consider the 
power (in dB) of the input process. This form of the input 
process is needed to force linearity of the system model. 

Following the traditional analysis, we assume that the 
fading process is generated from two independent Gaussian 
processes, X, and Y,. The power in the fading process, 2, 
is exponentially distributed or chi-squared dis1,ributed with 
2 degrees offreedom. The vth moment is [9] (2a2))”r( 1+v).  

We are interested in determining the statislks of 

A, =I lologlo 2, 
To find the correlation between A, and AI requires sig- 
nificant effort, but is central to finding the system re- 
ceived power correlation. To begin with, note a relakion- 
ship between the moments of 2 and the moment generating 
function of A. 

(5) 
Using a result from [9], we know that the product moments 
of correlated Raleigh random variables, a, ,  c i j ,  generated 
from a Gaussian process, with inverse correlation imatrix 
W ,  is 

23(fi+4lwp r($(” + p))q;(n -t .)) E[afay] = ___- 
+(fi+n) +()”+.) r2( $n)  

w11 w22 

where 2Fl is the hypergeometric function and wi j  is an 
element of the matrix W .  

In our model, 2, = a i  and n = 2 degrees of freedom. 
The underlying Gaussians, X and Y ,  have identical vari- 
ances u2 and correlation coefficient p i , j .  The correlation 
coefficient pi, j  is a function of the Doppler spectrum of the 
radio channel. Given this, (6) reduces to 

E[Z;Zj”] = 2(p+.) ((1 - p&)ff2)P  ((1 - p&)‘T2)1’ (7) 
x r(1 + p)I”(1+ v)2F1 (1 +/I, 1 + v, l ,p? , j )  . 

To find the correlation E[Ai, Aj],  we need only the first 
partial derivative of (7), inamely 

Through extensive manipulations and simplifcations, 

E[AiAj] = - 100 (d,,j@(p:,j , 2 , l )  + (In 2 2  - C)‘]: (8) 
I n 2  10 

where C is the Euler Gamma constant and is approxim- 
ately equal to 0.577216 and @ ( z ,  s, w )  is defined in [.3] (p. 
1103) as 

@ ( z ,  s ,  U) should not be confused with the Gaussian prob- 
ability integral. This completes the derivation of the co- 

variance of the logarithm of the fading power AN for an 
arbitrary correlation p i , j .  

For the standard Doppler spectrum ([8]), the correlation 
coefficient for the process X or Y can be expressed as 

where fd is the maximum Doppler frequency and T is 
bit duration. The resulting expression for Cov[Ai, Aj] be- 
comes 

6 The Autocorrelation of N,  
To characterize the noise input to the system, N,  , we must 
formulate an expression for the error in the power estim- 
ate (in dB). The square of the test statistic will be used 
to estimate the signal power. Consider the test statistic, 
without loss of generality, for user zero. The test statistic 
for the ith bit can be written as, defining the contribution 
of the interfering users and the thermal noise on the test 
statistic as I (  iTb) and N (  iTb) , respectively, 

gO( iTb)  = Tbdd&$ I(iTb) + N(iTb)  

where Tb is the bit duration. The parameters Pi and di are 
the ith user’s received power and data sequence. Consider 
as an estimate for the received signal power the square of 
go (iTb) appropriately normalized, namely 

Po i go(iT*)2/(2T3 
= PO (I(iTb) + N(iTb))  &/Tb 

+ (I(iTb) + N(iTb))2  /(2T,2). (12) 
Since we are interested in the error in the received power 
estimate in decibels, we take the ten times the logarithm of 
(12). This yields an equation which is difficult to simplify 
due to a sum term in the logarithm. 

Consider the following bounds: 
X L log( Po + .) log Po -I- 5. log Po + - 

x + Po PO 
If Po is large compared to 2, both curves are close to the 
actual values, and either curve could be used as a good 
approximation. As x grows larger and approaches the mag- 
nitude of Po, the bounds grow looser. To investigate this, 
we examined 10 log,,(z + y) and the above bounds for sev- 
eral values of 2 with y varying in each case from 0 to x. 
Results indicate the bounds are tight if g 5 x / 2 .  As y 
grows larger, the bounds grow loose. We expect the signal 
power Po to be significantly larger than the interference 
terms x and therefore, we assume both bounds form close 
approximations and use only the upper bound here as an 
approximation. A closer approximation can be obtained by 
considering a longer expansion for the log function. We do 
not address the issue of lower bounds or tighter approxim- 
ations. 

From applying this approximation to (12) and expand- 
ing surfaces an appropriate definition for the Ni process 
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in the log-linear model. With some simplification, we can 
formally write 25- 

Conditioned on the value of Po, since received powers of 
interfering users will be almost the same, the Gaussian ap- 
proximation is valid for the interference term. Note that 
even conditioned on Po, Ni is not a Gaussian random 
variable. The Gaussian assumption on I(iTb) is required 
to write the centralized fourth moment of I(iTb) as three 
times its variance. Inserting the variances, g; and a' and 
simplifying, we obtain t8he conditional mean and variance, 
E[NilPo] and Var[NilPo]. 

To facilitate a tractable analysis, we assume that the ran- 
dom term Po above is replaced by its intended quantity P'. 
This simplifies the expressions to 

hi' 

No Power Catrol 

where G is the processing gain, No is the unilateral received 
noise power, and Eb is the energy per bit. 

10- 

7 Simulation 

Solid Anaiysid 
oashed SlmUlaflM 

The closed-loop power control scheme has been simulated 
using a set of CDMA simulation tools developed in C lan- 
guage. Central to the closed-loop power control simulation 
is the generation of the correlated Rayleigh fading process 
whose Doppler spectrum is as defined in [l]. We have ad- 
opted the simulation approach proposed by Jakes [7]. In 
principle, this method uses the sum of a number N o  of ran- 
domly phased and properly weighted sinusoids to generate 
the Rayleigh samples with the desired Doppler spectrum. 
The number of sine wave oscillators, No, used in the sim- 
ulations is 8. The power control loop shown in Figure 1 
is simulated using the inverse algorithm. The simulation 
assumes perfect carrier phase and time synchronization at 
the receiver. For the single user case, the desired threshold 
P' is set to equal to the SNR value. No limit is set to the 
dynamic range of the power control algorithm. The time 
delay between the received power measurement instant at 
the base station receiver and the corresponding power con- 
trol update at the mobile transmitter is incorporated in the 
simulation to a resolution of 1 bit time. The power con- 
trol loop dynamics have been simulated and the statistics 
of the received power at different parameter settings, in- 
cluding Doppler frequency fd, update interval B and delay 
D ,  are evaluated. 

8 Results 
The analysis results are compared to a simulation of a real- 
istic power controlled CDMA system described in Section 

50 150 200 250 
bit lag 

I I 
0 

811 lag 
100 2CU 3W 4W 500 SOU 

Figure 4: Comparison of analysis and simulation for fd = 
25, B = 20, S N R  = lOdB, d = 5, and Tb = l/8000. 

7. A complete description of the simulation tool is presen- 
ted in [1]. 

The effect of the averaging interval, B, on the received 
power correlation is shown in Figure 3 as predicted by 
the analytical results. For reference, the received power 
auto-covariance is shown for the flat-Rayleigh fading chan- 
nel without power control. As the power is updated less 
frequently, the correlation in received power increases in 
magnitude and duration. In the limit as B grows large, the 
received signal power approaches that of the flat Rayleigh 
fading channel. As power control update can require signi- 
ficant bandwidth, it is desired to keep B as large as possible 
without sacrificing performance. These correlation curves 
quantify the increase in correlation as well as the increase 
in variance due to lengthening the update interval. Even 
in this ideal power control model, for reasonable B ,  the 
closed-loop power control does not remove all of the 'bursti- 
ness' or received power correlation present in the channel. 
The extent that it is reduced is quantified by these results. 

Figure 4 compares the auto-covariance as predicted by 
the analysis and simulation. The curves, although similar 
in shape, differ in the magnitudes of their correlations. By 
examining the simulated correlation function, we can see 
the effect of averaging over B bits and using a zero or- 
der hold at the mobile. This effect clearly manifests itself 
in the results as a non-smooth shaping of the correlation 
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Figure 5: Comparison of Received Power standard devi- 
ation as predicted by analysis and simulation for f d  = 25, 
SNI%= lOdB, d = 5, and T b  = l/SOOO. 

function (Fig. 4 at around 100 bits of lag). Because the 
linear model presented here removes this sample-and-hold, 
the analysis curves fail to reflect this phenomenon. It is 
presumed that this modeling assumption not only effects 
the shape, but also has an impact on the magnitude of the 
correlation function. The variance of the received power is 
shown in Figure 5. This graph shown the increasing error 
in the magnitude of the correlation function derived from 
the analysis. Over this entire range, however, the shape of 
the correlation function, and thus, the duration of the time 
correlation is accurately predicted by the analysis. From 
this, we would expect that the bursty nature of the power- 
control channel is captured by this simple model. 

Figure 6 shows the effect of increasing the Doppler fre- 
quency, fd, (vehicle speed) on the covariance function. As 
the Doppler frequency increases, both the magnitude and 
duration of the correlation increase. In a Rayleigh fading 
channel with no power control, an increase in the Doppler 
frequency or vehicle speed decreases the correlation dura- 
tion in the received power (but not the magnitude (11)). 
However, in the power controlled channel, increased vehicle 
speed will first cause an increase in the channel correlation. 
This is due to poor tracking of the received power by the B- 
bit averaging filter. AS fd increases until B if; far too large 
to provide any tracking of the received power, the correla- 
tion begins to resemble the correlation of a Rayleigh fading 
channel. Again, although the correlation function shape is 
accurately predicted by the analysis, the error in the mag- 
nitude of the correlation increases for increasing fd. 

9 Conclusions 
We have derived a linear model for a closed loop power 
control system for CDMA cellular communications. Ana- 
lysis of the model indicates that while it accurately pre- 
dicts correlation times, it significantly underestimates the 
magnitude of the correlation (including the received power 
variance). 

This is primarily due to two of the modeling assump- 
tions. To form a linear time-invariant system, we remove 
the sample-and-hold portion of the system model ( there 
was no justification for this except to form a tractable ana- 

4’ 
50 1W 150 200 

Bh lag 
0 

Figure 6: The effect on vehicle speed (fd) on the received 
power auto-covariance. 

lysis). Removing this portion in the model will produce op- 
timistic results, because the mobile has better knowledge of 
the fading process than with the realistic model. Secondly, 
we make an assumption in the derivation of the noise in- 
put to the linear system. In the noise model, we replace 
the term Po, the received power in the signal, by its desired 
value Po’. This approximation will also tend to yield optim- 
istic results. Removing the variation in this term removes 
some of the variance of the noise process. The variance 
of the noise process Ni should grow in proportion to the 
variance of the received power. However, due to this sim- 
plification, it does not. 
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