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Abstract—In this paper, we propose a learning based architec-
ture for estimating the delay-Doppler (DD) channel in orthogonal
time frequency space (OTFS) systems with embedded pilots.
The proposed learning network, called DDNet, is based on a
multi-layered recurrent neural network (RNN) framework with
a novel training methodology that works seamlessly for both
exclusive pilot frames as well as embedded pilot frames. This
generalization is attributed to the training methodology, wherein
multiple frame realizations with different guard band sizes are
used to train the network. Simulation results demonstrate that
the proposed DDNet achieves better mean square error and bit
error performance compared to impulse based and threshold
based DD channel estimation schemes.

Index Terms—OTFS modulation, deep learning, DD channel
estimation, recurrent neural network, embedded pilots.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is
a recently introduced modulation scheme suited for high-
mobility channels [1]. While contemporary multicarrier mod-
ulation schemes such as orthogonal frequency division multi-
plexing (OFDM) suffer from inter-carrier interference caused
by high Doppler spreads in high mobility channels, OTFS
has been shown to be robust to high Doppler spreads [1]-
[3]. In OTFS, information symbols are multiplexed in the
delay-Doppler (DD) domain and the channel is also viewed
in the DD domain. A key benefit of viewing the channel in
the DD domain is that a rapidly time-varying channel appears
as almost a time-invariant channel in the DD domain. Also,
the channel matrix is sparse in the DD domain representation.
These attributes of the channel in the DD domain makes the
channel estimation task less complex.

Accurate estimation of the DD domain channel is essential
for reliable OTFS signal detection at the receiver [4],[5]. Sev-
eral approaches to DD channel estimation for OTFS has been
reported in the literature [6]-[12]. Some of these approaches
include use of DD domain impulses and PN sequences as
pilots [6],[2], threshold based estimation [7], and compressed
sensing/sparse Bayesian learning based estimation [11],[12]
to name a few. Recently, deep learning for wireless PHY
layer designs are increasingly being explored in the literature
(e.g., for signal detection, channel estimation, phase noise
compensation), and the reported results are promising [13]-
[16]. Deep neural networks for channel estimation in OFDM
systems have been reported in [14]-[16]. Our interest in this
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paper is the investigation of deep learning approach for DD
channel estimation in OTFS, which remains to be explored.
In particular, we propose a novel learning based DD channel
estimation approach for OTFS with embedded pilot frames.

In the embedded pilot scheme in [7], a noise variance based
threshold is employed to estimate the delay-Doppler indices of
the different paths and the corresponding channel coefficients.
This threshold based scheme is simple and works well for
high pilot SNRs. However, its performance gets compromised
at low-to-moderate pilot SNRs as the estimation of the delay-
Doppler indices becomes more erroneous at these SNRs. To
overcome this, [8] proposed a maximum likelihood scheme
for estimating the Doppler indices of different paths and
minimum mean square error scheme for estimating the channel
coefficients. A limitation in [8], however, is that it has assumed
perfect knowledge of the delay indices of the paths.

In the present work, we overcome the above limitations
by using a learning network, which we call as DDNet, that
estimates all the three-tuples (i.e., delay indices, Doppler
indices, and DD channel coefficients) for all paths and achieves
much better performance compared to the thresholding scheme
in [7]. The proposed learning network is based on a multi-
layered recurrent neural network (RNN) architecture. A novel
ingredient in the proposed learning approach is a generalized
training methodology that makes the network generalize for
OTFS frames with different pilot arrangements. In other
words, once trained, the network can seamlessly work for
OTFS frames with different guard band sizes. Simulation
results for Vehicular A channel model with 220 km/h speed
demonstrate that the proposed DDNet achieves significantly
better mean square error and bit error performance compared
to threshold based DD channel estimation scheme.

The rest of the paper is organized as follows. The OTFS
system model is presented in Sec. II. The proposed DDNet
architecture and training methodology are presented in Sec.
III. Simulation results and discussions are presented in Sec.
IV. Conclusions are presented in Sec. V.

Notations: tj represents the jth entry in the vector t. ⌈x⌉
and ⌊x⌋ represent the ceiling and flooring operation on x,
respectively. (x)M denotes the modulo M operation on x.
E[.] denotes the expectation operator and ∥A∥F denotes the
Frobenius norm of matrix A.



Fig. 1: OTFS modulation scheme.

II. OTFS SYSTEM MODEL

Figure 1 shows the block diagram of the OTFS modu-
lation scheme. At the transmitter, information symbols are
placed in the DD domain. They are mapped to time-frequency
(TF) domain using inverse symplectic finite Fourier transform
(ISFFT). This is followed by conversion to time domain using
Heisenberg transform. The time domain signal is transmitted
through the channel. At the receiver, the received time domain
signal is converted to TF domain using Wigner transform.
This is followed by conversion back to DD domain using
symplectic finite Fourier transform (SFFT) for detection.

MN information symbols, denoted by a[k, l]s, each belong-
ing to a modulation alphabet A are placed in an M ×N DD
grid

{(
l

M∆f ,
k

NT

)
, l = 0, · · · ,M − 1, k = 0, · · · , N − 1

}
,

where N is the number of Doppler bins, M is the number of
delay bins, ∆f is the subcarrier spacing, and T = 1/∆f . The
quantities 1/NT and 1/M∆f represent the bin sizes in the
Doppler and delay domains, respectively. a[k, l]s in the DD
domain are converted to TF domain symbols A[n,m] using
the ISFFT operation, given by

A[n,m] =
1√
MN

N−1∑
k=0

M−1∑
l=0

a[k, l]ej2π(
nk
N −ml

M ), (1)

for n = 0, · · · , N − 1 and m = 0, · · · ,M − 1. To obtain
the time domain signal a(t), Heisenberg transform of the TF
signal A[n,m] is computed. Using a transmit pulse ptx(t), this
operation is defined as

a(t) =

N−1∑
n=0

M−1∑
m=0

A[n,m]ptx(t− nT )ej2πm∆f(t−nT ). (2)

The time domain signal a(t) is transmitted through the chan-
nel. The channel has the complex baseband channel response
in the DD domain, denoted by g(τ, ν), given by [3]

g(τ, ν) =

L−1∑
i=0

giδ(τ − τi)δ(ν − νi), (3)

where L is the number of channel paths in the DD domain,
δ is the Kronecker delta function, and gi, τi, and νi repre-
sent the channel gain, delay, and Doppler shift, respectively,
corresponding to the ith path.

Fig. 2: Pilot, guard, and data symbol placements in exclusive
and embedded pilot frames.

The received time domain signal b(t) at the OTFS receiver
is given by

b(t) =

∫
ν

∫
τ

g(τ, ν)a(t− τ)ej2πν(t−τ)dτdν + w(t), (4)

where w(t) represents the additive noise. At the receiver, a
match filtering operation is carried out on the received signal
b(t) with a receive pulse prx(t) yielding a TF domain cross-
ambiguity function, denoted by Fprx,b(t, f), and given by

Fprx,b(t, f) =

∫
t′
p∗rx(t

′ − t)b(t′)e−j2πf(t′−t)dt′, (5)

where (·)∗ represents the complex conjugation operation. The
transmit and receive pulse are chosen such that they satisfy the
biorthogonality condition, i.e., Fhrxhtx

(t, f)|t=nT,f=m∆f =
δ(n)δ(m). Sampling (5) at t = nT and f = m∆f gives

B[n,m] = Fprx,b(t, f)|t=nT,f=m∆f . (6)

The TF domain signal B[n,m] is then mapped back to the
DD domain through SFFT operation to obtain b[k, l] as

b[k, l] =
1√
MN

N−1∑
n=0

M−1∑
m=0

B[n,m]e−j2π(nk
N −ml

M ). (7)

Using (1)-(7), the input-output relation of the OTFS modula-
tion scheme in the DD domain can be written as [3]

b[k, l] =

L−1∑
i=0

g′ia[(k − βi)N , (l − αi)M ] + w[k, l], (8)

where g′i = gie
−j2πτiνi , αi is the integer corresponding to

the index of delay tap and βi is the integer corresponding to
the Doppler frequency associated with τi and νi, respectively.
Therefore, τi = αi

M∆f and νi = βi

NT . Further, (8) can be
written in a vectorized form as

b = Ga+w, (9)

where b,a,w ∈ CM×N and G ∈ CMN×MN and the (kM +
l)th entry of a, akM+l = a[k, l] for k = 0, · · · , N − 1, l =
0, · · ·M − 1 and a[k, l] ∈ A. Likewise, bkM+l = b[k, l] and
wkM+l = w[k, l] for k = 0, · · · , N − 1, l = 0, · · ·M − 1. gis
are assumed to be i.i.d. and are distributed as CN (0, 1/L).



Fig. 3: Proposed RNN based DDNet channel estimation scheme.

Fig. 4: Proposed RNN based DDNet architecture.

A. Pilot placement schemes
To estimate the DD domain channel matrix G, known sym-

bols called pilots are placed in the DD domain and transmitted.
At the receiver, the received symbols corresponding to the
transmitted pilots are used to estimate the channel in the DD
domain, which is then used to construct the matrix G. We
consider two types of pilot placement schemes. Figure 2 shows
the OTFS frame structure for the two pilot placement schemes.
The first scheme is the exclusive pilot frame scheme used in
[6], wherein the entire DD domain grid consists of a single
pilot symbol and zeros elsewhere (see Fig. 2a), i.e.,

a =

{
0, if k ̸= kp, l ̸= lp

ap, if k = kp, l = lp,
(10)

for k = 0, · · · , N − 1 and l = 0, · · ·M − 1. A predetermined
pilot symbol ap is placed in the DD grid indexed by kp and
lp, the Doppler and delay bin indices, respectively. The second
scheme is the embedded pilot frame scheme used in [7], shown
in Fig. 2b, where the DD grid consists of a pilot symbol
(marked in red), guard symbols (marked in yellow), and data
symbols (marked in blue), which can be represented as

a =


0, if k = kg, l = lg

ap, if k = kp, l = lp

ad, elsewhere,
(11)

for k = 0, · · · , N − 1 and l = 0, · · ·M − 1. In (11), kgs and
lgs denote the indices of guard bands around the pilot symbol
ap, and the remaining indices are occupied by data symbols
ad ∈ A. The pilot symbol is surrounded by guard symbols
to alleviate interference from data symbols. The number of
guard symbols are adjusted to accommodate lτ and kν , the
delay and Doppler taps corresponding to the largest delay τmax

and Doppler νmax, respectively [7]. Note that the embedded
pilot scheme in (11) becomes exclusive pilot scheme in (10)
when kg = 0, 1, · · · , kp − 1, kp + 1, · · · , N − 1 and lg =
0, 1, · · · , lp − 1, lp + 1, · · · ,M − 1.

III. DDNET - PROPOSED RNN BASED DD CHANNEL
ESTIMATOR

In this section, we present the proposed DDNet, an RNN
based architecture for DD channel estimation, and the train-

Parameter Value
Number of LSTM layers P
LSTM Hidden size (h) 100
LSTM input dimensions (c, s, 2)
LSTM output dimensions (c, s, 100)
FCNN input neurons 100
FCNN output neurons 1

TABLE I: Parameters of the DDNet architecture.

ing methodology. Figure 3 shows the block diagram of the
proposed DDNet. The information symbols a[k, l]s in the DD
domain are converted to a time domain signal a(t) at the OTFS
transmitter and transmitted through a doubly-selective fading
channel. At the OTFS receiver, the received signal b(t) is
converted back to DD symbols b[k, l]s, k = 0, · · · , N −1, l =
0, · · · ,M − 1, given by (8). Let b′[k′, l′]s, a subset of b[k, l]s,
denote the received DD symbols corresponding to the pilot
and guard bins, where k′ = kp−kν , kp−kν +1, · · · , kp+kν
and l′ = lp, lp + 1, · · · , lp + lτ for the scheme in (11) and
k′ = 0, 1, · · · , N − 1, l′ = 0, 1, · · · ,M − 1 for the scheme in
(10). The number of symbols in b′[k′, l′]s is (2kν +1)(lτ +1)
for pilot scheme in (11) and MN for pilot scheme in (10),
respectively. These b′[k′, l′] symbols are converted to a vector
b′ of length (2kν+1)(lτ +1) for scheme in (11) and of length
MN for the scheme in (10). The input to the DDNet is the
vector b′. The output of the DDNet is a vector m, called mask,
of length (2kν + 1)(lτ + 1) for scheme in (11) and MN for
scheme in (10). Entries in m are values between 0 and 1. These
entries are thresholded such that values above 0.5 are replaced
by 1 and those below are replaced by 0. In the thresholded m
vector, denoted by m′, the indices corresponding to location of
1s denote presence of valid channel paths at those locations in
the DD grid. These locations are used to obtain the estimates of
the integers corresponding to delay taps (i.e., α̂is) and Doppler
frequencies (β̂is) (see (8)) in the DD grid. Finally, the vector
m′ is element-wise multiplied with the input vector b′ and
the non-zero values from the resulting vector are returned as
DD domain channel coefficient vector ĝ. Using the estimates
ĝ, α̂, and β̂, the estimated DD domain channel matrix Ĝ is
obtained. This matrix is used for detection of data symbols.

A. Architecture

The architecture of the proposed DDNet block is shown in
Fig. 4. The architecture consists of P layers of long short-
term memory (LSTM) [17], a variant of RNN. The output
of the LSTM layers is passed through a ReLU activation
function, given by ReLU(x) = max (0, x) , ∀x ∈ (−∞,∞).
This is then passed on to a fully connected neural network
(FCNN) with one layer. The FCNN is employed to reduce the
dimension of the output of the LSTM network to the required



Parameter Value
Epochs 20000
Optimizer Adam
Learning rate 0.001, divide by 2 every 4000 epochs
Batch size 1000
Mini-batch size 64

TABLE II: Hyper-parameters used for training the DDNet.

dimension. This is then followed by a sigmoid activation
function, given by sigmoid(x) = 1

1+e−x , ∀x ∈ (−∞,∞).
The purpose of using a sigmoid function is to restrict the
output between 0 and 1 and to determine if a particular DD bin
contains a valid path. To achieve this, as mentioned above, the
mask m at the output of sigmoid function is first thresholded to
obtain the vector m′, followed by element-wise multiplication
with the input. The non-zero entries in the resulting vector
constitute the estimated DD channel coefficients, denoted by
ĝ. The other parameters of the DDNet architecture are given
in Table I. The variable c refers to the batch size and s is the
sequence length, which is set to be MN for the pilot scheme
in (10) and (2kν + 1)(lτ + 1) for pilot scheme in (11).

B. Training methodology

Training data is obtained by generating multiple DD domain
OTFS frames using pilot schemes in (10) and (11). Further,
various guard band realizations are also added to the training
data for the scheme in (11). These frames are converted to time
domain and transmitted through a doubly-selective channel
and the received signal is converted back to DD domain.
From the received DD symbols, depending on the pilot scheme
employed, s-length vector b′ (see Fig. 4) is obtained. The
real and imaginary parts of this vector are concatenated before
being fed to the DDNet. For training the DDNet, the ground
truth is obtained by generating s-length true mask, denoted by
z, whose ith entry is defined as

zi =

{
1, if DD bin corresponding to i is a valid path
0, else.

(12)

During training, the weights of the DDNet are updated such
that the value of the binary cross entropy (BCE) loss function
between z and the output of the DDNet, m, is minimized. The
BCE loss function for the ith index is given by

L(zi,mi) = −zi log(mi)− (1− zi) log(1−mi), (13)

where 0 ≤ mi ≤ 1 is the output of the DDNet and zi =
{0, 1} is the ground truth. The other hyper-parameters used
in the training of the DDNet are presented in Table II. Note
that this training needs to be carried out offline, only once.
Subsequently, the network weights are frozen. New channel
estimates are obtained from pilots in each OTFS frame using
the same trained network.

C. Inference from DDNet

Once the DDNet is trained, the weights are frozen. During
the inference (testing) phase, channel estimates, ĝ, in the DD
domain are obtained through element-wise multiplication of

the input (b′) with the thresholded mask (m′), as shown in
Fig. 4. To obtain the estimates of α and β, denoted by α̂
and β̂, respectively, the following steps are followed for the
pilot scheme in (10). Let J denote the set of indices where
the thresholded mask m′ is 1, i.e., J = {j : m′

j = 1, j =
0, 1, · · · , s− 1}. Then, for the ith path index,

α̂i = (Ji)M − lp, (14)

β̂i =

⌊
Ji

M

⌋
− kp. (15)

For the pilot system in (11) where s = (2kν + 1)(lτ + 1),
the thresholded mask m′ is reshaped into a matrix of shape
(2kν+1)×(lτ +1). Vectors u and v are defined as u = [kp−
kν , kp−kν +1, · · · , kp+kν ] and v = [lp, lp+1, · · · , lp+ lτ ].
Then, an index set, I, is defined as I = {ui×M+vj : m

′
ij =

1, i = 0, 1, · · · , 2kν , j = 0, 1, · · · , lτ}. For the ith path index,

α̂i = (Ii)M − lp, (16)

β̂i =

⌊
Ii
M

⌋
− kp. (17)

We have carried out the simulations for performance evalu-
ation using PyTorch machine learning library [18] on RTX
3090 GPU platform.

IV. RESULTS AND DISCUSSIONS

In this section, we present the performance of the proposed
DDNet for DD channel estimation in OTFS. A carrier fre-
quency of fc = 4 GHz and a subcarrier spacing of ∆f = 15
kHz are considered. We consider the Vehicular A (VehA)
channel model defined by ITU-R [19] with L = 6 paths
and a maximum speed of 220 km/h. This speed at 4 GHz
carrier frequency corresponds to a maximum Doppler shift,
νmax, of 815 Hz. Each path has a Doppler shift generated
using Jakes model νi = νmax cos θi, where θi is assumed to
be uniformly distributed between [−π, π]. We fix the number
of Doppler bins (N ) and delay bins (M ) to be 12 and 64,
respectively. A BPSK symbol +1 is used as the pilot symbol
and data symbols are chosen from 4-QAM alphabet. To train
the network, the batch size (c) is chosen to be 1100 of which
1000 OTFS frames are used for training and 100 frames are
used for validating the training. This training data is refreshed
every 20 epochs, wherein the pilot schemes in (10) and (11)
are chosen randomly with equal probability.

To evaluate the accuracy of the channel estimates provided
by the DDNet, we evaluate the normalized mean square error
(NSME) for the DD domain channel matrix. The value of
NMSE is computed as follows. The estimates of the channel
coefficients, delay taps, and Doppler taps are obtained from
the DDNet as described in Sec. III-C. Using these values, an
estimate for the matrix G (see (9)), denoted by Ĝ, is obtained.
The NMSE is computed as NMSE = E

[
∥G−Ĝ∥2

F

∥G∥2
F

]
. For

evaluating the bit error rate (BER) performance, the message
passing (MP) detector in [3] is used.

Effect of number of LSTM layers: Figure 5 shows the NMSE
performance of the DDNet as a function of pilot SNR for three



Fig. 5: Effect of number of LSTM layers, P , on the NMSE
performance of the proposed DDNet.

different values of the number of LSTM layers, P = 1, 2, 3.
Other than the value of P , the same parameters in Table I
and the training hyper-parameters in Table II are used for all
the values of P . The number of parameters for P layers can
be computed as NP = 4h2(2P − 1) + 4hid + 8Ph + 101,
where h is the hidden size (see Table I), id = 2 is the input
dimension, and 101 is the number of parameters in the FCNN
layer. Therefore, the number of parameters to be learnt are
41701, 122501, and 203301 for P = 1, 2, and 3, respectively.
Performance of embedded as well as exclusive pilot frames
are shown. From Fig. 5, it can be seen that while the NMSE
performance is comparable for different values of P , the
performance for P = 3 is slightly worse. This can be attributed
to the steep increase in the number of parameters that need
to be learnt for P = 3, resulting in difficulty in training
the network. As a good balance between training complexity
and achieved performance, we fix P = 2 for the rest of
the performance evaluation experiments. During the inference
(testing) stage, only 301 floating point operations (FLOPs) are
required to compute the mask from the DDNet. In contrast,
the approach in [7] does not involve an offline training phase.
Further, the number of FLOPs required is 5(2kν +1)(lτ +1).

NMSE vs spectral efficiency: Figure 6 shows the effect of
number of guard symbols on the NMSE performance of the
DDNet. It shows NMSE as a function of spectral efficiency
η, where η is defined as η = 1− Ng

MN , and Ng is the number
of guard symbols in the frame. The pilot SNRs considered
are 20 dB and 30 dB. The performance of the threshold
based scheme in [7] is also plotted for comparison. It can
be seen that the DDNet achieves significantly better NMSE
performance compared to the threshold based scheme in [7].
Also, while the NMSE of DDNet improves as the number of
guard symbols Ng is increased (i.e., smaller values of η), the
NMSE of threshold based scheme does not improve because
of the inherent limitation in using a fixed threshold, for a
given pilot SNR. Whereas, the DDNet is able to generalize for

Fig. 6: NMSE vs spectral efficiency at different pilot SNRs.

Fig. 7: NMSE performance comparison between the proposed
DDNet and the estimation schemes in [6] (exclusive pilot) and
[7] (embedded pilot).

varying guard band sizes because of the training methodology
employed.

NMSE performance comparison with [6] and [7]: Figure 7
shows the NMSE comparison for the cases of exclusive pilot
frame and embedded pilot frame. For the exclusive pilot case,
comparison is made between DDNet and the scheme in [6].
For the embedded pilot case, comparison is made between
DDNet and the scheme in [7] for η = 0.97. The following
observations can be made from Fig. 7. It is seen that in the
exclusive pilot case, DDNet performance is better compared
to that of the scheme in [6]. For example, to achieve an NMSE
of -50 dB, DDNet requires about 4 dB less pilot SNR. In the
embedded pilot case, the DDNet performance is far superior
compared to that of the scheme in [7]. The scheme in [7] does
not work well up to 15 dB pilot SNR because of the erroneous
estimation of the delay and Doppler indices at these SNRs. For
pilot SNRs greater than 15 dB, the NMSE is seen to reduce
with pilot SNR. Even in this SNR region, there is a significant



Fig. 8: BER performance comparison between the proposed
DDNet and the thresholding scheme in [7] (embedded pilot).

performance advantage for DDNet. For example, to achieve an
NMSE of -20 dB, DDNet requires about 14 dB less pilot SNR.

BER performance comparison with [7]: In Fig. 8, we
present a comparison between the BER performance of the
proposed DDNet and that of the scheme in [7] with embedded
pilot frame with η = 0.97. The BER performance with
perfect channel state information (CSI) is also presented for
comparison. It is seen that the DDNet outperforms the scheme
in [7] by a large margin. For example, at 40 dB pilot SNR,
there is about 4 dB advantage for DDNet at a BER of 10−2.
Also, the DDNet performance at this pilot SNR is close to
that with perfect CSI. When the pilot SNR is 20 dB, the
scheme in [7] fails to perform, whereas the DDNet performs
much better. This corroborates with the NMSE performance
advantage predicted in Fig. 7, where the scheme in [7] has a
high NMSE value at 20 dB pilot SNR.

V. CONCLUSIONS

We proposed DDNet, a multi-layer LSTM based learn-
ing network for the purpose of DD channel estimation in
OTFS systems. The network was trained using a training
methodology that enabled the same trained network to work
seamlessly for different guard band sizes. This means the
same trained network can work for both exclusive pilot frames
and embedded pilot frames. The proposed DDNet was shown
to achieve significantly better NMSE and BER performance
compared to the thresholding scheme known in the literature.
This shows that learning approach is a promising approach
for DD channel estimation in OTFS. Further, learning based
approach for joint channel estimation and signal detection in
OTFS with superimposed pilot frames can be taken up for
future work.
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