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Abstract— A Linear Processing Complex Orthogonal Design
(LPCOD) is a p × n matrix E , (p ≥ n) in k complex indetermi-
nates x1, x2, · · · , xk such that (i) the entries of E are complex
linear combinations of 0,±xi, i = 1, · · · , k and their conjugates,
(ii) EHE = D, where EH is the Hermitian (conjugate transpose)
of E and D is a diagonal matrix with the (i, i)-th diagonal element
of the form l

(i)
1 |x1|2 + l

(i)
2 |x2|2 + · · · + l

(i)
k |xk|2 where l

(i)
j , i =

1, 2, · · · , n, j = 1, 2, · · · , k are strictly positive real numbers
and the condition l

(i)
1 = l

(i)
2 = · · · = l

(i)
k , called the equal-

weights condition, holds for all values of i. For square designs
it is known that whenever a LPCOD exists without the equal-
weights condition satisfied then there exists another LPCOD with
identical parameters with l

(i)
1 = l

(i)
2 = · · · = l

(i)
k = 1. This implies

that the maximum possible rate for square LPCODs without the
equal-weights condition is the same as that of square LPCODs
with equal-weights condition. In this paper, this result is extended
to a subclass of non-square LPCODs. It is shown that, a set
of sufficient conditions is identified such that whenever a non-
square (p > n) LPCOD satisfies these sufficient conditions and do
not satisfy the equal-weights condition, then there exists another
LPCOD with the same parameters n, k and p in the same complex
indeterminates with l

(i)
1 = l

(i)
2 = · · · = l

(i)
k = 1.

I. INTRODUCTION

Orthogonal designs [1], [2] have been extensively studied
due to the fact that the space-time block codes (STBCs)
obtained using these designs by way of letting the variables
of the design to take values from different signal sets admit
single-symbol maximum likelihood (ML) decodability [3].
These STBCs admit single-real-symbol decodability for regu-
lar QAM signal sets and single-complex-symbol decodability
for arbitrary complex signal sets including PSK. Designs
leading to STBCs admitting single-complex-symbol decod-
ability have been studied in detail in [3], where it is shown
that orthogonal designs constitute a proper subclass of such
designs.

In this paper, we restrict ourselves to orthogonal designs
covered by the following definition: A [p, n, k] Generalized
Linear Processing Complex Orthogonal Design (GLPCOD)
[1], [2] is a p × n matrix E with entries that are arbitrary
complex linear combinations of k complex indeterminates
x1, x2, · · · , xk and their complex conjugates,with p ≥ n such
that

• EHE = D, where EH is the Hermitian (conjugate
transpose) of E and D is a diagonal matrix with the (i, i)-

th diagonal element of the form

l
(i)
1 |x1|2 + l

(i)
2 |x2|2 + · · · + l

(i)
k |xk|2,

where l
(i)
j , i = 1, 2, · · · , n, j = 1, 2, · · · , k are strictly

positive real numbers, and for all values of i,

l
(i)
1 = l

(i)
2 = · · · = l

(i)
k . (1)

The condition given by (1), known as the equal-weights
condition [4], has been introduced in [2] as a correction to
[1]. If k=n=p, then E is called a Linear Processing Complex
Orthogonal Design (LPCOD). Furthermore, when the entries
are only from {0,±x1,±x2, · · · ,±xk}, their conjugates and
multiples of j, where j =

√−1, then E is called a Complex
Orthogonal Design (COD). When the entries of E are real
variables and real linear combinations of these variables,
Generalized Linear Processing Real Orthogonal Designs (GL-
PROD), Linear Processing Real Orthogonal Design (LPROD)
and Real Orthogonal Designs (ROD) are similarly defined.

The existence of Orthogonal Designs is of fundamental
importance in the theory of Space-Time Block Codes [1]. In
this regard, [1] presents four theorems (Theorems 3.4.1, 4.1.1,
5.4.1 and 5.5.1): Theorem 3.4.1 deals with RODs, Theorem
5.4.1 deals with CODs, and Theorems 4.1.1 and 5.5.1 deal
with GLPROD and GLPCOD, respectively. All these theorems
assume that equal-weights condition holds. In view of these
theorems, as far as the existence of designs are concerned, one
may, without any loss of generality, assume that a generalized
linear processing real or complex orthogonal design satisfies
1 = l

(i)
1 = l

(i)
2 = · · · = l

(i)
k given that l

(i)
1 = l

(i)
2 = · · · = l

(i)
k .

Maximal rate of square orthogonal designs have been stud-
ied in [6] and that of non-square orthogonal designs have
been studied in [7], [8]. In [4] it has been shown that the
maximum rate of complex orthogonal STBCs with equal-
weights conditions satisfied is not different from that of square
complex orthogonal STBCs without equal-weight condition
satisfied, by showing that, in case of square GLPCODs,
Theorems 3.4.1 and 5.4.1 of [1] are valid without the equal-
weights condition in the definition of GLPCODs. Notice that
the number of variables k need not be equal to n = p. To be
precise, the following theorem has been proved in [4].

Theorem 1: With the equal-weights condition removed
from the definition of GLPCODs, an n × n square GLPCOD
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Ec, in variables x1, · · · , xk exists iff there exists a GLPCOD
Lc of same size and in the same variables such that

LH
c Lc = (|x1|2 + · · · + |xk|2)I.

A. Non-square design applications

Most studies on STBCs from orthogonal designs so far dealt
with square designs, since they correspond to minimum delay
codes for co-located multiple antenna coherent communication
systems. However, non-square designs are important in several
other important situations, some of which are:

1) In non-coherent MIMO systems with non-differential
detection, non-square designs with p = 2n lead to low
decoding complexity STBCs [10].

2) Space-Time-Frequency codes can be viewed as non-
square designs [11].

3) In distributed space-time coding for relay channels rect-
angular designs naturally appear [12].

4) In coherent co-located MIMO systems, for a specified
number of transmit antennas, non-square designs can
give much higher rate than the square designs [7].

B. Our contribution

In this paper, we identify a subclass of non-square LPCODs
and prove that for code within this subclass, the maximum
rate of non-square LPCODs without satisfying the equal-
weights condition is the same as the maximal rate of non-
square LPCODs with the equal-weights condition satisfied for
identical set of the parameters p, n, and k and in the same
set of variables. This is achieved by way of identifying a set
of sufficient conditions such that whenever a LPCOD without
satisfying the equal-weights condition satisfies these sufficient
conditions then there exists another LPCOD with the same
set of parameters and variables with equal-weights condition
satisfied. Our proof also provides a method of obtaining the
LPCODs with equal-weight condition from a LPCOD without
equal-weight conditions, for the class of codes satisfying our
set of sufficient conditions.

The remaining content is organized as follows: The main
result of this paper is Theorem 5, which is proved in Section
II. In Section III, it is shown that certain substitutions used in
the proof of Theorem 5 can be used to obtain a design with
identical parameters and variables satisfying the equal-weights
condition from a non-square design not satisfying the equal-
weights condition by way of illustration with two example
designs from [9]. Concluding remarks regarding the extent of
usefulness of the results of this paper constitute Section IV.

II. NON-SQUARE GLPCODS WITH MAXIMAL RATE

INDEPENDENT OF EQUAL-WEIGHTS CONDITION

In this section, we prove a generalization of Theorems 4.4.1
and 5.5.1 of [1]. We reproduce below Theorem 4.4.1 and 5.5.1
of [1] for quick reference. Note that these two theorems have
been stated assuming the equal-weights condition to be part
of the definition of GLPCODs.

Theorem 2 (Theorem 4.1.1 of [1]): A p × n generalized
linear processing real orthogonal design, E , in real variables

x1, x2, · · · , xk exists iff there exists a generalized linear pro-
cessing real orthogonal design G, in the same variables and of
the same size such that

GTG = (x2
1 + x2

2 + · · · + x2
k)I.

Theorem 3 (Theorem 5.5.1 of [1]): A p×n linear process-
ing complex orthogonal design, Ec, in complex variables
x1, x2, · · · , xn and their conjugates exists iff there exists a
generalized linear processing complex orthogonal design Gc,
such that

GH
c Gc = (|x1|2 + |x2|2 + · · · + |xk|2)I.

Given a p × n GLPCOD Ec in k complex variables,
by E(m)

c we denote the mth column of Ec. Moreover, we
denote the 2k real variables consisting of all the in-phase
and quadrature components of the k complex variables by
yi, i = 1, 2, · · · , 2k. Then, we can express E(m)

c as

E(m)
c =

2k∑
i=1

yiC
(m)
i , (2)

where, for all m = 1, · · ·n, C
(m)
i is the p×1 complex weight

vector associated with variable yi in the mth column of Ec.
Note that, C

(m)
i is closely related to the i− th column of the

m−th “column vector representation of a LPCOD” as in [7].
We call C

(m)
i , the i−th column-weight-vector for the m−th

column of the design.
The following theorem characterizes non-square LPCODs

in terms of the corresponding set of column-weight-matrices
of the design.

Theorem 4: Let Ec be a p×n GLPCOD in 2k real variables
yi i = 1, 2, · · · , 2k. Then,

EH
c Ec =

2k∑
i=1

y2
i Di (3)

where Di is the n × n diagonal real matrix (with strictly
positive entries) associated with the variable yi if and only
if the column-weight-vectors C

(m)
i , i = 1, 2, · · · , 2k and

m = 1, 2, · · · , n satisfy the following four conditions:

C
(m)H
i C

(m)
i = D(m,m)

i , (4)

i = 1, 2, · · · , 2k, m = 1, 2, · · · , n

where D(m,m)
i is the (m,m)th entry of the diagonal matrix

Di;

C(m)H
p C(m)

q + C(m)H
q C(m)

p = 0. (5)

p, q = 1, 2, · · · , 2k, p �= q, m = 1, 2, · · · , n;

C
(m)H
i C

(l)
i = 0. (6)

i = 1, 2, · · · , 2k, m, l = 1, 2, · · · , n, m �= l;

C(m)H
p C(l)

q + C(m)H
q C(l)

p = 0, (7)

p, q = 1, 2, · · · , 2k, p �= q, m, l = 1, 2, · · · , n, m �= l.
Proof: The proof is omitted due to space considerations.
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Next, we define a transformation that transforms the (p, n, k)
GLPCOD Ec to another (p, n, k) GLPCOD Gc in the same
variables, by defining the mth column of Gc, denoted by G(m)

c

to be,

G(m)
c =

2k∑
i=1

yiE
(m)
i (8)

where

E
(m)
i = (1/

√
D(m,m)

i )C(m)
i , (9)

i = 1, 2, · · · , 2k, m = 1, 2, · · · , n.

where yi is the ith variable of both Gc and Ec and C
(m)
i is

the column-weight-vector of yi for the mth column of Ec. The
main result of the paper is Theorem 5 which gives a sufficient
condition on the entries of the diagonal matrices Di of the
design Ec, such that the GLPCOD Gc satisfies

GH
c Gc =

2k∑
i=1

y2
i I (10)

where I is the n × n identity matrix.
Theorem 5: If the diagonal matrices Di corresponding to

the design Ec satisfy the following condition then the GLP-
COD Gc will satisfy (10): For each i, j = 1, 2, · · · , 2k, i �= j

and m, l = 1, · · · , n, whenever C
(m)H
i C

(l)
j �= 0 then Di and

Dj matrices satisfy

D(m,m)
i D(l,l)

j = D(m,m)
j D(l,l)

i . (11)
Proof: For Gc to satisfy (10), the necessary and sufficient

conditions for the column-weight-vectors are, from Theorem
(4),

E
(m)H
i E

(m)
i = 1, (12)

i = 1, 2, · · · , 2k, m = 1, 2, · · · , n;

E
(m)H
i E

(l)
i = 0, (13)

i = 1, 2, · · · , 2k, l,m = 1, 2, · · · , n, l �= m;

E
(m)H
i E

(l)
j + E

(m)H
j E

(l)
i = 0, (14)

i, j = 1, 2, · · · , 2k, i �= j, l,m = 1, 2, · · · , n.

In (14) we have combined the two conditions for E
(m)
i based

upon (5) and (7) into one condition by removing the constraint
l �= m. Upon using the definition of E

(m)
i as in (9), and given

that the vectors C
(m)
i satisfy the conditions in Theorem (4),

we see that conditions (12) and (13) are indeed true.
Using the definition for E

(m)
i as defined in (9), (14) can be

re-written as

C
(m)H
i C

(l)
j /

√
D(m,m)

i D(l,l)
j = −C

(m)H
j C

(l)
i /

√
D(m,m)

j D(l,l)
i .
(15)

If C
(m)H
i C

(l)
j = 0, then the condition (14) holds true

trivially. However if C
(m)H
i C

(l)
j �= 0, but D(m,m)

i D(l,l)
j =

D(m,m)
j D(l,l)

i , then also (14) hold true. Hence we have proved
that if the conditions in (11) are met, then Gc indeed satisfies
(10).

III. DESIGNS WITH EQUAL-WEIGHTS CONDITION FROM

DESIGNS WITHOUT IT

In [9], Su and Xia present a [11, 5, 7], rate-7/11 design and
a [30, 6, 18], rate-3/5 design that do not satisfy the equal-
weights condition. In this section, we illustrate the construction
of designs with identical parameters as these codes in the same
set of variables, but satisfying the equal-weights condition. We
achieve this by making use of the transformations given by (9)
on the set of column-weight-vectors of the codes of Su and
Xia.

The rate-7/11 code of [9] for 5 transmit antennas is given
by

E1 =




x1 x2 x3 0 x4

−x∗
2 x∗

1 0 x3 x5

x∗
3 0 −x∗

1 x2 x6

0 x∗
3 −x∗

2 −x1 x7

x∗
4 0 0 −x∗

7 −x∗
1

0 x∗
4 0 x∗

6 −x∗
2

0 0 x∗
4 x∗

5 −x∗
3

0 −x∗
5 x∗

6 0 x1

x∗
5 0 x∗

7 0 x2

−x∗
6 −x∗

7 0 0 x3

x7 −x6 −x5 x4 0




.

With the relabeling of the design variables xk = xkI +jxkQ

as y2k−1 = xkI and y2k = xkQ for k = 1, 2, · · · , 7, the
matrices Di, i = 1, 2, · · · , 14 for the code E1 are

Di =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2




for i = 1, 2, · · · , 6

and Di = I5 for i = 7, 8, · · · , 14. It can be verified that
these matrices satisfy the condition given by (11). Using the
transform given in (9), the corresponding code with equal-
weights condition satisfied is

E1,EW =




x1 x2 x3 0 x4

−x∗
2 x∗

1 0 x3 x5

x∗
3 0 −x∗

1 x2 x6

0 x∗
3 −x∗

2 −x1 x7

x∗
4 0 0 −x∗

7
−x∗

1√
2

0 x∗
4 0 x∗

6
−x∗

2√
2

0 0 x∗
4 x∗

5
−x∗

3√
2

0 −x∗
5 x∗

6 0 x1√
2

x∗
5 0 x∗

7 0 x2√
2

−x∗
6 −x∗

7 0 0 x3√
2

x7 −x6 −x5 x4 0




. (16)

Notice that for the design E1,EW , all the matrices Di, i =
1, 2, · · · , 14 are identity matrices.

The second code of [9] for 6 antennas of rate-3/5, is shown
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below:

E2 =




x1 x2 x3 0 x4 x8

−x∗
2 x∗

1 0 x3 x5 x9

x∗
3 0 −x∗

1 x2 x6 x10

0 x∗
3 −x∗

2 −x1 x7 x11

x∗
4 0 0 −x∗

7 −x∗
1 x12

0 x∗
4 0 x∗

6 −x∗
2 x13

0 0 x∗
4 x∗

5 −x∗
3 x14

0 x∗
5 −x∗

6 0 −x1 x15

x∗
5 0 x∗

7 0 x2 x16

x∗
6 x∗

7 0 0 −x3 x17

x7 −x6 −x5 x4 0 x18

x∗
8 0 0 −x11∗ −x∗

15 −x∗
1

0 x∗
8 0 x∗

10 x∗
16 −x∗

2

0 0 x∗
8 x∗

9 −x∗
17 −x∗

3

0 0 0 x∗
18 x∗

8 −x∗
4

0 0 −x∗
18 0 x∗

9 −x∗
5

0 −x∗
18 0 0 x∗

10 −x∗
6

x∗
18 0 0 0 x∗

11 −x∗
7

0 −x∗
9 x∗

10 0 x∗
12 x1

x∗
9 0 x∗

11 0 x∗
13 x2

−x∗
10 −x∗

11 0 0 x∗
14 x3

−x∗
12 −x∗

13 −x∗
14 0 0 x4

−x∗
16 −x∗

15 0 −x∗
14 0 x5

−x∗
17 0 x∗

15 −x∗
13 0 x6

0 x∗
17 −x∗

16 x∗
12 0 x7

0 x14 −x13 −x15 x11 0
x14 0 −x12 −x16 x10 0

−x13 x12 0 x17 x9 0
x15 −x16 x17 0 x8 0

−x11 x10 x9 −x8 x18 0




.

With the relabeling of the design variables xk = xkI +jxkQ

as y2k−1 = xkI and y2k = xkQ for k = 1, 2, · · · , 18, that this
code does not satisfy the equal-weights condition is clear from
the following Di, i = 1, 2, · · · , 36, matrices:

Di =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 2 0
0 0 0 0 0 2




for i = 1, 2, · · · , 6;

Di =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 2




for i = 7, 8, · · · , 14;

Di =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 2 0
0 0 0 0 0 1




for i = 15, 16, · · · , 22,

and Di = I6 for i = 23, 24, · · · , 36.
It is easily checked that these matrices satisfy the condition

given by (11) and using the transform given in (9), the cor-
responding code which satisfies the equal-weights condition
is

E2,EW =




x1 x2 x3 0 x4 x8

−x∗
2 x∗

1 0 x3 x5 x9

x∗
3 0 −x∗

1 x2 x6 x10

0 x∗
3 −x∗

2 −x1 x7 x11

x∗
4 0 0 −x∗

7
−x∗

1√
2

x12

0 x∗
4 0 x∗

6
−x∗

2√
2

x13

0 0 x∗
4 x∗

5
−x∗

3√
2

x14

0 x∗
5 −x∗

6 0 −x1√
2

x15

x∗
5 0 x∗

7 0 x2√
2

x16

x∗
6 x∗

7 0 0 −x3√
2

x17

x7 −x6 −x5 x4 0 x18

x∗
8 0 0 −x11∗ −x∗

15
−x∗

1√
2

0 x∗
8 0 x∗

10 x∗
16

−x∗
2√
2

0 0 x∗
8 x∗

9 −x∗
17

−x∗
3√
2

0 0 0 x∗
18

x∗
8√
2

−x∗
4√
2

0 0 −x∗
18 0 x∗

9√
2

−x∗
5√
2

0 −x∗
18 0 0 x∗

10√
2

−x∗
6√
2

x∗
18 0 0 0 x∗

11√
2

−x∗
7√
2

0 −x∗
9 x∗

10 0 x∗
12

x1√
2

x∗
9 0 x∗

11 0 x∗
13

x2√
2

−x∗
10 −x∗

11 0 0 x∗
14

x3√
2

−x∗
12 −x∗

13 −x∗
14 0 0 x4√

2

−x∗
16 −x∗

15 0 −x∗
14 0 x5√

2

−x∗
17 0 x∗

15 −x∗
13 0 x6√

2

0 x∗
17 −x∗

16 x∗
12 0 x7√

2

0 x14 −x13 −x15
x11√

2
0

x14 0 −x12 −x16
x10√

2
0

−x13 x12 0 x17
x9√

2
0

x15 −x16 x17 0 x8√
2

0
−x11 x10 x9 −x8 x18 0




.

As was the case with the code E1,EW , notice that for the
design E2,EW also, all the matrices Di, i = 1, 2, · · · , 14 are
identity matrices.

IV. DISCUSSION

For a given set of parameters p, n, k, complex orthogonal
design satisfying the equal-weights condition is not unique.
There can be two complex orthogonal designs satisfying the
equal-weights condition in the same set of variables as shown
below for 4 antennas. The well known square COD for 4
transmit antenna [1]


x1 x2 −x∗

3 0
−x∗

2 x∗
1 0 −x∗

3

x3 0 x∗
1 −x2

0 x3 x∗
2 x1


 ,
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and the following code given in [13], [1] obtained from
Amicable Orthogonal Designs




x1 x2
x∗
3√
2

x∗
3√
2

−x∗
2 x∗

1
x∗
3√
2

−x∗
3√
2

x∗
3√
2

x∗
3√
2

(−x1−x∗
1+x2−x∗

2)
2

(+x1−x∗
1−x2−x∗

2)
2

x∗
3√
2

−x∗
3√
2

(x1−x∗
1+x2+x∗

2)
2

(x1+x∗
1+x2−x∗

2)
2




,

have the same code parameters and the same set of variables
and both satisfy the equal-weights condition. Similar codes
can be obtained for 8 antennas as shown below: The square
COD given in [1] for 8 antennas

G =




x1 −x∗
2 −x∗

3 0 −x∗
4 0 0 0

x2 x∗
1 0 −x∗

3 0 −x∗
4 0 0

x3 0 x∗
1 x∗

2 0 0 −x∗
4 0

0 x3 −x2 x1 0 0 0 −x∗
4

x4 0 0 0 x∗
1 x∗

2 x∗
3 0

0 x4 0 0 −x2 x1 0 x∗
3

0 0 x4 0 −x3 0 x1 −x∗
2

0 0 0 x4 0 −x3 x2 x∗
1




contains 50 per cent of the entries as zeros. But, Yuen et
al [14] have constructed a rate 1/2 square COD, GY√

2
, of size

8 with no zeros in the design matrix using Amicable Complex
Orthogonal Design (ACOD)[13], where GY is given by




x∗
1 x∗

1 x2 −x2 x3 −x3 x4 −x4

jx1 −jx1 jx∗
2 jx∗

2 jx∗
3 jx∗

3 jx∗
4 jx∗

4−x2 x2 x∗
1 x∗

1 x∗
4 −x∗

4 −x∗
3 x∗

3−jx∗
2 −jx∗

2 jx1 −jx1 jx4 jx4 −jx3 −jx3

−x3 x3 −x∗
4 x∗

4 x∗
1 x∗

1 x∗
2 −x∗

2−jx∗
3 −jx∗

3 −jx4 −jx4 jx1 −jx1 jx2 jx2

−x4 x4 x∗
3 −x∗

3 −x∗
2 x∗

2 x∗
1 x∗

1−jx∗
4 −jx∗

4 jx3 jx3 −jx2 −jx2 jx1 −jx1




,

which has no zeros in the matrix. The different number of
zeros in the designs indicates that their performance under
peak power constraints will be different. This aspect has been
studied in detail in [5] for square designs and it will be
interesting to extend this for non-square designs.
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