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ABSTRACT
In this paper, we develop a low-complexity message passing algo-
rithm for joint support and signal recovery of approximately sparse
signals. The problem of recovery of strictly sparse signals from
noisy measurements can be viewed as a problem of recovery of
approximately sparse signals from noiseless measurements, making
the approach applicable to strictly sparse signal recovery from noisy
measurements. The support recovery embedded in the approach
makes it suitable for recovery of signals with same sparsity profiles,
as in the problem of multiple measurement vectors (MMV). Simu-
lation results show that the proposed algorithm, termed as JSSR-MP
(joint support and signal recovery via message passing) algorithm,
achieves performance comparable to that of sparse Bayesian learn-
ing (M-SBL) algorithm in the literature, at one order less complexity
compared to the M-SBL algorithm.

Keywords: Sparse signal recovery, approximately sparse signals,
support recovery, Bayesian framework, message passing..

1. INTRODUCTION
An approximately sparse signal x will have few components with
large magnitudes and many components with very small but non-
zero magnitudes [1],[2],[3]. Support of an approximately sparse sig-
nal is defined as the positions of the large coefficients in x. Finding
the support of sparse signals is of interest in several diverse appli-
cations, including medical imaging, cognitive radio, etc. In several
applications, finding sparse solutions (i.e., solutions where only a
very small number of entries are non-zero) are of interest [4]. In
the context of approximately sparse signals, sparse solutions refer
to those solutions which have very few large coefficients and many
small non-zero coefficients.

In this paper, we are interested in computing sparse solutions
to the linear inverse problem: find x such that Ax = y, where
y ∈ R

M of M measurements is obtained from an approximately
sparse signal x ∈ R

N using a measurement matrix A ∈ R
M×N ,

M < N . The solution can be formulated as

minimize

N∑
i=1

I{|xi|> ε} subject to ‖y −Ax‖22 ≤ β, (1)

where I denotes the indicator function and E(x) =
∑N

i=1 I{|xi|> ε}
is the diversity measure used.1 The above problem can be cast in
a Bayesian framework with appropriate sparsity promoting priors.
In addition to signal recovery in this setting, we are interested in
support recovery as well. To achieve this, we propose a Bayesian
framework and an associated iterative message passing algorithm to
jointly recover the signal and support.

1Instead of using the criterion |xi| > ε, other appropriate criterion could
be used to distinguish the large coefficients from the small ones.
This work in part was supported by Indo-French Centre for the Promotion of
Advanced Research (IFCPAR) Project No. 4000-IT-1.

Iterative message passing on graphical models is an efficient tool
to solve inference problems. In [2], a message passing algorithm that
uses mixture Gaussian as the sparsity promoting priors is presented
for recovery of approximately sparse signals measured using sparse
matrices (e.g., LDPC-like measurement matrices). In [5], another
message passing algorithm, referred to as the approximate message
passing (AMP) algorithm that uses Laplacian priors and approxi-
mates the messages by Gaussian densities, has been proposed for
the recovery of sparse signals for a variety of measurement matrices
(e.g., random Gaussian/Bernoulli measurement matrices). In this
paper, we propose a message passing algorithm that jointly recov-
ers support and signal; we refer to this algorithm as joint support
and signal recovery via message passing (JSSR-MP) algorithm. The
joint support and signal recovery in our algorithm allows it to be
applicable to recovery of signals with same sparsity profile using
multiple measurement vectors (MMV). Our work here differs from
that in [2], in the following aspect. The algorithm in [2] sends either
the samples of the pdf as messages or the parameters of the mixture
Gaussian as messages. Whereas, we approximate the mixture by a
single Gaussian distribution and pass the parameters of this Gaus-
sian distribution which results in lower complexity even for a dense
measurement matrix. Obtaining sparse solutions to linear inverse
problems in MMV settings has been studied in [4],[6]. However,
these are not based on message passing. The proposed JSSR-MP
algorithm, on the other hand, is based on message passing and it is
shown to achieve better performance than AMP algorithm in [5] at
same complexity order, and performance comparable to that of the
sparse Bayesian learning (M-SBL) algorithm in [6] at one order less
complexity.

2. PROBLEM FORMULATION
Approximate Sparse Signal Model: Let the approximately sparse
signal consist of K ‘large’ coefficients and N − K ‘small’ coeffi-
cients, where K << N and α = K/N is the sparsity rate. Let s =[
s1 s2 · · · sK

]T ∈ [
N
]K

such that
{
s1, s2, · · · , sK

}
is uniformly

distributed over all size-K subsets of
[
N
]
. Define a state vector[

Q1 Q2 · · · QN

] ∈ {
0, 1

}N
which indicates whether a particular

signal coefficient is a large coefficient or a small coefficient: Qi =
1, if i ∈ {

s1, s2, · · · , sK
}

and Qi = 0, if i /∈ {
s1, s2, · · · , sK

}
.

The signal of interest is defined as

Xi = XLi if Qi = 1, and Xi = XSi if Qi = 0, (2)

where XLi is drawn from a distribution pXL(·;μL, σ
2
L) and XSi

is drawn from pXS (·;μS , σ
2
S), σL > σS . Xi’s, i = 1, · · · , N are

drawn independent of each other. The 2-state mixture distribution
characterizing the approximately sparse signal is then given by

pXi
(xi) = p(Qi = 1)pXL

(xi;μL, σ
2
L) + p(Qi = 0)pXS

(xi;μS , σ
2
S).

Support of the above approx. sparse signal is S =
{
s1, s2, · · · , sK

}
.

Note that strictly sparse signal is a special case of the above model
for μS = σS = 0.
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System Models: A noiseless system model is given by Y = AX,
where A ∈ R

M×N , M < N , is the measurement matrix, Y ∈
R

M×L, L < M , is the collection of L measurement vectors (mul-
tiple measurement vectors), and X ∈ R

N×L is the collection of L
vectors of unknown coefficients to be estimated. The L vectors of X
of have a common sparsity profile (i.e., the same support). A more
practical noisy system model is given by Y = AX + N, where
N ∈ R

M×L is the noise vector whose entries are i.i.d Gaussian r.v’s
with zero mean and variance σ2

n. The goal is to recover signal and
support from the noiseless/noisy measurements.

We note that noisy measurements of a strictly sparse signal can
be modeled approximately as noiseless measurements of an approxi-
mately sparse signal. Let x be a strictly sparse signal and x′ = x+e
be an approximately sparse signal. A noiseless measurement of x′

of the form y = Ax′ can be viewed as equivalent to the noisy
measurement y = Ax + n, if n′ = Ae has the same statistical
characteristics as n. The following lemma gives the the statistical
characteristics of e for n and n′ to have the same distribution. We
state the lemma for L = 1 (single measurement vector (SMV)). It
can be easily extended to L > 1 (MMV).

Lemma 1 If A ∈ R
M×N , M < N , with i.i.d entries from

N (0, σ2
a), n ∈ R

M with i.i.d entries from N (0, σ2
n) and e whose

entries are i.i.d and distributed from N (0, σ2
e), then n′ = Ae has

the same distribution as that of n, where σ2
e =

σ2
n

Nσ2
a

.

Once a measurement is made, matrix A is not random anymore.
Thus, n′ is not i.i.d but has σ2

eIAAT as the covariance matrix.
However, for reasonable problem dimensions, AAT will be close
to identity. Therefore, this approximate equivalence in the distribu-
tion of n and n′ will be used to characterize the priors in the recovery
of strictly sparse signals from noisy measurements. This leads to the
following statistical characterization of x′:
pX′

i
(x′

i) = {p(Qi = 1)pXL(x
′
i;μL, σ

2
L) + p(Qi = 0)δ(x′

i)}
∗N (x′

i; 0, σ
2
e), (3)

where ∗ is convolution operator and δ(.) is Dirac delta function.

3. BAYESIAN FRAMEWORK
Bayesian Inference Problem: Recovery of an approximately sparse
signal can be stated as the optimization problem (1), which can be
viewed as a regression problem. This, in turn, can be viewed as
a Bayesian inference problem with the solution being equivalent to
the maximum a posteriori probability (MAP) estimate of x as

x̂ = argmax
x

exp{−‖y −Ax‖22}︸ ︷︷ ︸
likelihood

exp{−λE(x)}︸ ︷︷ ︸
sparsity promoting prior

. (4)

where λ is regularization parameter, and E(x) is diversity measure.
Sparse Bayesian Prior: A popular choice of sparsity promoting
prior is a Gaussian distribution, parametrized by (inverse) variance
controlling hyperparameters [7],[6], given by

p(x|γ1, · · · , γN ) =
N∏
i=1

[
(2π)−1/2γi

1/2 exp
(−γix

2
i

2

)]
, (5)

where γ1, · · · , γN are the N hyperparameters independently con-
trolling the variance of the signal components. Here, we choose the
state Qi of the approximately sparse signal as the hyperparameter.
p(xi|Qi) is Gaussian and is given as p(xi|Qi = 1) = N (xi; 0, σ

2
L)

and p(xi|Qi = 0) = N (xi; 0, σ
2
S). Thus, p(xi) is given as

p(xi) = p(Qi = 1)N (xi; 0, σ
2
L) + p(Qi = 0)N (xi; 0, σ

2
S), (6)

giving rise to a 2-state mixture Gaussian prior. The Qi’s are inde-
pendent Bernoulli r.v’s. To ensure that the prior p(xi) adequately

represents the statistical characteristics of an approximately sparse
signal with K large coefficients, we choose p(Qi = 1) = α (i.e.,
sparsity rate K/N ) if α is known, or use an estimate of α.
Signal and Support Recovery: The MAP estimate of x can be ob-
tained by marginalizing out the hyperparameters from the complete
posterior distribution p(x,q|y), as

x̂MAP = argmax
x

∑
q∈{0,1}N

p(x|y,q)p(q|y), (7)

where q = [q1 q2 · · · qN ]T ∈ {0, 1}N denotes the sparsity profile of
x, and the posterior distribution of the hyperparameters p(q|y) ∝
p(y|q)p(q) is obtained by marginalizing out x as

p(q|y) ∝
(∫

x

p(y|x)p(x|q)dx
)
p(q). (8)

The support is recovered from the posterior distribution of Qi’s as

Ŝ = {i : p(Qi = 1|y) ≥ p(Qi = 0|y)}. (9)

We see that in the above Bayesian framework, support recovery is
an integral part of signal recovery. In MMV settings [4], a more ac-
curate recovery of support can be made compared to that in SMV set-
tings because of the availability of multiple measurements of signal
vectors with the same sparsity profile, which can lead to improved
signal recovery.

4. PROPOSED JSSR-MP ALGORITHM
Notation of Indices: The letters u, v, w denote indices in [M ] ≡
{1, · · · ,M}, letters i, j, k denote indices in [N ] ≡ {1, · · · , N},
and letters l,m, n denote indices in [L] ≡ {1, · · · , L}.

The factor graph representing the joint distribution of the sig-
nal, hyperparameters, and observed measurements for our problem
in MMV setting is shown in Fig. 1. We have two types of vari-
able nodes; hyperparameter variable nodes (HVN) representing qi,
i = 1, · · ·N , and signal variable nodes (SVN) representing sig-
nal components xil, i = 1, · · ·N, l = 1, · · · , L. We have two
types of constraint nodes; one gives the relationship between sig-
nal components and observed measurements (measurement factor
nodes (MFN)), and the other connects HVNs & SVNs and deter-
mines the conditional distribution of signal given the hyperparame-
ter; call these nodes, wil’s, as prior-mixing factor nodes (PFN).
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Fig. 1. Factor graph for joint support and signal recovery.

Message Passing Algorithm: Belief propagation (BP) is known to
give the exact marginal when the factor graph is a tree. The factor
graph in our problem (Fig. 1) is loopy. We apply BP on this fac-
tor graph treating it as a loop-free graph, and compute approximate
marginal posterior distributions of the signal components (xil’s) and
hyperparameters (qi’s), conditioned on the observed measurements
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Message From To Nature of message Parameters

ψul→il MFN SVN Gaussian Density ψt
ul→il : N (·;μt

ul→il, υ
t
ul→il),where

μt
ul→il =

1
aui

{yul −
∑
j �=i

aujμ
t−1
jl→ul}, υt

ul→il =
1

a2
ui

∑
j �=i

a2
ujυ

t−1
jl→ul

ψil SVN MFN Gaussian Density ψt
il : N (·;μt

il, υ
t
il), where

(Broadcast Message) υt
il =

(
1

(σ̃t
il
)2

+ 1
υt

vil→fil

)−1

, μt
il =

(
μ̃t
il

(σ̃t
il
)2

+
μt

vil→fil
υt

vil→fil

)
υt
il

ψil→ul SVN MFN Gaussian Density ψt−1
il→ul : N (·;μt−1

il→ul, υ
t−1
il→ul), where

(Extracted Message) μt−1
il→ul =

(
μt−1
il

υt−1
il

− μt−1
ul→il

υt−1
ul→il

)
υt−1
il→ul, υt−1

il→ul =
(

1

υt−1
il

− 1

υt−1
ul→il

)−1

ϕvil→fil SVN PFN Gaussian Density ϕt

vil→fil : N (·;μt

vil→fil, υ
t

vil→fil), where

υt

vil→fil =
( M∑

u=1

1

υt
ul→il

)−1

, μt

vil→fil =
( M∑

u=1

μt
ul→il

υt
ul→il

)
υt

vil→fil

ϕfil→vil
PFN SVN Gaussian Mixture ϕt

fil→vil
= ζti N (·; 0, σ2

L) + (1− ζti )N (·; 0, σ2
S)

φil→i PFN HVN LLR Λt
il

φi→il HVN PFN ζi ζti , ζ0i = α̂, where α̂ = 1
(σ2

L
−σ2

S
)

(
1

MLNσ2
a
‖Y‖2F − σ2

S

)
Table 1. Messages and their parameters. N (·; a, b) denotes Gaussian distribution with mean a and variance b.

(Y). This results in computational efficiency as well as good per-
formance. Treating the graph as loop-free, the marginal posterior
distributions of xil’s and qi’s are given by

p(xil|Y) ∝
M∏

u=1

p(yul|xil)

· [ζi N (xil; 0, σ
2
L) + (1− ζi)N (xil; 0, σ

2
S)

]
, (10)

where ζi = p(Qi = 1|Y), and

p(qi|Y) ∝
L∏

l=1

∫
xil

M∏
u=1

p(yul|xil)p(xil|qi) dxil p(qi). (11)

The various messages and their nature/parameters are summa-
rized in Table I. The computations carried out and messages passed
in each iteration of the algorithm are described below.

Message Passing: In each iteration, HVNs compute the approx-
imate posterior distribution p(Qi|Y) and pass φi→il := (ζi), where
ζi = p(Qi = 1|Y) to the PFNs. At the PFNs, the constraint func-
tion p(xil|Qi) is marginalized w.r.t qi to obtain p(xil), which is a
mixture of two Gaussians with ζi governing the ratio in which the
two distributions are mixed. The PFNs pass the parameters of this
mixture to the SVNs, i.e., ϕfil→vil

:= (ζi, σ
2
L, σ

2
S). At the SVNs,

the Gaussian mixture is approximated by a single Gaussian density
N (.; 0, (σ̃il)

2), where (σ̃il)
2 = ζiσ

2
L + (1 − ζi)σ

2
S . The messages

to MFNs from SVNs (i.e., ψil→ul’s) are computed by taking the
product of messages coming to SVNs from MFNs (ψul→il) and this
single Gaussian density. The approximation of the mixture to single
Gaussian at the SVNs facilitates the use Gaussian BP [8] and the
associated computationally efficient broadcast messaging strategy.
Accordingly, the SVNs broadcast the messages ψil.

At the MFNs, relevant messages are extracted from these broad-
cast messages (which are Gaussian densities), which are then multi-
plied with the constraint function (defined by δ{yul= au·x·l}, which
denotes a Dirac distribution on the hyperplane yul = au·x·l), and
marginalized to obtain the new messages ψul→il to be sent to SVNs.
The SVNs take the product of these messages ψul→il coming from
MFNs, and send the parameters of the resultant Gaussian density
to the PFNs via ϕvil→fil messages. The PFNs take the product
of the ϕvil→fil messages coming from SVNs and the constraint
function p(xil|Qi), and marginalize with respect to xil to obtain∫
xil

ϕvil→fil p(xil|Qi) dxil, and compute the LLRs

Λil = log

{∫
xil

ϕvil→filp(xil|Qi = 1)dxil∫
xil

ϕvil→filp(xil|Qi = 0)dxil

}
. (12)

PFNs send these LLRs as φil→i messages to HVNs. At the ith
HVN, approximate posterior distribution p(Qi|Y) is computed by
taking the sum of all the incoming LLRs along with the LLR of the

prior density Λi =
∑L

l=1 Λil + Λ0
i , where Λ0

i = log
(

p(Qi=1)
p(Qi=0)

)
is the prior. Messages are exchanged for a certain number of iter-
ations. The marginals of the hyperparameters at the end are used

to recover the support Ŝ (and also the sparsity profile q̂) as per (9).
The algorithm is then re-initialized with the recovered sparsity pro-
file q̂; i.e., the priors of the signal components are re-initialized
as: p(xil) = N (·; 0, σ2

L) if q̂i = 1, and p(xil) = N (·; 0, σ2
S) if

q̂i = 0). Messages are exchanged between SVNs and MFNs for
several iterations, after which the marginal posterior distribution of

signal components are computed, which are used to recover X̂.

To improve the convergence behavior of the algorithm, we have
applied damping [9] to the messages, where, in each iteration, a mes-
sage is computed as a weighted average of the old message (of the
previous iteration) and the newly evaluated message (of the current
iteration). βm, βq , βs are the damping factors for messages ψ, φ and
signal x̂il’s, respectively. For recovery of strictly sparse signals from
noisy measurements, σL and σS values to be used in the recovery al-
gorithm have to be updated according to Lemma 1 using σn, and, in
addition, in the final step all those signal components whose q̂i turn
out to be zero are set to zero.

Complexity: The proposed JSSR-MP algorithm has a complex-
ity of order O(MNL). Since L << M typically, the complexity
order is O(MN). This complexity is one order less in M compared
to that of M-SBL algorithm in [6], whose complexity is O(M2N +
M2L). Thus, in the proposed algorithm, the approximation of the
Gaussian mixture by a single Gaussian density at the SVNs, the con-
sequent use of Gaussian BP, and the associated broadcast messaging
strategy has led to a computationally efficient solution whose com-
plexity is linear in M and N .

5. SIMULATION RESULTS
Experiment 1: In this experiment, we compare the mean square error
(MSE) performance of the proposed JSSR-MP algorithm with those
of the AMP algorithm in [5] and the CoSaMP algorithm in [11] for
the case of noiseless measurements of approximately sparse signals
with L = 1 (i.e., SMV). The MSE results as a function of M are
shown in Fig. 2 for N = 500, σL = 10, σS = 1, σn = 0, and
K = 50, 100. The damping factors used are βm = 0.5, βq = 0.3,
βs = 0.3. In addition to the MSE plots for JSSR-MP, AMP and

4034



CoSaMP algorithms, we also show the plot for a genie-aided scheme
which is nothing but the JSSR-MP algorithm with perfect knowledge
of support. In the actual JSSR-MP, however, the support is estimated
and hence the estimated support can be imperfect. The genie-aided
scheme, therefore, is an indicator of the best performance possible
with JSSR-MP. The following observations can be made from Fig.
2. As expected, as the sparsity rate (K/N ) is increased, the MSE
degrades. The MSE improves as M is increased, which is also ex-
pected. The JSSR-MP algorithm is found to significantly outperform
CoSaMP and to perform almost the same as or better than the AMP
(note that AMP does not jointly recover the support and the signal).
The order of complexity in CoSaMP, AMP and JSSR-MP algorithms
are the same. Comparing with the performance of the genie-aided
scheme, it is seen that significant improvement in performance is
possible if the quality of support recovery is improved. This is in-
deed achieved by JSSR-MP in MMV (L > 1) as illustrated in the
Fig. 2 for L = 5, which is quite close to the performance achieved
by the genie-aided scheme.

Experiment 2: In this experiment, we recover strictly sparse sig-
nals from noisy measurements. MSE as well as percentage success
(PS) of support recovery results are obtained for JSSR-MP algorithm
and M-SBL algorithm in [6]. Figures 3 and 4 show the MSE perfor-
mance of signal recovery and PS performance of support recovery,
respectively, for N = 500, K = 160, SNR = 20 dB, σL = 10, and
σS = 0. MSE plots as a function of M for L = 5, 10, 25 are shown
in Fig. 3. PS plots as a function of L for M = 200, 250 are shown
in Fig. 4. σn is assumed to be known for recovery in both JSSR-
MP and M-SBL algorithms. From Figs. 3 and 4, we observe that
the JSSR-MP performance is comparable to that of M-SBL. This is
interesting given that this comparable performance is achieved by
JSSR-MP at one order less complexity than M-SBL; O(MN) com-
plexity of JSSR-MP versus O(M2N) complexity of M-SBL.
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Fig. 2. MSE versus M performance of signal recovery of ap-
proximately sparse signals with noiseless measurements for SMV
(L = 1) and MMV (L = 5)

6. CONCLUSIONS
We developed a low-complexity message passing algorithm which
jointly recovers the support and signal of approximately sparse sig-
nals with multiple measurement vectors. The algorithm achieved
good performance at low complexities due to the approximation of
the Gaussian mixture prior by a single Gaussian and message damp-
ing. By exploiting the approximate equivalence between noiseless
measurements of approximately sparse signals and noisy measure-
ments of strictly sparse signals, the proposed JSSR-MP algorithm is
applicable to a wider class of signals and measurement models.
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Fig. 3. MSE versus M performance of signal recovery of strictly
sparse signals with noisy measurements for MMV (L = 5, 10, 25).
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