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Abstract—Space-time block codes (STBCs) that are single-symbol
decodable (SSD) in a co-located multiple antenna setting need not
be SSD in a distributed cooperative communication setting. A re-
lay network with N relays and a single source-destination pair is
called a partially-coherent relay channel (PCRC) if the destina-
tion has perfect channel state information (CSI) of all the chan-
nels and the relays have only the phase information of the source-
to-relay channels. In this paper, first, a new set of necessary and
sufficient conditions for a STBC to be SSD for co-located multi-
ple antenna communication is obtained. Then, this is extended
to a set of necessary and sufficient conditions for a distributed
STBC (DSTBC) to be SSD for a PCRC, by identifying the addi-
tional conditions. Using this, several SSD DSTBCs for PCRC are
identified among the known classes of STBCs. It is proved that
even if a SSD STBC for a co-located MIMO channel does not sat-
isfy the additional conditions for the code to be SSD for a PCRC,
single-symbol decoding of it in a PCRC gives full-diversity and
only coding gain is lost.

Keywords – Cooperative communications, amplify-and-forward protocol,

distributed STBC, single-symbol decoding.

I. INTRODUCTION

The problem of fading and the ways to combat it through spa-
tial diversity techniques have been an active area of research.
Multiple-input multiple-output (MIMO) techniques have be-
come popular in realizing spatial diversity and high data rates
through the use of multiple transmit antennas. For such co-
located multiple transmit antenna systems low maximum-likel-
ihood (ML) decoding complexity space-time block codes (ST-
BCs) have been studied by several researchers [1]-[5], which
include the well known complex orthogonal designs (CODs)
and their generalizations. Recent research has shown that the
advantages of spatial diversity could be realized in single-ante-
nna user nodes through user cooperation [6],[7] via relaying.
A simple wireless relay network of N + 2 nodes consists of
a single source-destination pair with N relays. For such relay
channels, use of CODs [1],[2] has been studied in [8]. CODs
are attractive for cooperative communications mainly because
they admit very fast ML decoding (single-symbol decoding
(SSD)). However, it should be noted that this property applies
only to the decode-and-forward (DF) policy at the relay node.
In a scenario where the relays amplify and forward (AF) the
signal, it is known that the orthogonality is lost, and hence the
destination has to use a complex multi-symbol ML decoding
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or sphere decoding [8],[9]. It should be noted that the AF pol-
icy is attractive for two reasons: i) the complexity at the relay
is greatly reduced, and ii) the restrictions on the rate because
the relay has to decode is avoided [10].

In order to avoid the complex ML decoding at the destination,
in [11], the authors propose an alternative code design strategy
and propose a SSD code for 2 and 4 relays. For arbitrary num-
ber of relays, recently in [12], distributed orthogonal STBCs
(DOSTBCs) have been studied and it is shown that if the desti-
nation has the complete channel state information (CSI) of all
the source-to-relay channels and the relay-to-destination chan-
nels, then the maximum possible rate is upper bounded by 2

N
complex symbols per channel use for N relays. Towards im-
proving the rate of transmission and achieving simultaneously
both full-diversity as well as SSD at the destination, in this
paper, we study relay channels with the assumption that the
relays have the phase information of the source-to-relay chan-
nels and the destination has the CSI of all the channels.

The contributions of this paper can be summarized as follows:
1) First, a new set of necessary and sufficient conditions for
a STBC to be SSD for co-located multiple antenna communi-
cation is obtained. 2) A set of necessary and sufficient condi-
tions for a distributed STBC (DSTBC) to be SSD for a PCRC
is obtained by identifying the additional conditions. Using
this, several SSD DSTBCs for PCRC are identified among the
known classes of STBCs for co-located multiple antenna sys-
tem. 3) It is proved that even if a SSD STBC for a co-located
MIMO channel does not satisfy the additional conditions for
the code to be SSD for a PCRC, single-symbol decoding of it
in a PCRC gives full-diversity and only coding gain is lost.

The rest of the paper is organized as follows: In Section II,
the signal model for a PCRC is developed. Using this model,
in Section III, a new set of necessary and sufficient conditions
for a STBC to be SSD in a co-located MIMO is presented.
Then, in Section IV, SSD DSTBCs for PCRC are character-
ized by identifying a set of necessary and sufficient conditions.
Also, it is shown that SSD codes for co-located MIMO, under
suboptimal SSD decoder for PCRC offer full diversity. Con-
cluding remarks and discussion of simulation results consti-
tute Section V.

II. SYSTEM MODEL

Consider a wireless network with N + 2 nodes consisting of
a source, a destination, and N relays, as shown in Fig. 1.
All nodes are half-duplex nodes, i.e., a node can either trans-
mit or receive at a time on a specific frequency. We consider
amplify-and-forward (AF) transmission at the relays. Trans-
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Fig. 1. A cooperative relay network with N relays.

mission from the source to the destination is carried out in two
phases. In the first phase, the source transmits information
symbols x(i), 1 ≤ i ≤ T1 in T1 time slots. All the N re-
lays receive these T1 symbols. This phase is called the broad-
cast phase. In the second phase (relay phase), all the N re-
lays perform distributed space-time block encoding on their
received vectors and transmit the resulting encoded vectors in
T2 time slots. We assume that the source-to-relay channels
remain static over T1 time slots, and the relay-to-destination
channels remain static over T2 time slots.

A. No CSI at the Relays

The received signal at the jth relay, j = 1, · · · , N , in the ith
time slot, i = 1, · · · , T1, denoted by v

(i)
j , can be written as1

v
(i)
j =

√
E1hsjx

(i) + z
(i)
j , (1)

where hsj is the complex channel gain from the source s to

the jth relay, z
(i)
j is additive white Gaussian noise at relay j

with zero mean and unit variance, E1 is the transmit energy

per symbol in the broadcast phase, and E
[(

x(i)
)∗

x(i)
]

= 1.

Under the assumption of no CSI at the relays, the amplified ith
received signal at the jth relay can be written as v̂

(i)
j = Gv

(i)
j ,

where G =
√

E2
E1+1 is the amplification factor at the relay that

makes the total transmission energy per symbol in the relay
phase to be equal to E2 [8]. Let Et denote the total energy per
symbol in both the phases put together. Then, it is shown in
[10] that the optimum energy allocation that maximizes the re-
ceive SNR at the destination is when half the energy is spent in
the broadcast phase and the remaining half in the relay phase
when the time allocations for the relay and broadcast phase
are same, i.e., T1 = T2. We also assume that the energy is
distributed equally, i.e., E1 = Et

2 and E2 = Et

2M , where M is
the number of transmissions per symbol in the STBC. For the
unequal-time allocation (T1 �= T2) this distribution might not
be optimal.

1We use the following notation: Vectors are denoted by boldface lowercase
letters, and matrices are denoted by boldface uppercase letters. Superscripts
T and H denote transpose and conjugate transpose operations, respectively
and ∗ denotes conjugation operation. j =

√−1.

At relay j, a 2T1 × 1 real vector v̂j given by

v̂j =
[
v̂
(1)
jI , v̂

(1)
jQ , v̂

(2)
jI , v̂

(2)
jQ , · · · , v̂(T1)

jI , v̂
(T1)
jQ

]T
, (2)

is formed, where v̂
(i)
jI and v̂

(i)
jQ, respectively, are the in-phase

(real part) and quadrature (imaginary part) components of v̂
(i)
j .

Now, (2) can be written in the form

v̂j = G
√

E1 Hsj x + ẑj , (3)

where x is the 2T1 × 1 data symbol real vector, given by
x = [x(1)

I , x
(1)
Q , x

(2)
I , x

(2)
Q , · · · , x(T1)

I , x
(T1)
Q ]T , ẑj is the 2T1×1

noise vector, given by ẑj = [ẑ(1)
jI , ẑ

(1)
jQ , ẑ

(2)
jI , ẑ

(2)
jQ , · · · , ẑ(T1)

jI ,

ẑ
(T1)
jQ ]T , where ẑ

(i)
j = Gz

(i)
j , and Hsj is a 2T1 × 2T1 block-

diagonal matrix, given by

Hsj =



[
hsjI −hsjQ

hsjQ hsjI

]
· · · 0

...
. . .

...

0 · · ·
[

hsjI −hsjQ
hsjQ hsjI

]
 . (4)

Let C =
[
c1, c2, · · · , cN

]
denote the T2 × N distributed

STBC matrix to be sent in the relay phase jointly by all N
relays, where cj denotes the jth column of C. The jth column
cj is manufactured by the jth relay as

cj = Aj v̂j = G
√

E1Aj Hsj︸ ︷︷ ︸
Bj

x + Aj ẑj , (5)

where Aj is the complex processing matrix of size T2 × 2T1

for the jth relay, called the relay matrix and Bj can be viewed
as the column vector representation matrix [3] for the dis-
tributed STBC with the difference that in our case the vector
x is real whereas in [3] it is complex. Let y denote the T2 × 1
received signal vector at the destination in T2 time slots. Then,
y can be written as

y =
N∑

j=1

hjdcj + zd, (6)

where hjd is the complex channel gain from the jth relay to
the destination, and zd is the AWGN noise vector at the des-
tination with zero mean and E[zd z∗d] = I. Substituting (5) in
(6), we can write

y = G
√

E1

 N∑
j=1

hjdHsjAj

 x +
N∑

j=1

hjdAj ẑj + zd. (7)

B. With Phase Only Information at the Relays

In this subsection, we obtain a signal model for the case of
partial CSI at the relays, where we assume that each relay has
the knowledge of the channel phase on the link between the
source and itself in the broadcast phase. That is, defining the
channel gain from source to relay j as hsj = αsje

jθsj , we
assume that relay j has perfect knowledge of only θsj and
does not have the knowledge of αsj .
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In the proposed scheme, we perform a phase compensation
operation on the amplified received signals at the relays, and
space-time encoding is done on these phase-compensated sig-
nals. That is, we multiply v̂

(i)
j in (2) by e−jθsj before space-

time encoding. Note that multiplication by e−jθsj does not
change the statistics of z

(i)
j . Therefore, with this phase com-

pensation, the v̂j vector in (3) becomes

v̂j =
(
G
√

E1 Hsj x + ẑj

)
e−jθsj

= G
√

E1 |hsj
|x + ẑj . (8)

Consequently, the cj vector generated by relay j is given by

cj = Aj v̂j

= G
√

E1Aj |hsj |︸ ︷︷ ︸
�
= B

′
j

x + Aj ẑj , (9)

where B
′
j is the equivalent weight matrix with phase compen-

sation. Now, we can write the received vector y as

y=G
√

E1

(
N∑

j=1

hjd|hsj |Aj

)
x +

N∑
j=1

hjdAj ẑj + zd︸ ︷︷ ︸
z̃d : total noise

. (10)

Systems with phase compensation at the relays will be re-
ferred as partially-coherent relay channels (PCRC). A dis-
tributed STBC which is SSD for a PCRC will be referred as
SSD-DSTBC-PCRC.

III. CONDITIONS FOR SSD AND FULL-DIVERSITY FOR

CO-LOCATED MIMO

The received vector y in a co-located MIMO setup can be
written as

y =
√

Et

 N∑
j=1

hjdAj

x + zd. (11)

Theorem 1: For co-located MIMO with N transmit antennas,
the linear STBC as given in (11) is SSD iff

AT
jIAjI + AT

jQAjQ = D
(1)
jj ;∀j,

AT
jIAiI + AT

jQAiQ + AT
iIAjI + AT

iQAjQ = D
(2)
ij ;∀i, j, i �= j,

AT
jIAiQ + AT

jQAiI − AT
iIAjQ − AT

iQAjI = D
(3)
ij ;∀i, j, i �= j, (12)

where Aj = AjI + jAjQ, j = 1, 2, · · · , N , where AjI and

AjQ are real matrices, and D(1)
jj ,D(2)

ij and D(3)
ij are block di-

agonal matrices of the form

D
(k)
ij =


D

(k)
ij,1 0 · · · 0

0 D
(k)
ij,2 · · · 0

...
...

. . .
...

0 · · · · · · D
(k)
ij,T1

 , (13)

where D
(k)
ij,l =

[
a
(k)
ij,l b

(k)
ij,l

b
(k)
ij,l c

(k)
ij,l

]
and it is understood that when-

ever the superscript is (1) as in D(1)
ij , then i = j.

Proof: Can be found in [15].

Lemma 1: For co-located MIMO, the linear STBC as given
in (11) with the D(k)

ij matrices in (12) satisfying D(2)
ij = D(3)

ij =
0 achieves maximum diversity for all signal constellations iff

a
(1)
jj,lc

(1)
jj,l − b

(1)
jj,l

2
> 0, 1 ≤ j ≤ N ; 1 ≤ l ≤ T1, (14)

i.e., D(1)
jj,l is positive definite for all j, l.

Proof: Can be found in [15].

IV. SSD CODES FOR PCRC

In the previous section, we saw that SSD is achieved if the re-
lay matrices satisfy the condition (12). However, to achieve
SSD in the case of distributed STBC with AF protocol, the
equivalent weight matrices Bj’s must satisfy the condition in
(12). It can be seen that for any Aj that satisfies the con-
dition in (12), the corresponding Bj’s need not satisfy (12).
We note that, in [11], code designs which retain the SSD fea-
ture have been obtained for no CSI at the relays, but only for
N = 2 and 4. Our key contribution in this paper is that by
using partial CSI at the relays (i.e., only the channel phase in-
formation of the source-to-relay links), the SSD feature at the
destination can be restored for a large subclass of SSD codes
for co-located MIMO communication.

The main result of this paper is given in the following theorem,
which characterizes the class of SSD codes for PCRC.

Theorem 2: A code as given by (5) is SSD-DSTBC-PCRC iff
the relay matrices Aj , j = 1, 2, · · · , N, satisfy (12) (i.e., the
code is SSD for a co-located MIMO set up), and, in addition,

Aj1I
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj3I+

Aj3I
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj1I+

Aj1Q
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj3Q+

Aj3Q
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj1Q = D

′
j1,j2,j3

,

∀j1, j2, j3, (15)

Aj1I
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj3Q+

Aj3Q
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj1I+

Aj1Q
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj3I+

Aj3I
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj1Q = D

′′
j1,j2,j3

,

∀j1, j2, j3, (16)

where D
′
j1,j2,j3

and D
′′
j1,j2,j3

, 1 ≤ j1, j2, j3 ≤ N , are block
diagonal matrices of the form in (13).

Proof: First we show the sufficiency part. It can be easily
verified that the matrices B′

j = G
√

E1Aj |hsj | satisfy the
condition (12) in spite of the fact that |hsj | are random vari-

ables. Let H(pc)
eq = G

√
E1

∑N
j=1 |hsj |hjdAj . It can be read-

ily seen that �
(
H(pc)

eq

H
H(pc)

eq

)
is block diagonal of the form

in (13). Hence, the term �
(
H(pc)

eq

H
y
)

decomposes y into

terms containing the information of each symbol. Hence, for
SSD, it suffices to show that noise in each of these terms are
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uncorrelated, i.e., the DSTBC is SSD iff

E

[
�
(
H

(pc)
eq

H
z̃d

)
�
(
H

(pc)
eq

H
z̃d

)T
]

is a block diagonal matrix

of the form (13). We have

E

[
�
(
HH

eq z̃d

)
�
(
HH

eq z̃d

)T
]

=

N∑
j1=1

N∑
j2=1

N∑
j3=1

|hsj1 ||hrj2 |2|hsj3 |
(
hrj1Ihrj3I + hrj1Qhrj3Q

)
.
(
Aj1I

T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj3I

+Aj3I
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj1I

+Aj1Q
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj3Q

+Aj3Q
T
(
Aj2IAj2I

T + Aj2QAj2Q
T
)
Aj1Q

)
+

N∑
j1=1

N∑
j2=1

N∑
j3=1

|hsj1 ||hrj2 |2|hsj3 |
(
hrj1Ihrj3Q + hrj1Qhrj3I

)
.
(
Aj1I

T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj3Q

+Aj3Q
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj1I

+Aj1Q
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj3I

+Aj3I
T
(
Aj2IAj2Q

T + Aj2QAj2I
T
)
Aj1Q

)
. (17)

From (17) it can be seen that if the conditions in (15) and
(16) are met, the covariance matrix is of the form (13). Hence,
along with (12) the conditions in (15) and (16) constitute a set
of sufficient conditions.

To show the “necessary part,” since the terms hsj1 ||hrj2 |2|hsj3 |
(hrj1Ihrj3I+hrj1Qhrj3Q) and hsj1 ||hrj2 |2|hsj3 |(hrj1Ihrj3Q+
hrj1Qhrj3I) are independent and if the co-variance matrix has
to be block diagonal for all the realizations of hsj and hrj ,
then the conditions in (15) and (16) have to be necessarily sat-
isfied. Also, in the similar lines of the proof for Theorem 1,
it can be deduced that B′

j satisfying condition (12) is neces-

sary for the term �
(
H(pc)

eq

H
y
)

to decompose y into terms

containing information of each symbol. �
A. Full-diversity, Single-Symbol Non-ML Detection

Theorem 3: The PCRC system given by (10) achieves full di-
versity irrespective of whether the total noise (z̃d) is correlated
or not, if the STBC achieves full diversity in the co-located
case and condition (12) is satisfied.

Proof: Since the noise z̃d is not assumed to be uncorrelated,
the optimal detection of x in the maximum likelihood sense is
given by

x̂ = arg min (y − H(pc)
eq x)HΩ−1(y − H(pc)

eq x), (18)

where Ω is co-variance matrix of the noise, given by Ω =
E{z̃dz̃Hd }. We consider the sub-optimal metric (ignoring Ω−1)

x̂ = arg min (y − H(pc)
eq x)H(y − H(pc)

eq x), (19)

and show that this decision metric achieves full diversity. By
Chernoff bound, the pair-wise error probability is upper bound-
ed by

P (x1 → x2) ≤ E
{

e−d2(x1,x2)Et/4
}

, (20)

where the Euclidean distance in (20) can be written as

d2(x1,x2) = (x2 − x1)T�
(
H(pc)

eq

H
H(pc)

eq

)
(x2 − x1). (21)

Define ∆x(i) = [∆x
(i)
I ∆x

(i)
Q ]T = [(x(i)

2I − x
(j)
1I ), (x(i)

2Q −
x

(i)
1Q)]T . Given that the conditions (12) are satisfied, the dis-

tance metric can be written as sum of T1 terms as

d2(x1,x2)=

T1∑
i=1

∆x(i)T

(
N∑

j=1

|hsj |2|hjd|2D(1)
j,i

)
∆x(i) (22)

=
N∑

j=1

|hsj |2|hjd|2
(

T1∑
i=1

∆x(i)T
D

(1)
j,i ∆x(i)

)
. (23)

Substituting (23) in (20) and evaluating the expectation with
respect to |hjd|2, we get

P (x1 → x2|hsj) ≤
N∏

j=1

 1

1 + |hsj |2
∑T1

i=1 ∆x(i)T
D

(1)
j,i ∆x(i)Et/4,

 , (24)

which, for high SNRs, could be approximated as

P (x1 → x2|hsj) ≤
N∏

j=1

 1∑T1
i=1 ∆x(i)T

D
(1)
j,i ∆x(i)Et/4

 N∏
j=1

(
1

|hsj |2
)

. (25)

Now, evaluating the expectation with respect to |hsj |, we get

P (x1 → x2) ≤
N∏

j=1

 1∑T1
i=1 ∆x(i)T

D
(1)
j,i ∆x(i)Et/4

 (Ei(0))N , (26)

where Ei(x) is the exponential integral
∫∞

x
e−t

t dt. From (26),
it is clear that the condition for achieving maximum diversity
is identical to that of co-located MIMO (14). �
Theorem 3 means that by using any STBC which satisfies
the conditions (12) and achieves full diversity in co-located
MIMO system, it is possible to do decoding of one symbol at
a time and achieve full diversity, though not optimal in the ML
sense, in a distributed setup with phase compensation done at
the relay, even if (15) and (16) are not satisfied .

V. DISCUSSION AND SIMULATION RESULTS

We consider the following codes in our discussions: i) Com-
plex Orthogonal Designs [1], COD2, COD4 and COD8 for
2, 4, and 8 transmit antennas, ii) Coordinate Interleaved Or-
thogonal Designs [4], CIOD4 and CIOD8 for 4 and 8 trans-
mit antennas, iii) Clifford Unitary Weight Code [5] CUW4

for 4 transmit antennas, and iv) the eight antenna code RR8

proposed in [13].

The results of our necessary and sufficient conditions (12),
(15) and (16) as well as the sufficient condition in [13], evalu-
ated for various classes of codes for PCRC are shown in Table
I. As can be seen from the last column of Table I, the suffi-
cient condition in [13] identifies only COD2 (Alamouti) and
CUW4 as SSDs for PCRC. However, our conditions (12), (15)
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Code Number of Rate Necessary and sufficient Sufficient
Relays Conditions (12), (15) & (16 ) Condition in [13]

COD2 (Alamouti) N = 2 1 True True
COD4 N = 4 3/4 False False
CIOD4 N = 4 1 True False
CUW4 N = 4 1 True True
COD8 N = 8 1/2 False False
CIOD8 N = 8 3/4 False False

RR8 N = 8 1 True False

TABLE I
TEST FOR NECESSARY AND SUFFICIENT CONDITIONS FOR VARIOUS CLASSES OF CODES FOR PCRC.

and (16) identify CIOD4 and RR8, in addition to COD2 and
CUW4, as SSDs for PCRC (4th column of Table I).

Next, we present the bit error rate (BER) performance of var-
ious classes of codes without and with phase compensation
at the relays (i.e., PCRC). For the purposes of the simulation
results and discussions in this section, we classify the decod-
ing of codes for PCRC into two categories: i) codes for which
single symbol decoding is ML-optimal; we refer to this decod-
ing as ML-SSD; we consider ML-SSD of COD2 , ii) codes
which when decoded using single symbol decoding are not
ML-optimal, but achieve full diversity; we refer to this decod-
ing as non-ML-SSD; we consider non-ML-SSD of COD4 and
COD8. When no phase compensation is done at the relays,
we consider ML decoding.

In Fig. 2, we plot the BER performance for COD2, COD4,
and COD8 without and with phase compensation at the re-
lays (i.e., PCRC) for 16-QAM. Note that COD2 is SSD for
PCRC whereas COD4 and COD8 are not SSD for PCRC. So
decoding of COD2 with PCRC is ML-SSD, whereas decod-
ing of COD4 and COD8 with PCRC is non-ML-SSD. When
no phase compensation is done at the relays, we do ML de-
coding for all COD2, COD4, and COD8. The following
observations can be made from Fig. 2: i) COD2 without
and with phase compensation at the relays (PCRC) achieve the
full diversity order of 2, ii) COD2 with PCRC and ML-SSD
achieves better performance by about 3 dB at a BER of 10−2

compared to ML decoding of COD2 without phase compen-
sation, and iii) even the non-ML-SSD of COD4 and COD8

with PCRC achieves full diversity of 4 and 8, respectively
(but not the ML performance corresponding to PCRC), and
even with this suboptimum decoding, PCRC achieves about
1 dB and 0.5 dB better performance at a BER of 10−2, re-
spectively, compared to ML decoding of COD4 and COD8

without phase compensation at the relays. More simulation
results can be found in [15].
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